SPECIFICATION FOR APPROVAL | (|) Preliminary Specification | |---|-----------------------------| | (|) Final Specification | | | Title | | | 14.0"W HD TFT LCI |) | | |---|----------|---|------|-------------------|----------|---| | Ī | Customer | 1 | Dell | 25 | SUPPLIER | T | | Customer | Dell | |----------|-------| | MODEL | Х976Н | | SUPPLIER | LG Display Co., Ltd. | |----------|----------------------| | *MODEL | LP140WH1 | | Suffix | TLA1 | ^{*}When you obtain standard approval, please use the above model name without suffix | APPROVED BY | SIGNATURE | |---|----------------| | / | | | / | : | | / | 9 9 <u></u> | | | | | e return 1 copy for your consignature and comments. | firmation with | | APPROVED BY | SIGNATURE | |------------------------|-----------| | K. J. Kwon / S.Manager | | | REVIEWED BY | | | M.J.Lee / Manager | | | PREPARED BY | | | J.Y.Lee / Engineer | | | C.H.Lee / Engineer | | Ver. 1.0 March. 03, 2009 1/31 ## Contents | No | ITEM | Page | |-----|---|-------| | | COVER | 1 | | | CONTENTS | 2 | | | RECORD OF REVISIONS | 3 | | 1 | GENERAL DESCRIPTION | 4 | | 2 | ABSOLUTE MAXIMUM RATINGS | 5 | | 3 | ELECTRICAL SPECIFICATIONS | | | 3-1 | ELECTRICAL CHARACTREISTICS | 6 | | 3-2 | INTERFACE CONNECTIONS | 7 | | 3-3 | LVDS SIGNAL TIMING SPECIFICATION | 8-9 | | 3-3 | SIGNAL TIMING SPECIFICATIONS | 9 | | 3-4 | SIGNAL TIMING WAVEFORMS | 10 | | 3-5 | COLOR INPUT DATA REFERNECE | .11 | | 3-6 | POWER SEQUENCE | 12 | | 4 | OPTICAL SFECIFICATIONS | 13-15 | | 5 | MECHANICAL CHARACTERISTICS | 16-23 | | 6 | RELIABLITY | 24 | | 7 | INTERNATIONAL STANDARDS | | | 7-1 | SAFETY | 25 | | 7-2 | EMC | 25 | | 8 | PACKING | | | 8-1 | DESIGNATION OF LOT MARK | 26 | | 8-2 | PACKING FORM | 26 | | 9 | PRECAUTIONS | 27-28 | | A | APPENDIX. Enhanced Extended Display Identification Data | 29-31 | ## RECORD OF REVISIONS | devision No | Revision Date | Page | Description | EDII
ver | |-------------|-------------------------------|-----------|---|---------------| | 0.0 | Sep. 12, 2008 | 25, 27 | First Draft (Preliminary Specification) Updated LGD Product Code in EDID Data : 0000 85Updated Chey k | 0.1 | | | | | Sum in EDID Data : 00 | | | 0.1 | Sep. 25, 2008 | 4, 5 | Updated Power Consumption | 0.1 | | 0.2 | Oct. 17, 2008 | 5 | Updated ELECTRICAL CHARACTERISTICS | 0.2 | | | | 12 | Updated Power sequence | 0.2 | | | | 30, 31 | Updated EDID Data | 0.2 | | 0.3 | Feb.14.2009 | 6 | Updated ELECTRICAL CHARACTERISTICS | 1.0 | | | | 12 | Updated Power sequence | 1.0 | | | | 14 | Update Optical specification | 1.0 | | | 10111130012010000000000 | 29-31 | Update EDID (Color coordinates, EDID revision A00) | 1.0 | | 0.4 | Feb.25.2009 | 6 | Updated Electrical Characteristics | 1.0 | | 1.0 | March.03.2009 | - | Final Specifications | 1.0 | | | 10 10 30 51 82 130 151 151 51 | 16 | Update Mechanical Characteristics | 1.0 | | ******** | | 19 | Update Label information | | | | | ********* | | | | | ********* | | • | | | | | | *************************************** | en ur to cons | | | | | | | | 5100000000 | | | | tana arean | ## 1. General Description The LP140WH1 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 14.0 inches diagonally measured active display area with HD resolution(768 vertical by 1366 horizontal pixel array). Each pixel is divided into Red, Green and Blue subpixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors The LP140WH1 has been designed to apply the interface method that enables low power, high speed, low EMI. The LP140WH1 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP140WH1 characteristics provide an excellent flat display for office automation products such as Notebook PC. #### **General Features** | Active Screen Size | 14.0 inches diagonal | | | | |------------------------|---|--|--|--| | Outline Dimension | 323.5(H, typ) × 192.0(V, typ) × 5.2(D,max) [mm] | | | | | Pixel Pitch | 0.2265mm × 0.2265 mm | | | | | Pixel Format | 1366 horiz. By 768 vert. Pixels RGB strip arrangement | | | | | Color Depth | 6-bit, 262,144 colors | | | | | Luminance, White | 220 cd/m2(Typ.5 point) | | | | | Power Consumption | Total 4.8 Watt(Max.) @ LCM circuit 1.5 Watt(Max.), B/L input 3.3 Watt(Max.) | | | | | Weight | 350g (Max.) | | | | | Display Operating Mode | Transmissive mode, normally white | | | | | Surface Treatment | Hard Coating(3H), Glare treatment of the front polarizer | | | | | RoHS Comply | Yes | | | | Ver. 1.0 March. 03, 2009 4/31 ### 2. Absolute Maximum Ratings The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit. Table 1. ABSOLUTE MAXIMUM RATINGS | D | Countries 1 | Val | ues | Units | N | | |----------------------------|-------------|------|-----|-------|-------------|--| | Parameter | Symbol | Min | Max | Units | Notes | | | Power Input Voltage | VCC | -0.3 | 4.0 | Vdc | at 25 ± 5°C | | | Operating Temperature | Тор | 0 | 50 | °X | 1 | | | Storage Temperature | Нѕт | -20 | 60 | °X | 1 | | | Operating Ambient Humidity | Нор | 10 | 90 | %RH | 1 | | | Storage Humidity | Нѕт | 10 | 90 | %RH | 1 | | Note: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be $39^{\circ}X$ Max, and no condensation of water. ### 3. Electrical Specifications #### 3-1. Electrical Characteristics The LP140WH1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED BL. #### **Table 2. ELECTRICAL CHARACTERISTICS** | ъ. | 0 1 1 | Values | | | | | |-------------------------------|--|--------------------------------|------------------------|------|------|--| | Parameter | Symbol | Min | Тур | Max | Unit | Notes | | LOGIC : | | | | | | | | Power Supply Input Voltage | Vcc | 3.0 | 3.3 | 3.6 | V | 618081800
618888800 | | Power Supply Input Current | Icc | - | 400 | 465 | mA | 1 | | Power Consumption | Pcc | | 1.3 | 1.5 | W | 1 | | Power Supply Inrush Current | ICC_P | | | 1500 | mA | | | LVDS Impedance | ZLVDS | 90 | 100 | 110 | δ | 2 | | BACKLIGHT : (w/o LED Driver) | | 43-000 k.cov 3 f0-00000041 f50 | | | 22 | 01000000000000000000000000000000000000 | | LED Power Input Voltage | VLED | 7.0 | 12.0 | 20.0 | V | | | LED Power Input Current | Iled | | 20 | | mA | 3 | | LED Power Consumption | PLED | UI-A VECT TOTAL | 3.1 | 3.3 | W | 3 | | LED Power Inrush Current | ILED_P | - | - | - | mA | | | PWM Dimming (Duty) Ratio | SOURCE TO COMPANY THE SECOND S | 8.0 | | 100 | % | 4 | | PWM Impedance | ZPWM | 20 | 40 | 60 | kδ | | | PWM Frequency | Fрwм | 200 | <u>-</u> | 1000 | Hz | 5 | | PWM High Level Voltage | V _{PWM_H} | 3.0 | 100110011001001001 | 5.3 | V | HI ISSHIRE | | PWM Low Level Voltage | VPWM_L | 0 | - | 0.5 | V | | | LED_EN High Voltage | VLED_EN_H | 3.0 | | 5.3 | V | 111281122 | | LED_EN Low Voltage | VLED_EN_L | 0 | | 0.5 | v | 2000000 | | LED_ED Impedance | Zpwm | 20 | 40 | 60 | kΩ | | | Life Time | 0030741003400311004003410040 | 15,000 | 1100311201200310123100 | | Hrs | 6 | #### Note) - 1. The specified Icc current and power consumption are under the Vcc = 3.3V , 25 , fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency. - This impedance value is needed to proper display and measured form LVDS Tx to the mating connector. - 3. The specified LED current and power consumption are under the Vled = 12.0V, 25, Dimming of Max luminance whereas White pattern is displayed and fv is the frame frequency. - 4. The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue. - 5. This Spec. is not effective at 100% dimming ratio as an exception because it has DC level equivalent to 0Hz. In spite of acceptable range as defined, the PWM Frequency should be fixed and stable for more consistent brightness control at any specific level desired. - 6. The life time is determined as the sum of operating time at which brightness of LCM at the typical LED current is 50% compare to that of minimum value specified in table7. under general user condition. Ver. 1.0 March. 03, 2009 6 / 31 #### 3-2. Interface Connections This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system. The electronics interface connector is a model CABLINE-VS RECE ASS'Y manufactured by I-PEX. Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1) | Pin | Symbol | Description | Notes | |--------|------------------------|--|--| | 1 | NC | Reserved (Connector Test) | | | 2 | VCC | Power Supply, 3.3V Typ. | | | 3 | VCC | Power Supply, 3.3V Typ. | | | 4
5 | V EEDID
NC | DDC 3.3V power
Reserved (BIST) | 1, Interface chips 1.1 LCD : SW, SW0624 (LCD Controller) including LVDS Receiver | | 6 | Clk EEDID | DDC Clock | 1.2 System : THC63LVDF823A
or equivalent | | 7 | DATA EEDID | DDC Data | * Pin to Pin compatible with LVDS | | 8 | Odd_R _{IN} 0- | Negative LVDS differential data input | | | 9 | Odd_R _{IN} 0+ | Positive LVDS differential data input | 2. Connector | | 10 | GND | Ground | 2.1 LCD : CABLINE-VS RECE ASS'Y, I-PEX or its compatibles | | 11 | Odd_R _{IN} 1- | Negative LVDS differential data input | 2.2 Mating : CABLINE-VS PLUG CABLE | | 12 | Odd_R _{IN} 1+ | Positive LVDS differential data input | ASS'Y or equivalent. 2.3 Connector pin arrangement | | 13 | GND | Ground | 2.3 connector più arrangement | | 14 | Odd_Rin 2- | Negative LVDS differential data input | | | 15 | Odd_R _{IN} 2+ | Positive LVDS differential data input | 94пп А | | 16 | GND | Ground | | | 17 | Odd_CLKIN- | Negative LVDS differential clock input | | | 18 | Odd_CLKIN+ | Positive LVDS differential clock input | [LCD Module Rear View] | | 19 | GND | Ground | [Led Woddle Real View] | | 20 | NC | No Connection | | | 21 | NC | No Connection | | | 19 | GND | Ground | | | 23 | NC | No Connection | | | 24 | NC | No Connection | | | 19 | GND | Ground | | | 26 | NC | No Connection | | | 27 | NC | No Connection | | | 19 | GND | Ground | | | 29 | NC | No Connection | | | 30 | NC | No Connection | | | 31 | VLED_GND | LED Ground | | | 32 | VLED_GND | LED Ground | | | 33 | VLED_GND | LED Ground | | | 34 | NC | Reserved (Connector Test) | | | 35 | PWM | PWM for luminance control | | | 36 | LED_EN | Backlight On/Off Control | | | 37 | NC | No Connection (Reserved) | | | 38 | VLED | LED Power Supply 7V-20V | | | 39 | VLED | LED Power Supply 7V-20V | | | 40 | VLED | LED Power Supply 7V-20V | | ## 3-3. LVDS Signal Timing Specifications ## 3-3-1. DC Specification | Description | Symb
ol | Min | Max | Unit | Notes | |---------------------------|-----------------|-----|-----|------|-------| | LVDS Differential Voltage | V _{ID} | 100 | 600 | mV | - | | LVDS Common mode Voltage | Vcm | 0.6 | 1.8 | V | - | | LVDS Input Voltage Range | Vin | 0.3 | 2.1 | V | - | ## 3-3-2. AC Specification | Description | Symbol | Min | Max | Unit | Notes | |--|----------|-------|-------|------|-----------------------| | | tskew | - 400 | + 400 | ps | 85MHz > Felk
65MHz | | LVDS Clock to Data Skew Margin | tskew | - 600 | + 600 | ps | 65MHz > Felk 25MHz | | LVDS Clock to Clock Skew Margin (Even to Odd) | tskew_eo | - 1/7 | + 1/7 | Telk | - | | Maximum deviation of input clock frequency during SSC | Fdev | - | ± 3 | % | - | | Maximum modulation frequency of input clock during SSC | Fмоd | - | 200 | KHz | - | Ver. 1.0 March. 03, 2009 8 / 31 < Clock skew margin between channel > < Spread Spectrum > # 3-3-3. Data Format 1) LVDS 1 Port < LVDS Data Format > Ver. 1.0 March. 03, 2009 9 / 31 Condition: VCC =3.3V 10/31 ## **Product Specification** ## 3-4. Signal Timing Specifications This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation. **Table 4. TIMING TABLE** | ITEM | Symbol | | Min | Тур | Max | Unit | Note | |--------|------------------------|-------------|------|------|------|-------|------| | DCLK | Frequency | fclk | 68.7 | 72.3 | 76.2 | MHz | | | Period | | t HP | 1470 | 1526 | 1586 | | | | Hsync | ync Width | | 23 | 32 | 40 | tCLK | | | | Width-Active | twha | 1366 | 1366 | 1366 | | | | Vsync | Period | tvp | 779 | 790 | 801 | | | | | Width | twv | 2 | 5 | 8 | tHP | | | | Width-Active | twva | 768 | 768 | 768 | | | | | Horizontal back porch | tнвр | 72 | 80 | 124 | .0116 | | | Data | Horizontal front porch | thep | 8 | 48 | 48 | tCLK | | | Enable | Vertical back porch | tvbp | 8 | 14 | 20 | | | | | Vertical front porch | tvfp | 1 | 3 | 5 | tHP | | ## 3-5. Signal Timing Waveforms Ver. 1.0 March. 03, 2009 ## 3-6. Color Input Data Reference The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input. **Table 5. COLOR DATA REFERENCE** | | | | | | | | |] | nput Co | lor Data | ı | | | | | | | |----------------|--|---------|-------|-----------|----------|--------|------|----------|---------|----------|-------|--------|----|---------|----|----------|-------| | | Color | | | RE | ED | | | | GR | EEN | | | | BL | UE | | | | | Color | MSI | 3 | | | I | SB N | /ISB | | | I | LSB MS | SB | | | | LSB | | | 28 | R5 | R4 R | 3 R2 R | 1 R0 G5 | í | | G4 | G3 G2 G | G1 G0 B5 | i | | B4 | В3 | B2 | B1 | В0 | | | Black | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 (| 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | | Green | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 0 | 0 | 0 | 0 | 0 | 0 | | Basic
Color | Blue | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 (| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | | | RED (00) | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | | RED (01) | 0 | 0 | 0 | 0 | 0 | 1 (|) 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | RED | ************************************** | | | uzacarzac | -0000000 | erenn | | | | | | | | 4940000 | | curacina | | | | RED (62) | 1 | 1 | 1 | 1 | 1 | 0.0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | | RED (63) | 1 | 1 | 1 | 1 | 1 | 1 (| 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN (00) | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN (01) | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 0 | 0 | 0 | 0 | 0 | 0 | | GREEN | | | ***** | stere: | ***** | ****** | | ****** | ***** | | | | | ***** | | ***** | | | | GREEN (62) | 0 | 0 | 0 | 0 | 0 | 0 1 | 1 | 1 | 1 | 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | | | GREEN (63) | 0 | 0 | 0 | 0 | 0 | 0 | 15555555 | 1 | 1 | 1 | 1 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE (00) | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | | BLUE (01) | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | | BLUE | *************** | 21 2001 | | 155150 | stset | | 2537 | ozana. | 011441 | | H1561 | | | | | | 05058 | | | BLUE (62) | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | | | BLUE (63) | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | ## 3-7. Power Sequence **Table 6. POWER SEQUENCE TABLE** | ъ. | 1 | Value | | *** | |------------|------|-------|------|-------| | Parameter | Min. | Тур. | Max. | Units | | Tı | 0.5 | - | 10 | ms | | T2 | 0 | - | 50 | ms | | T3 | 0 | - | 50 | ms | | T4 | 400 | - | - | ms | | T 5 | 200 | - | - | ms | | T6 | 200 | - | - | ms | | T 7 | 3 | - | 10 | ms | | T8 | 10 | - | - | ms | | T9 | 0 | - | - | ms | | T10 | 0 | 0 | | ms | | Note) T | 10 | - | - | ms | - 1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications" - 2. Please avoid floating state of interface signal at invalid period. - 3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V. - 4. LED power must be turn on after power supply for LCD and interface signal are valid. ## 4. Optical Specification Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25° X. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of f and equal to 0° . FIG. 1 presents additional information concerning the measurement equipment and method. ${\bf FIG.~1~Optical~Characteristic~Measurement~Equipment~and~Method}$ **Table 7. OPTICAL CHARACTERISTICS** $Ta{=}25^{\circ}C,\ VCC{=}3.3V,\ fv{=}60Hz,\ fclk{=}\ 72.3MHz,\ Iled{=}\ 20\ mA$ | | | | Values | ei. | | | |--------------------------|-----------------------|-------|--|----------------------------------|-------------------|-------| | Parameter | Symbol | Min | Тур | Max | Units | Notes | | Contrast Ratio | CR | 500 | | | | 1 | | Surface Luminance, white | Lwh | 200 | 220 | | cd/m2 | 2 | | Luminance Variation | × white | | 1.4 | 1.6 | | 3 | | Response Time | Trr+ Trd | | 16 | 24 | ms | 4 | | Color Coordinates | Santra of the Manager | | on the second of | sate of the Vina Vina Contact of | can consumeración | | | RED | RX | 0.588 | 0.618 | 0.648 | | | | | RY | 0.325 | 0.355 | 0.385 | | | | GREEN | GX | 0.300 | 0.330 | 0.360 | | | | | GY | 0.554 | 0.584 | 0.614 | | | | BLUE | BX | 0.115 | 0.145 | 0.175 | | | | | BY | 0.064 | 0.094 | 0.124 | | | | WHITE | WX | 0.283 | 0.313 | 0.343 | | | | | WY | 0.299 | 0.329 | 0.359 | | | | Viewing Angle | | | | | | 5 | | x axis, right(Φ=0°) | ρ | 40 | <u>.</u> | . | degree | | | x axis, left (Φ=180°) | λ | 40 | | | degree | | | y axis, up (Φ=90°) | υ | 15 | **** | | degree | | | y axis, down (Φ=270°) | δ | 30 | | | degree | | | Gray Scale | | | | | | 6 | Ver. 1.0 March. 03, 2009 13 / 31 1. Contrast Ratio(CR) is defined mathematically as Surface Luminance with all white pixels Contrast Ratio = Surface Luminance with all black pixels 2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1. $$LwH = Average(L_1, L_2, ..., L_5)$$ 3. The variation in surface luminance , The panel total variation (\times white) is determined by measuring LN at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2. $$\times \text{ white} = \frac{\text{Maximum}(L_1, L_2, \dots L_{13})}{\text{Minimum}(L_1, L_2, \dots L_{13})}$$ - 4. Response time is the time required for the display to transition from white to black (rise time, Trr) and from black to white(Decay Time, Trd). For additional information see FIG 3. - 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4. - 6. Gray scale specification * fv = 60Hz | Gray Level | Luminance [%] (Typ) | |------------|---------------------| | L0 | 0 | | L7 | 0.97 | | L15 | 4.30 | | L23 | 10.59 | | L31 | 19.92 | | L39 | 34.80 | | L47 | 55.61 | | L55 | 79.40 | | L63 | 100 | #### FIG. 2 Luminance <measuring point for surface luminance & measuring point for luminance variation> H,V: ACTIVE AREA $A: H/4 mm \\ B: V/4 mm \\ C: 10 mm \\ D: 10 mm$ POINTS: 13 POINTS ## FIG. 3 Response Time The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white". ## **5. Mechanical Characteristics** The contents provide general mechanical characteristics for the model LP140WH1. In addition the figures in the next page are detailed mechanical drawing of the LCD. | | Horizontal | 323.5 ± 0.5mm | |---------------------|---------------------|---------------| | Outline Dimension | Vertical | 192.0 ± 0.5mm | | | Thickness | 5.2mm (max) | | Donal Association | Horizontal | 314.4 ± 0.5mm | | Bezel Area | Vertical | 177.4 ± 0.5mm | | A.C. Dist. A | Horizontal | 309.40 mm | | Active Display Area | Vertical | 173.95 mm | | Weight | 350g (Max.) | 20 | | Surface Treatment | the front polarizer | | <FRONT VIEW> Note) Unit:[mm], General tolerance: ± 0.5 mm <REAR VIEW> Note) Unit:[mm], General tolerance: ± 0.5 mm #### [DETAIL INFORMATION OF PPID LABEL AND REVISION CODE] ### * PPID Label Revision : It is subject to change with Dell event. Please refer to the below table for detail. | Classification | No Change | 1st Revision | 2nd Revision |
9th Revision | | |----------------|-----------|--------------|--------------|------------------|--| | SST(WS) | X00 | X01 | X02 |
A09 | | | PT(ES) | X10 | X11 | X12 |
A19 | | | ST(CS) | X20 | X21 | X22 |
A29 | | | XB(MP) | A00 | A01 | A02 |
A09 | | Ver. 1.0 March. 03, 2009 19/31 #### [DETAIL DESCRIPTION OF SIDE MOUNTING SCREW] - * Mounting Screw Length (A) = 2.0(Min) / 2.5(Max) - * Mounting Screw Hole Depth (B) = 2.5(Min) - * Mounting hole location : 3.1(Typ) - * Torque : 2.0 kgf.cm(Max) (Measurement gauge : torque meter) Section A-A Notes: 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface. Ver. 1.0 March. 03, 2009 20 / 31 ## LGD Proposal for system cover design.(Appendix) ### LGD Proposal for system cover design. 23/31 Ver. 1.0 ### **Product Specification** #### LGD Proposal for system cover design. March. 03, 2009 ## 6. Reliability #### Environment test condition | No. | Test Item | Conditions | | | | | | |-----|---------------------------------------|--|--|--|--|--|--| | 1 | High temperature storage test | Ta= 60°C, 240h | | | | | | | 2 | Low temperature storage test | Ta= -20°C, 240h | | | | | | | 3 | High temperature operation test | Ta= 50°C, 50%RH, 240h | | | | | | | 4 | Low temperature operation test | Ta= 0°C, 240h | | | | | | | 5 | Vibration test (non-operating) | Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis | | | | | | | 6 | Shock test (non-operating) | Half sine wave, 180G, 2ms
one shock of each six faces(I.e. run 180G 2ms
for all six faces) | | | | | | | 7 | Altitude operating storage / shipment | 0 ~ 10,000 feet (3,048m) 24Hr
0 ~ 40,000 feet (12,192m) 24Hr | | | | | | { Result Evaluation Criteria } There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition. #### 7. International Standards #### 7-1. Safety a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc., Standard for Safety of Information Technology Equipment. b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association, Standard for Safety of Information Technology Equipment. c) EN 60950-1:2001, First Edition, European Committee for Electrotechnical Standardization(CENELEC) European Standard for Safety of Information Technology Equipment. #### 7-2. EMC - a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992 - b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference. - c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000) ## 8. Packing ### 8-1. Designation of Lot Mark a) Lot Mark A,B,C: SIZE(INCH) E:MONTH $F \sim M:SERIAL NO.$ #### Note #### 1. YEAR | Year | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | |------|------|------|------|------|------|------|------|------|------|------| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | #### 2. MONTH | Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D: YEAR ### b) Location of Lot Mark Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice. ### 8-2. Packing Form a) Package quantity in one box: 30 pcs b) Box Size : 490 mm × 390 mm × 256 mm #### 9. PRECAUTIONS Please pay attention to the followings when you use this TFT LCD module. #### 9-1. MOUNTING PRECAUTIONS - (1) You must mount a module using holes arranged in four corners or four sides. - (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (4) You should adopt radiation structure to satisfy the temperature specification. - (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.) - (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (9) Do not open the case because inside circuits do not have sufficient strength. #### 9-2. OPERATING PRECAUTIONS - (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=200 mV(Over \ and \ under \ shoot \ voltage)$ - (2) Response time depends on the temperature.(In lower temperature, it becomes longer.) - (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer. - (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (5) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. Ver. 1.0 March. 03, 2009 27 / 31 ### 9-3. ELECTROSTATIC DISCHARGE CONTROL Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. #### 9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE Strong light exposure causes degradation of polarizer and color filter. #### 9-5. STORAGE When storing modules as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. #### 9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM - (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer. - Please carefully peel off the protection film without rubbing it against the polarizer. - (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off. - (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane. ## APPENDIX A. Enhanced Extended Display Identification Data (EEDID_{TM}) 1/3 | 10.0 | | | EDID Data for Dell _ ver. 1.0 | | 2009.02 | |-------------------|---------------|---------------|--|----------------|----------------| | | Byte
(Dec) | Byte
(Hex) | Field Name and Comments | Value
(Hex) | Value
(Bin) | | | 0 | 00 | Header | 00 | 0000000 | | Header | 1 | 01 | Header | FF | 1111111 | | | 2 | 02 | Header | FF | 1111111 | | | 3 | 03 | Header | FF | 111111 | | | 4 | 04 | Header | FF | 111111 | | | - 5 | 05 | Header | FF | 1111111 | | | 6 | 06 | Header | FF | 111111 | | | 7 | 07 | Header | 00 | 000000 | | | 8 | 08 | EISA manufacture code (3 Character ID) LOD | 30 | 001100 | | | 9 | 09 | EISA margiacture code (Compressed ASCII) | E4 | 111001 | | 2000 | 10 | 0A | Panel Supplier Reserved - Product Code 018Eh | 8B | 100010 | | 2 | 11 | OB | (Hex. LSB first.) | 01 | 000000 | | 줮 | 12 | oc | LCD Module Serial No - Preferred but Optional ("O" Frot used) | 00 | 000000 | | Vendor / Product | 13 | 0D | LCD Module Serial No - Preferred but Optional ("O" H not used) | 00 | 000000 | | 8 | 14 | 0E | LCD Module Serial No - Preferred but Optional ("0" Front used) | 00 | 000000 | | i g | 13 | 0F | LCD Module Serial No - Preferred but, Optional ("O" If not used) | 00 | 000000 | | ,5 | 16 | 10 | Week of Manufacture 00 weeks | 00 | 000000 | | ~ | 17 | 11 | Year of Manufacture 2008 years | 12 | 000100 | | | 18 | 12 | EDID structure version #= 1 | 01 | 000000 | | | - 4 | _ | | 03 | 000000 | | - 4 | 19 | 13 | EDID revision H = 3 | | | | 200 | 20 | 14 | Video input Definition = Digital signal | 80 | 100000 | | Display | 21 | 15 | Max H image size (Rounded cm) = 31 cm | 1F | 00011 | | <u>.</u> | 22 | 16 | Max V image size (Rounded cm) = 17 cm | 11 | 00010 | | Q | 23 | 17 | Display gamma = (gamma*100)·100 = Example:(2.2*100)·100=120 = 2.2 Gamma Feature Support (no_DFMS, no_Active UB/Very Low Fower, ROB color display, Tuning BLK Lino_ | 78 | 01111 | | | 24 | 10 | err | 0A | 00001 | | | 25 | 19 | Red/Orem Low Bits (RxRy/OxOy) | 4A | 010010 | | 799 | 26 | 1A | Blue/White Low Bits (BxBy/WxWy) | 05 | 00000 | | JIIC | 27 | 1B | Red X | 9E | 10011 | | 2 | 28 | ıc | Red Y Ry = 0.355 | 5B | 01011 | | <i>B</i> | 29 | 1 D | Green X Gx = 0.330 | 54 | 01010 | | Vendor / Product | 30 | 1E | Green V Gy = 0.584 | 95 | 10010 | | 7 | 31 | 1F | Blue M Bn = 0.145 | 25 | 00100 | | 20 | 32 | 20 | Blue Y By = 0.094 | 18 | 00011 | | | 33 | 21 | White X Wx = 0.313 | 50 | 01010 | | | 34 | 22 | White Y Wy = 0.329 | 54 | 01010 | | 120 M | 35 | 23 | Established timing I (00h if not used) | 00 | 000000 | | Establi
shed | 36 | 24 | Established timing 2 (00h if not used) | 00 | 00000 | | ES | 37 | 25 | Manufacturer's Limings (00th if not used) | 00 | 00000 | | | 38 | 26 | Standard timing ID1 (01h if not used) | 01 | 000000 | | | 39 | 27 | Standard timing ID1 (01h if not used) | 01 | 00000 | | | 40 | 28 | Standard timing ID2 (01h if not used) | 01 | 00000 | | | 41 | 29 | Standard timing ID2 (01h if not used) | 01 | 00000 | | | 42 | 2A | Standard tinning ID3 (01h if not used) | 01 | 00000 | | 3 | 43 | 2B | Standard timing ID3 (01h if not used) | 01 | 000000 | | , Su | 44 | 20 | Standard timing ID4 (01h if not used) | 01 | 000000 | | 1 | 45 | 2D | Standard timing ID4 (Olh if not used) | 01 | 000000 | | Sundard Timing 1D | 46 | 2E | Standard timing ID4 (Olin II not used) Standard timing ID5 (Olih if not used) | 01 | 000000 | | | 47 | 2F | | 01 | - | | Tag. | | 10000 | Standard timing ID5 (01h if not used) | | 000000 | | Star | 49 | 30 | Standard tinning ID6 (01h if not used) | 01 | 000000 | | | 49 | 31 | Standard timing ID6 (01h if not used) | 01 | 000000 | | | 50 | 32 | Standard timing ID7 (01h if not used) | 01 | 000000 | | | 51 | 33 | Standard timing ID7 (01h finot used) | 01 | 000000 | | | 52 | 34 | Standard timing ID8 (01h if not used) | 01 | 000000 | Ver. 1.0 March. 03, 2009 29 / 31 ## $\textbf{APPENDIX A. Enhanced Extended Display Identification Data} \ (\textbf{EEDID}_{TM}) \\$ 2/3 | | (Dec) | Byte
(Hex) | Field Name and Comments | (Hex) | (Bin) | |----------------------|-------|---------------|--|-------|----------| | | 54 | 36 | Pixel Clock/10,000 (LSB) 72.3 MHz @ 60H | | 0011111 | | Timing Descriptor #1 | 55 | 37 | Pixel Clock/10,000 (MSB) | 1C | 00011100 | | | 56 | 38 | Horizontal Active (lower 8 bits) 1366 Dixels | 56 | 0101011 | | | 57 | 39 | Horizontal Blanking(Thp-HA) (lower 8 bits) 160 Dixels | A0 | 1010000 | | | 58 | 3A | Horizontal Active / Horizontal Blanking(Trp-HA) (upper 4:4bits) | 50 | 0101000 | | | 59 | 3B | Vertical Autire 768 Lines | 00 | 0000000 | | | 60 | 3 C | Vertical Blanking (Top-HA) (DE Blanking typ for DE only panels) 22 Lines | 16 | 0001011 | | | 61 | 3 D | Vertical Active : Vertical Blanking (Top-HA) (upper 4:4bits) | 30 | 0011000 | | | 62 | 3E | Horizontal Sync. Offset (Thfp) 48 Pixels | 30 | 001100 | | હ્યુ | 63. | 3F | Horizontal Sync Pulse Width (HSPW) 32 Pixels | 20 | 001000 | | 0.0 | 64 | 40 | Vertical Sync Offset(Tvfp): Sync Width (VSPW) 3 Lines: 5 Lines | 35 | 001101 | | 25 | 65 | 41 | Horizontal Vertical Sync Offset/Width (upper 2bits) | 00 | 000000 | | .5 | 66 | 42 | Horizontal Image Size (mm) 310 mm | 36 | 001101 | | 200 | 67 | 43 | Vertical Image Size (mm) 174 mm | AE | 101011 | | | 68 | 44 | Horizontal Image Size / Vertical Image Size | 10 | 000100 | | | 69 | 45 | Horizontal Border = 0 (Zero for Notebook LCD) | 00 | 000000 | | | 70 | 46 | Vertical Border = 0 (Zero for Notebook LCD) | 00 | 000000 | | | 71 | 47 | Non-interlace, Normal display, no stereo, Digital Separate (Vsync_NEG, Hsync_NEG), DE only note :
LSB is set to 'l' if panel is DE timing only. H/V can be ignored. | 19 | 000110 | | | 72 | 48 | Pixel Clock/10,000 (LSB) 72.3 MHz @ 60H | 3E | 001111 | | | 73 | 49 | Pixel Clock/10,000 (MSB) | 1C | 000111 | | | 74 | 4A | Horizontal Active (lower 8 bits) 1366 Dixels | 56 | 010101 | | | 7.5 | 4B | Horizontal Blanking(Thp-HA) (lower 8 bits) 160 Dixels | A0 | 101000 | | | 76 | 4C | Horizontal Active / Horizontal Blanking(Thp-HA) (upper 4:4bits) | 50 | 010100 | | 23 | 77 | 4D | Vertical Autime 768 Lines | 00 | 000000 | | Timing Descriptor #2 | 78 | 4E | Vertical Blanking (Top-HA) (DE Blanking typ for DE only panels) 22 Lines | 16 | 000101 | | 1 | 79 | AF | Vertical Active : Vertical Blanking (Tvp-HA) (upper 4:4bits) | 30 | 001100 | | 2 | 80 | 50 | Horizontal Sync. Offset (Thfp) 48 Pixels | 30 | 001100 | | - E | 81 | 51 | Horizontal Sync Pulse Width (HSPW) 32 Pixels | 20 | 001000 | | 00 | 82 | 52 | Vertical Sync Offset(Tvfp) : Sync Width (VSPW) 3 Lines : 5 Lines | 35 | 001101 | | -5 | 83 | 53 | Horizontal Vertical Sync Offset/Width (upper 2bits) | 00 | 000000 | | 8 | 84 | 54 | Horizontal Image Size (mm) 310 mm | 36 | 001101 | | 200 | 85 | 55 | Vertical Image Size (mm) 174 mm | AE | 101011 | | | 86 | 56 | Horizontal Image Size / Vertical Image Size | 10 | 000100 | | | 87 | 57 | Horizontal Border = 0 (Zero for Notebook LCD) | 00 | 000000 | | | 88 | 58 | Vertical Border = 0 (Zero for Notebook LCD) | 00 | 000000 | | | 89 | 59 | Non-Interlace, Normal display, no stereo, Digital Separate (Vsync_NEG, Hsync_NEG), DE only note;
LSB is set to 'l' if panel is DE tinning only. HV can be ignored. | 19 | 000110 | | | 90 | 5A | Flag | 00 | 000000 | | | 91 | 5B | Flag | 00 | 000000 | | | 92 | 5C | Flag | 00 | 000000 | | | 03 | 5D | Data Type Tag : Alpharametric Data String (ASCII String) | FE | 111111 | | | 94 | 5E | Flag | 00 | 000000 | | #E | 95 | 5F | Dell D/N let Cherecter = X | 58 | 010110 | | Timing Descriptor #3 | 96 | 60 | Dell DAN 2nd Cheracter = 9 | 39 | 001110 | | | 97 | 61 | Dell D/N 3rd Character = 7 | 37 | 001101 | | | 98 | 62 | Dell P/N 4th Character = 6 | 36 | 001101 | | 3 | 99 | 63 | Dell P/N 5th Character = H | 48 | 010010 | | 00 | 100 | 64 | EDID Revision Build Name = MP(X-Build) , Revision # = A00 | 80 | 100000 | | 1 | 101 | 65 | Manufacturer P/N = 1 | 31 | 001100 | | La | 102 | 66 | Marufacturer P/N = 4 | 34 | 001101 | | | 103 | 67 | Marofacturer P/N = 0 | 30 | 001100 | | | 104 | 68 | Manufacturer P/N = W | 57 | 010101 | | | 105 | 69 | Manufacturer P/N = H | 48 | 010010 | | | 106 | 6A | Manufacturer P/N = 1 | 31 | 001100 | | | 107 | 6B | Manufacturer D/N(ff<13 char-> 0Ah, then terminate with ASC II code 0Ah, set remaining char = 20h) | 0A | 000010 | Ver. 1.0 March. 03, 2009 30 / 31 ## APPENDIX A. Enhanced Extended Display Identification Data (EEDID_{TM}) 3/3 | | Byte
(Dec) | Byte
(Hex) | Field Name and Comments | Value
(Hex) | Value
(Bin.) | |----------------------|---------------|---------------|---|----------------|-----------------| | | 108 | 6C | Flag | 00 | 00000000 | | | 109 | 6D | Flag | 00 | 00000000 | | | 110 | 6E | Flag | 00 | 00000000 | | | 111 | 6F | Data Type Tag: Descriptor Defined by manufacturer | 00 | 0000000 | | | 112 | 70 | Flag | 00 | 0000000 | | # | 113 | 71 | SMBUS Value(Step #1) = 255 mits | FF | 1111111 | | Timing Descriptor #4 | 114 | 72 | SMBUS Value(Step #2) = 255 nits | FF | 1111111 | | , Š. | 115 | 73 | SMBUS Value(Step #3) = 255 nits | FF | 1111111 | | 8 | 116 | 74 | SMBUS Value(Step #4) = 255 nits | FF | 1111111 | | ਨੈ | 117 | 75 | SMBUS Value(Step #5) = 255 nits | FF | 1111111 | | bo | 118 | 76 | SMBUS Value(Step #6) = 255 nits | FF | 1111111 | | 4 | 119 | 77 | SMBUS Value(Step #7) = 255 mis | FF | 1111111 | | Lin | 120 | 78 | SMBUS Value(Step #8) = 255 nits (Typically = FFh, Max nits) | FF | 1111111 | | | 121 | 79 | Single LVDS, No RTC, No VIC support | 01 | 0000000 | | | 122 | 7A | BIST support | 01 | 0000000 | | | 123 | 7B | (If<13 char> 0Ah, then terminate with ASC II code 0Ah, set remaining char = 20h) | 0A | 00001010 | | | 124 | 7C | (ff<13 char-> 0Ah, then terminate with ASC II code 0Ah, set remaining char = 20h) | 20 | 0010000 | | | 125 | 70 | (ff<13 char> 0Ah, then terminate with ASC II code 0Ah, set remaining char = 20h) | 20 | 00100000 | | Check | 126 | 7E | Extension flag (# of optional 128 panel ID extension block to follow, Typ = 0) | 00 | 0000000 | | S | 127 | 7F | Check Sum (The 1-byte sum of all 128 bytes in this panel ID block shall = 0) | 95 | 1001010 | Ver. 1.0 March. 03, 2009 31/31