

耳机线控

■ 产品概述

LN5064 是一款苹果手机和平板电脑耳机线控芯片,可使用在苹果手机和平板电脑耳机线控产品上,实现耳机数据插入识别及音量的加减等键控功能;并能支持苹果、安卓手机平板电脑等设备相机快门自拍功能。

■ 产品特点

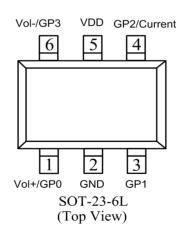
- 外围器件少
- 支持3按键功能,包含播放/暂停键、音量加键、音量 减键
- 内置振荡时钟电路,无需外接晶振电路

■ 订购信息

LN5064 ①②

- 低电压工作 1.5~5V
- 低静态电流,I standby=3uA,IQ=60uA

■ 用途

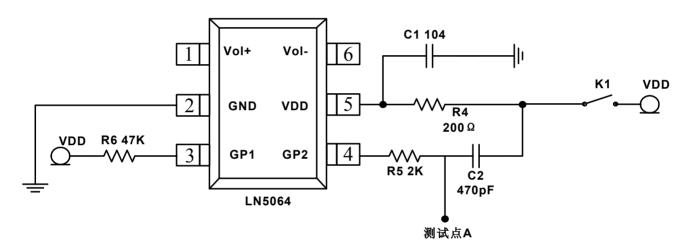

- 苹果手机和平板电脑耳机线控。
- 苹果手机和平板电脑相机快门自拍器。
- 安卓手机和平板电脑相机快门自拍器。

■ 封装

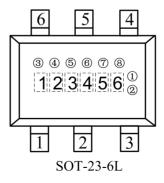
SOT-23-6L

符号	描述	符号	描述
1)	封装形式: M=SOT-23-6L	2	产品包装卷带信息: R=卷带方向(正向) L=卷带方向(反向)

■ 引脚配置



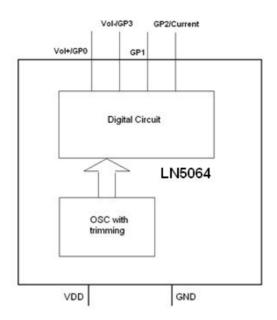
■ 引脚说明


引脚号 SOT-23-6L	符号	引脚说明
1	Vol+/GP0	音量+控制按键接口
2	GND	地线
3	GP1	咪电路使能端
4	GP2/Current	信号输出脚
5	VDD	电源线
6	Vol-/GP3	音量-控制按键接口

■ 测试电路

打印信息

SOT-23-6L


1 2 3 4 5 6 表示产品系列

打印符号	产品描述
LN5064	LN5064

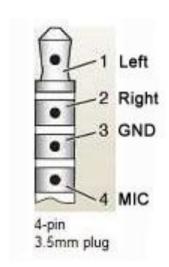
注: ①②③④⑤⑥⑦⑧ 表示码点,代表生产批号

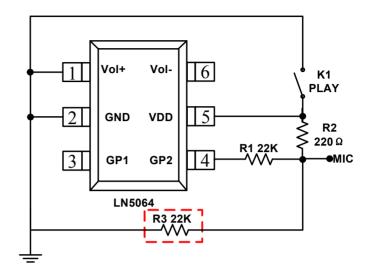
■ 功能框图

■ 绝对最大额定值 (Ta=25℃)

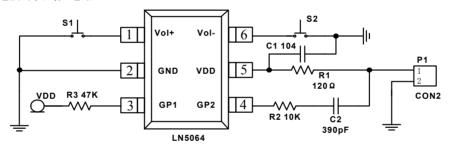
参数	符号	值	单位
最大供电电压	VDD	-0.3~+6.5	V
工作温度	Topr	-40∼+85	$^{\circ}$
贮存温度	Tstg	-50∼+125	$^{\circ}$

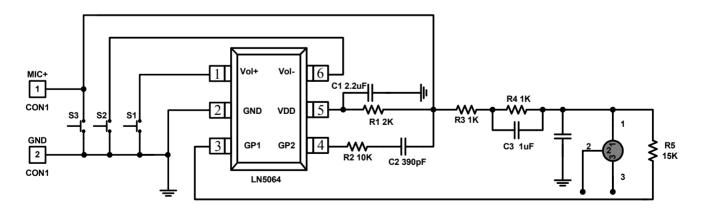
■ 电气特性


(Ta=25°C)


参数	符号	条件	最小	典型	最大	单位	测试电路
电源电压	Vdd	-	1.5		5	V	
振荡占空比	Dclk	-	45	50	55	%	
振荡器频率	Fosc	Vdd=2.5V	-	4	-	MHz	
输入高电平	Vih1	Vdd=2.5V	1.5	-	-	V	
输入低电平	Vil1	Vdd=2.5V	-	-	0.4	V	
输入高电平	Vih2	Vdd=1.5V	1.0	-	-	V	
输入低电平	Vil2	Vdd=1.5V	-	-	0.4	V	
输出高电平	Vah 1	Vdd=2.5V,	0.5			V	
湘山同 电丁	Voh1	Isource=5mA	2.5	-	-	V	
输出高电平	Voh2	Vdd=1.5V,	1.2			V	
柳山同圯	VOIIZ	Isource=5mA	1.2	1	-	V	
输出低电平	Vol1	Vdd=2.5V, Isink=5mA	-	-	0.3	V	
输出低电平	Vol2	Vdd=1.5V, Isink=5mA	-	-	0.3	V	
睡眠电流	I _{Standby}	Vdd=2.5V	ı	3	5	uA	
工作电流	ICC	Vdd=2.5V	-	60	80	uA	

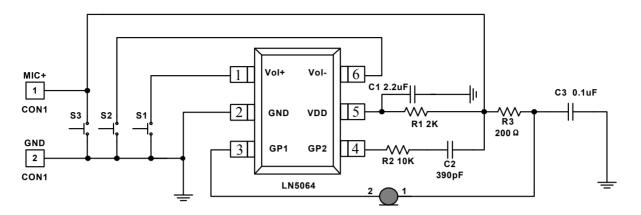
■ 典型应用


● 苹果、安卓相机快门自拍器控制电路



注: R3 电阻按需求使用,如 OPPO 等

● 苹果手机、平板电脑耳机线控电路



● 内置麦克风(硅咪)电路

● 内置麦克风(电容咪)电路

■ 工作原理

● 有四种频率其周期如下:占空比为50%

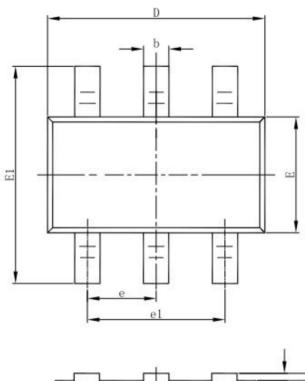
头: 3.69uS=271kHz

松键: 10.3uS=97kHz

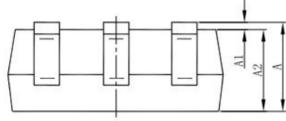
- +: 7.69uS=130kHz
- -: 6.06uS=165kHz

内置 2%的 4MHz 振荡器

- 发送频率方法如下
 - 1) 握手: 上电(电压>1.8V后,延时10mS发如下波形:


0.9mS "头" +5.5mS "+"

- 2) 按+: 消抖, 确认按键后发: 1mS "头" +2mS "+"
- 3) 按-: 消抖, 确认按键后发: 1mS "头"+2mS "-"
- 4) 松键: 消抖, 确认按键发: 1mS "头"+2mS "松键"
- 在按下按键或松开按键时,MIC 信号断开 20mS
- 发送频率时, MIC 断开
- 开机到发送握手信号完成 PA1=L,等待按键 PA1=L,发送频率时 PA1=H
- 工作电流:发波形时小于 70uA,
- 不发时 3uA,不大于 6uA
- 芯片可以封到 DFN2*2, 厚度为 0.5mm
- GP0 和 GP3 两个按键要有内部上拉电阻各 100k



■ 封装信息

SOT-23-6L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(E	BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	