

🕒 LG. PHILIPS LCD

LP201WE1 Liquid Crystal Display

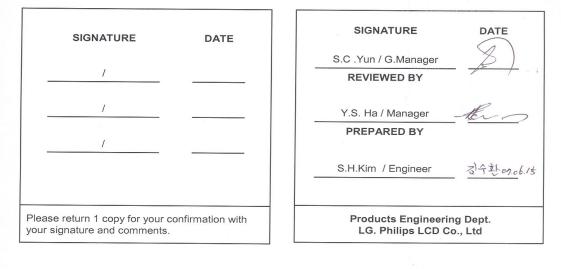
2/30

1/30

Product Specification

SPECIFICATION FOR APPROVAL

) Preliminary Specification


2

(
) Final Specification

(

Title		20.	0.1" WSXGA+ TFT LCD				
		_					
BUYER	HP		SUPPLIER	LG.Philips LCD Co., Ltd.			
MODEL		1	*MODEL	LP201WE1			
		1	Suffix	TLA1			

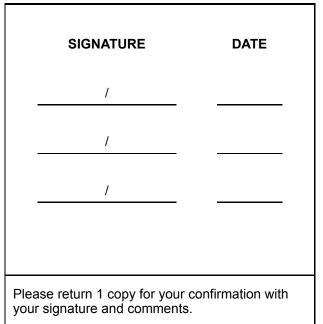
*When you obtain standard approval, please use the above model name without suffix

Ver. 1.0 12.JUNE. 2007

SPECIFICATION FOR APPROVAL

() Preliminary Specification

(•) Final Specification


Title

20.1" WSXGA+ TFT LCD

BUYER	HP
MODEL	

SUPPLIER	LG.Philips LCD Co., Ltd.		
*MODEL	LP201WE1		
Suffix	TLA1		

*When you obtain standard approval, please use the above model name without suffix

SIGNATURE	DATE
S.C .Yun / G.Manager REVIEWED BY	
Y.S. Ha / Manager PREPARED BY	
S.H.Kim / Engineer	
Products Engineerin LG. Philips LCD Co	

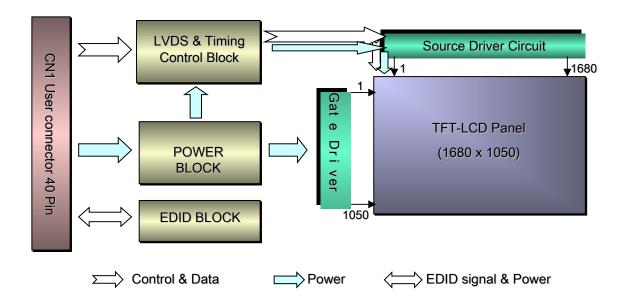
2/30

Product Specification

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	10
3-4	SIGNAL TIMING WAVEFORMS	10
3-5	COLOR INPUT DATA REFERNECE	11
3-6	POWER SEQUENCE	12
4	OPTICAL SFECIFICATIONS	13
5	MECHANICAL CHARACTERISTICS	17
6	RELIABLITY	21
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	22
7-2	EMC	22
8	PACKING	
8-1	DESIGNATION OF LOT MARK	23
8-2	PACKING FORM	23
9	PRECAUTIONS	24
А	APPENDIX. Enhanced Extended Display Identification Data	26

RECORD OF REVISIONS


Revision No	Revision Date	Page	Description	Note
0.0	10.AUG.2006	-	First Draft (Preliminary Specification)	
0.1	29.AUG.2006	28~30	Add E-EDID Data (preliminary), Checksum=0x9C	
0.2	21.SEP.2006	10 11 20~22	Update the Backlight connector pin configuration Add LVDS input diagram (Fig.1 Signal Timing Diagram) Update the Mechanical Characteristics (Drawings)	
0.3	26.SEP.2006	5, 7, 15 19 20 23	Change Lamp Current (Typ. $8mA \rightarrow 7.5mA$) & Lamp Power Change the Bezel Area (Vertical : $247.7 \pm 0.5mm \rightarrow 274.8 \pm 0.5mm$) Add Lamp Wire Outlet Dimension Change the shock test condition of Reliability (No. 6)	
0.4	16.OCT.2006	7	$ \begin{array}{l} \mbox{Change Lamp Voltage(Min. 730) \& Current(Max. 9.0mA \rightarrow 8.0mA) \\ \mbox{Change Lamp Starting Voltage(at 25 ^\circ \mbox{C} 1650V_{RMS} \rightarrow 1250V_{RMS} \\ \mbox{at 0 } ^\circ \mbox{C} 1950V_{RMS} \rightarrow 1550V_{RMS}) \end{array} $	
0.5	05.DEC.2006	9	Change 40pin Pin_map (VESA format)	
0.6	26.DEC.2006	10	Change Backlight Pin_map	
0.7	30.JAN.2007	5, 7 14 15 18 20~22 25 30	Add the Current spec. of V_{EDID} & update the Electrical Characteristic Add the Power sequence timing of V_{EDID} Add the Color Coordinates of Red, Green, Blue Update the Gray Scale Update Mechanical Drawing (Wire length, Top case gap) Update the Packing Form (Package quantity & box size) Update the EDID (Checksum : B7)	
0.8	05.MAR.2007	5,9 5 7 10 14 20 21 28~30	Change Power Consumption : 15.6 Watt \rightarrow 15.0 Watt (Change Lamp Current (Typ. 7.5mA \rightarrow 7.0mA),(Max. 8.0mA \rightarrow 7.5mA) (Change LCD Interface Chip(0ITLL-0018B \rightarrow 0ISWL-0011B) Update Polarizer Hardness : 2H \rightarrow 3H Change Lamp Current and Power Consumption Change Lamp Wire Color Add T ₀ , T ₈ Power Sequence Change Mechanical Drawing (Top case beading) Change Mechanical Drawing (Cover bottom shape) Update EEDID Data (Checksum=1C)	
0.9	30.MAR.2007	20, 21	Change Mechanical Drawing (bottom tape shape and location)	
1.0	12.JUN.2007	5 7 22	Change Power Consumption : 15.0 Watt → 14.6 Watt (Change Lamp Voltage (Typ. 770V → 750V),Circuit: 4.1Watt@Black) Change LCM and Lamp Power Consumption Change Topcase gap Spec.:0.5±0.2 →0.7±0.2	
1.1	14.JUN.2007	10	Change Lamp Wire Color (Wire High Color:Blue/Gray→Blue/Pink) Final Specificaton	
Ver. 1.0			12.JUNE. 2007 4 / 30	

Product Specification

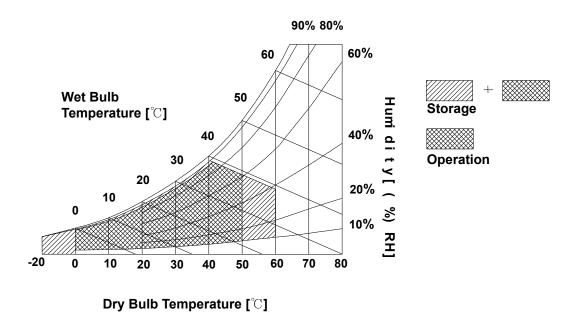
1. General Description

LP201WE1 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent 2 Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. It has a 20.1 inch diagonally measured active display area with WSXGA+ resolution (1050 vertical by 1680 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M(True) colors. It has been designed to apply the 8Bit 2 port LVDS interface. It is intended to support displays where high brightness, wide viewing angle, and high color are important.

General Features

Active Screen Size	20.1 inches(511.133mm) diagonal (Aspect ratio 16:10)
Outline Dimension	453.5(H) x 296.5 (V) x 8.3(D) mm (Typ.)
Pixel Pitch	0.258mm x 0.258mm
Pixel Format	1680 horiz. by 1050 Pixels RGB strip arrangement
Color Depth	8bit, 16.7M colors
Luminance, White	320 cd/m²(Typ.) 5 point Avg.
Viewing Angle (CR>10)	Viewing Angle R/L 160°(Typ.), U/D 140°(Typ)
Power Consumption	14.6Watt(Typ.) (Circuit: 4.1Watt@Black, B/L: 10.5Watt@each Lamp=7.0mA)
Weight	1220g Max
Display Operating Mode	Transmissive mode, normally White
Surface Treatment	Hard coating & Glare (3H) treatment of the front polarizer

12.JUNE. 2007


2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

		Val	ues		
Parameter	Symbol	Min	Max	Units	Notes
		0	50		
Storage Temperature	Нѕт	-20	60	°C	1
Operating Ambient Humidity	Нор	10	90	%RH	1
Storage Humidity	Нѕт	10	90	%RH	1

Table 1. ABSOLUTE MAXIMUM RATINGS

Note : 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39° C Max, and no condensation of water.

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

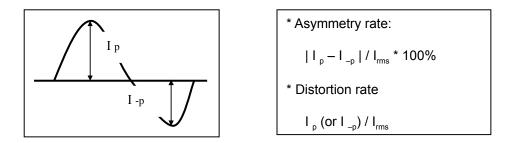
The LP201WE1(TLA1) requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

Parameter	Symbol		Values		Unit	Natas
Parameter	Symbol	Min	Min Typ		Unit	Notes
MODULE :						
Dower Supply Input Veltage	V _{EDID}	3.0	3.3	3.6	V_{DC}	
Power Supply Input Voltage	V _{cc}	4.5	5.0	5.5	V _{DC}	
Dowor Supply Input Current	I _{EDID}	100	120	140	mA	1
Power Supply Input Current	I _{vcc}	630	740	860	mA	1
Power Consumption	$P_{VCC+EDID}$	-	4.1	4.8	Watt	1
Differential Impedance	Zm	90	100	110	Ohm	2
LAMP (By 1Lamp)						
Operating Voltage	V _{BL}	730	750	880	V_{RMS}	3
Operating Current	I _{BL}	3.0	7.0	7.5	mA_{RMS}	4
Power Consumption	P _{BL}	-	5.25	5.63	W	9
Operating Frequency	f _{BL}	40	60	80	kHz	7
Discharge Stabilization Time	Ts	-	-	3	Minute	5
Life Time		15,000	-	-	Hrs	6
Established Starting Voltage at 25℃ at 0 ℃	Vs			1250 1550	V _{rms} V _{rms}	8

Table 2.	ELECTRICAL CHARACTERISTICS
----------	-----------------------------------

1. The specified current and power consumption are under the V_{cc} = 5.0V , 25°C, fv = 60Hz condition whereas Black pattern is displayed and fv is the frame frequency.

- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The variance of the voltage is $\pm 10\%$.
- 4. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics.
- 5. Define the brightness of the lamp after being lighted for 5 minutes as 100%, Ts is the time required for the brightness of the center of the lamp to be not less than 95%.
- 6. The life time is determined as the time at which brightness of lamp is 50% compare to that of initial value at the typical lamp current.
- 7. The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Asymmetrical ratio is less than 10%) Please do not use the inverter which has asymmetrical voltage and asymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
- 8. The voltage above V_s should be applied to the lamps for more than 1 second for start-up. Otherwise, the lamps may not be turned on. The used lamp current is the lamp typical current.
- 9. The lamp power consumption shown above does not include loss of external inverter. The applied lamp current is a typical one.


Product Specification

Note)

10. Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.

It shall help increase the lamp lifetime and reduce leakage current.

- a. The asymmetry rate of the inverter waveform should be less than 10%.
- b. The distortion rate of the waveform should be within $\sqrt{2} \pm 10\%$.
 - * Inverter output waveform had better be more similar to ideal sine wave.

※ Do not attach a conducting tape to lamp connecting wire.

If the lamp wire attach to a conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action. Because leakage current is occurred between lamp wire and conducting tape.

Product Specification

3-2. Interface Connections

This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

Pin Description Notes Symbol VSS Ground 1 1. Interface chips 2 VSS Ground 1.1 LCD : 0ISWL-0011B (LCD Controller) including LVDS Receiver 3 Power Supply, 5.0V Typ. V_{cc} (SILICON WORKS, Dual LVDS Receiver) 4 Power Supply, 5.0V Typ. V_{cc} 1.2 System : THC63LVDF823A or equivalent 5 Power Supply, 5.0V Typ. V_{cc} 6 VEEDID Digital Power supply (3.3 Typ) 2. Connector 7 VFEDID Digital Power supply (3.3 Typ) 2.1 LCD : JAE or its compatibles 2.2 Mating : JAE or equivalent. 8 Clk EEDID Two wire serial interface clock 2.3 Connector pin arrangement 9 DATA EEDID Two wire serial interface data 10 **4**0 - LVDS differential data input, Chan 0-Odd RXinO0-11 RXinO0+ + LVDS differential data input, Chan 0-Odd VSS 12 Ground 13 RXinO1 - LVDS differential data input, Chan 1-Odd [LCD Module Rear View] 14 RXinO1+ + LVDS differential data input, Chan 1-Odd 15 VSS Ground 16 RXinO2-- LVDS differential data input, Chan 2-Odd 17 + LVDS differential data input, Chan 2-Odd RXinO2+ VSS 18 Ground 19 RXOC-- LVDS Differential Clock input (Odd) 20 RXOC+ + LVDS Differential Clock input (Odd) 21 VSS Ground 22 RXinO3-- LVDS differential data input, Chan 3-Odd 23 RXinO3+ + LVDS differential data input. Chan 3-Odd 24 VSS Ground 25 RXinE0-- LVDS differential data input. Chan 0-Even 26 RXinF0+ + LVDS differential data input, Chan 0-Even 27 VSS Ground 28 RXinE1-- LVDS differential data input, Chan 1-Even 29 RXinE1+ + LVDS differential data input. Chan 1-Even 30 VSS Ground 31 RXinE2-- LVDS differential data input, Chan 2-Even 32 RXinE2+ + LVDS differential data input, Chan 2-Even 33 VSS Ground 34 RXEC- LVDS Differential Clock input (Even) 35 RXEC+ + LVDS Differential Clock input (Even) 36 VSS Ground 37 RXinE3- LVDS differential data input, Chan 3-Even 38 RXinE3+ + LVDS differential data input. Chan 3-Even 39 VSS Ground 40 NC Reserved

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

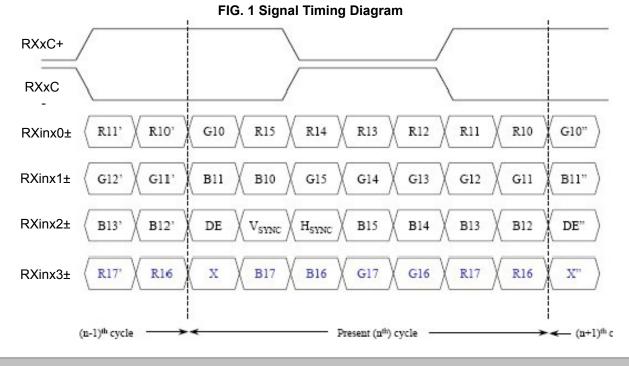
Product Specification

The backlight interface connector is a model BHSR-02VS-1, manufactured by JST or Compatible

Pin	Symbol	Description	Notes		
1	HV	Power Supply for the Lamp (High Voltage Side)	1 CN2 CN3		
2	LV	Power Supply for the Lamp (Low Voltage Side)	[LCD Module Front View]		

Table 4. BACKLIGHT CONNECTOR PIN CONFIGURATION (J3)

Note 1. The High Voltage side terminal is colored Blue / Pink, The Low Voltage side terminal is colored White / Yellow.


Product Specification

3-3. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

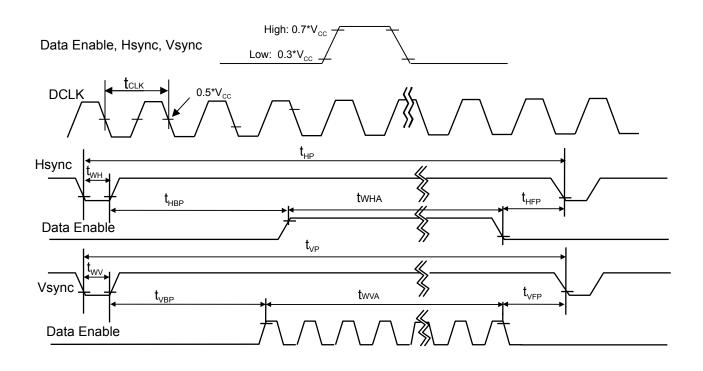

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Period	t CLK	8.33	8.40	8.47	ns	
	Frequency	fclk	118.0	119.0	120.0	MHz	
Hsync	Period	tHP	1826	1840	1852		
	Width	twн	30	32	34	tclk	
	Active	twнa	1680	1680	1680		
Vsync	Period	tvp	1073	1078	1084		
	Width	tw∨	4	6	7	tHP	
	Active	twva	1050	1050	1050		
Data	Horizontal back porch	tнвр	76	80	84	tour	
Enable	Horizontal front porch	tHFP	40	48	54	tCLK	
	Vertical back porch	tvbp	17	19	23	tup	
	Vertical front porch	tvfp	2	3	4	tHP	

Table 5. TIMING TABLE

Product Specification

3-4. Signal Timing Waveforms (Normal status)

Product Specification

3-5. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

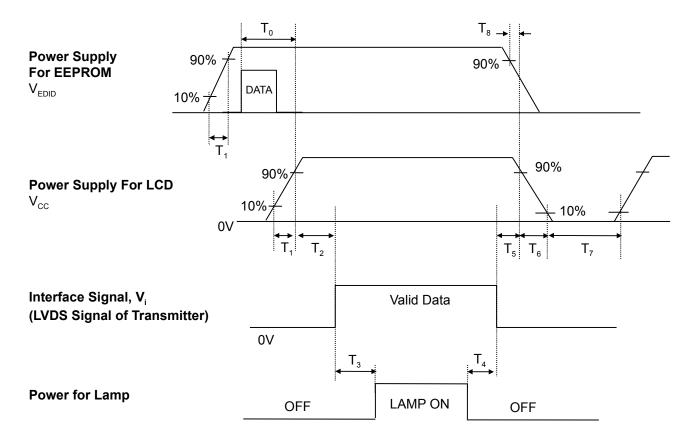

			Input Color Data	
	Color	RED MSB LSB	GREEN MSB LSB	BLUE MSB LSB
		R7 R6 R5 R4 R3 R2 R1 R0	G7 G6 G5 G4 G3 G2 G1 G0	B7 B6 F11 B4 B3 B2 B1 B0
	Black	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	Red (255)	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	Green (255)	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0
Basic	Blue (255)	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1
Color	Cyan	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
	Magenta	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1
	Yellow	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0
	White	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
	RED (000) Dark	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	RED (001)	0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
RED				
	RED (254)	1 1 1 1 1 1 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	RED (255)	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	GREEN (000) Dark	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	GREEN (001)	0 0 0 0 0 0 0 0	00000001	0 0 0 0 0 0 0 0
GREEN				
	GREEN (254)	0 0 0 0 0 0 0 0	1 1 1 1 1 1 0	0 0 0 0 0 0 0 0
	GREEN (255)	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0
	BLUE (000) Dark	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	BLUE (001)	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0000001
BLUE				
	BLUE (254)	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 1 1 1 1 1 0
	BLUE (255)	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1

Table 6. COLOR DATA REFERENCE

Product Specification

3-6. Power Sequence

Table7. POWER SEQUENCE TABLE

Parameter3		Value		Units
Falameters	Min. Typ. Max.		Units	
T ₀	0	-	500	ms
T ₁	-	-	10	ms
T ₂	0	-	50	ms
T ₃	200	-	-	ms
T ₄	200	-	-	ms
T ₅	0	-	50	ms
T ₆	0	-	10	ms
T ₇	1000	-	-	ms
T ₈	0	-	5	ms

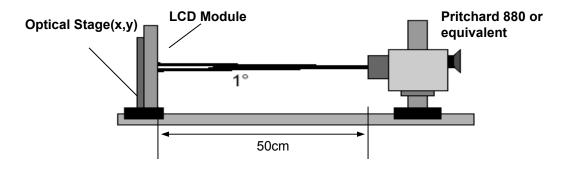
Note)

- 1. Please avoid floating state of interface signal at invalid period.
- 2. When the interface signal is invalid, be sure to pull down the power supply for LCD V_{cc} to 0V.
- 3. Lamp power must be turn on after power supply for LCD and interface signal are valid.

LP201WE1

Product Specification

4. Optical Specification


🕞 LG.PHILIPS LCD 🦉

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25° C. The values specified are at an approximate distance 50cm from the LCD surface

at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

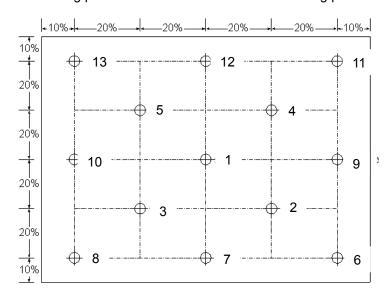
FIG. 2 Optical Characteristic Measurement Equipment and Method

Table 8. OPTICAL CHARACTERISTICS

Ta=25° C, V_{cc}=5.0V, fv=60Hz, f_{clk}= 119MHz, lout = 7.0 mA

15/30

						CLK ,	
Derem	ator.	Currente e l		Values		Linita	Nietee
Parame	eter	Symbol	Min Typ		Max	Units	Notes
Contrast Ratio		CR	800	1000	-		1
Surface Luminance	e, white	L _{wH}	270	320	-	cd/m ²	2
Luminance Variatio	'n	δ_{WHITE}	-	-	2.0		3
Response Time							
Rise Ti	me+Decay Time	$Tr_{R+}Tr_{D}$	-	5	10	ms	
Color Coordinates							±0.03
	RED	RX	0.606	0.636	0.666		
		RY	0.315	0.345	0.375		
	GREEN	GX	0.272	0.302	0.332		
		GY	0.582	0.612	0.642		
	BLUE	BX	0.117	0.147	0.177		
		BY	0.042	0.072	0.102		
	WHITE	WX	0.283	0.313	0.343		
		WY	0.299	0.329	0.359		
Viewing Angle							5
x axis,	right(Φ =0°)	Ð	-	80	-	degree	
x axis,	left (Φ =180°)	Ð	-	80	-	degree	
y axis,	up (Ф=90°)	œ	-	70	-	degree	
у axis, (Ф=270	down °)	Ø	-	70	-	degree	
Gray Scale							6



Note)

1. Contrast Ratio(CR) is defined mathematically as

Contrast Ratio = <u>Surface Luminance with all white pixels</u> Surface Luminance with all black pixels

- 2. Surface luminance is the 5point (1~5)average across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2.
- 3. Luminance % uniformity is measured for 13 point For more information see FIG 2. δ WHITE = Maximum(LN1,LN2, LN13) ÷ Minimum(LN1,LN2, LN13)

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Measure Point for Luminance

Measuring Point @ H,V: Active Area

H: 433.44 mm

V: 270.90 mm

LG.PHILIPS LCD 🎇

4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.

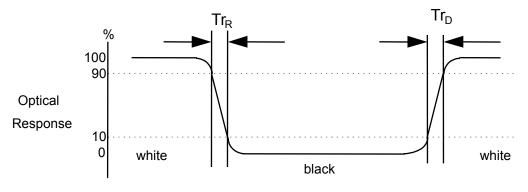


FIG. 4 Response Time

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.

<Dimension of viewing angle range>

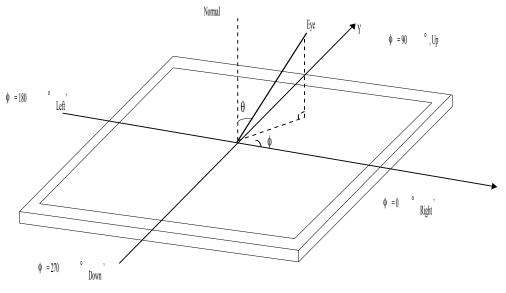


FIG. 5 Viewing angle

6. Gray scale specification

Gamma Value is approximately 2.2. For more information see Table 9.

Gray Level	Luminance [%] (Typ)
LO	0.07
L15	0.18
L31	1.00
L47	2.30
L63	4.40
L79	7.40
L95	11.0
L111	15.5
L127	20.5
L143	26.5
L159	33.0
L175	42.5
L191	54.0
L207	65.0
L223	78.0
L239	93.8
L255	100.0

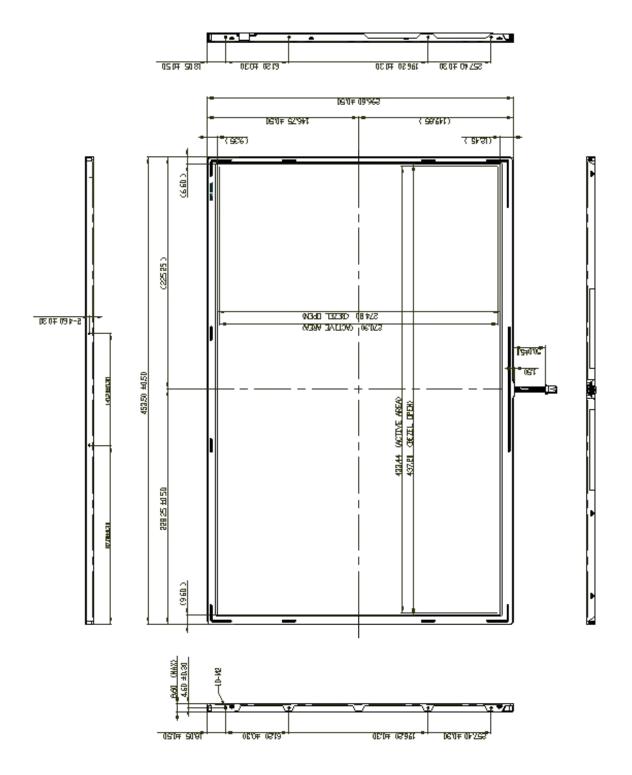
Table 9. Gray Scale Specification

Product Specification

5. Mechanical Characteristics

🕑 LG.PHILIPS LCD 🌉

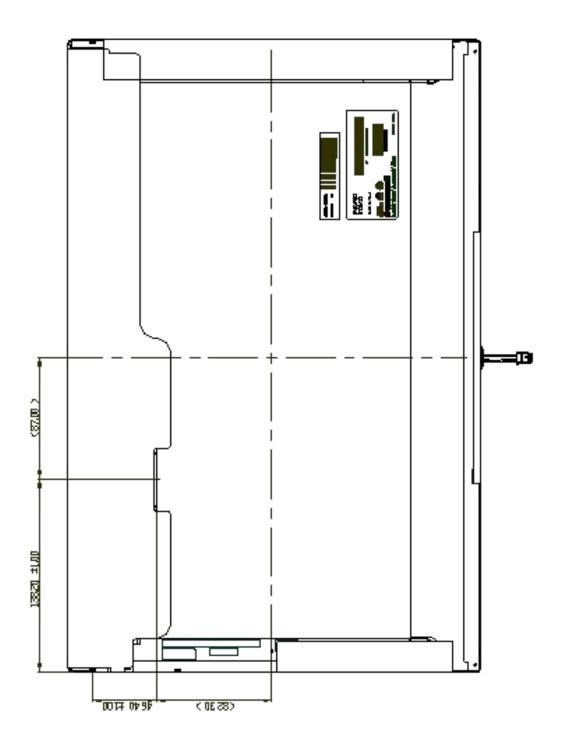
The contents provide general mechanical characteristics for the model LP201WE1(TLA1). In addition the figures in the next page are detailed mechanical drawing of the LCD.


	Horizontal	453.5 ± 0.5mm				
Outline Dimension	Vertical	296.5 ± 0.5mm				
	Depth (Max)	8.6mm				
Bezel Area	Horizontal	437.2 ± 0.5mm				
BezerArea	Vertical	274.8 ± 0.5mm				
Active Display Area	Horizontal	433.44 mm				
Active Display Area	Vertical	270.9 mm				
Weight	1220 g (max)					
Surface Treatment	Hard coating(3H) Glare treatment of the front polarizer					

<FRONT VIEW>

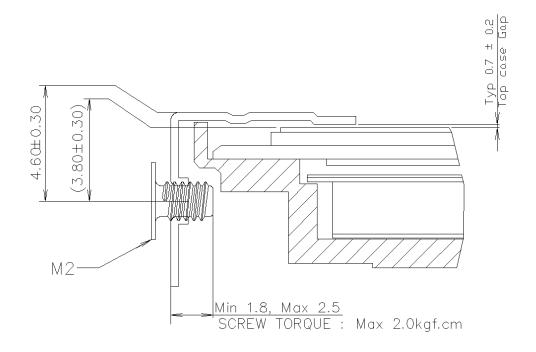
Note) Unit:[mm], General tolerance: ± 0.5mm Wire Length : 50.0

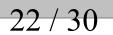
20/30



<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm


21/30



*Screw Torque (10 point): *Top Case Gap

Note) Unit:[mm], General tolerance: ± 0.5mm

12.JUNE. 2007

6. Reliability

Environment test condition

🕑 LG.PHILIPS LCD 🌉

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20° C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 5 ~ 150Hz, 1.5G, 0.37oct/min 3 axis, 30min/axis
6	Shock test (non-operating)	 No functional or cosmetic defects following a shock to all 6 sides delivering at least 180 G in a half sine pulse no longer than 2 ms to the display module No functional defects following a shock delivering at least 200 g in a half sine pulse no longer than 2 ms to each of 6 sides. Each of the 6 sides will be shock tested with one each display, for a total of 6 displays
7 { Resu There	Altitude operating t Evaluation Criteria } _{storage} / shipment should be no change which might affect th	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr re practical display function when the display quality

test is conducted under normal operating condition.

Product Specification

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc., Standard for Safety of Information Technology Equipment.
b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association, Standard for Safety of Information Technology Equipment.
c) EN 60950-1:2001, First Edition, European Committee for Electrotechnical Standardization(CENELEC) European Standard for Safety of Information Technology Equipment.

7-2. EMC

a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992

b) C.I.S.P.R. "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.

c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A,B,C : SIZE(INCH) E : MONTH

D : YEAR F ~ M : SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box : 14 pcs

b) Box Size : 545mm X 320mm X 383mm

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

(1) You must mount a module using holes arranged in four corners or four sides.

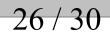
(2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the

module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.

- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the abnormal operation of circuits. It should be lower than following voltage : V=± 200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)


And in lower temperature, response time(required time that brightness is stable after turned on) becomes

longer.

(4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or

electrical contacted parts. And after fading condensation, smear or spot will occur.

- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

Product Specification

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.

Please carefully peel off the protection film without rubbing it against the polarizer.

- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Product Specification

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

Byte # [Byte≇		Va	Іш ө	Value	
(decimal) (Field Name and Comments	н	EX)	(binary)	
0		Header	0	0	0000 0000	
1	01		F	F	1111 1111	
2	02		F	F	1111 1111	
	09		<u>. F</u> .	. <u>F</u> .	1111 1111 1111 1111	Header
4	04		F	<u>F</u> .	1111 1111	
5	05		<u>. F</u> .	F	1111 1111	
<u>6</u>	06		F	<u>F</u>	1111 1111	
7	07 08	EI84 manufacturer code(8 Character ID) = LPL			0000 0000	
<u>. ө</u>	09	EI84 Manufacturer code() Gnaracter ID) = LPL	9		0011 0010 0000 1100	
			0			
10		Product code = 5000	•••••••		0101 0000	
11		(Hex, L8B first)	0		0000 0000	
12		92-bit serial number	0		0000 0000	Venderf
19	0D		0		0000 0000	Product ID
14	0E		0		0000 0000	
15	0F		0		0000 0000	
16	10	Week of manufacture	0	0	0000 0000	
17	11	Year of manufacture = 2006	1	0	0001 0000	
18		EDID Structure version # = 1	0	1	0000 0001	EDID Version/
19		EDID Revision # = 8	0	9	0000 0011	Revision
20	14	Video input definition = Digital I/p, non TMD8 CRGB	θ	0	1000 0000	
21	15	Max H image size(om) = 49.944om	2	В	0010 1011	Display
		Max V image size(om) = 27.09om	1 7 0	<u>.</u> B.	0001 1011	Parameter
29	. 17	Display gamma = 2.20		θ	0111 1000	
24		Feature support(DPM8) = Active off, RGB Color			0000 1010	
25		Red/Green low Bits	<u>D</u>		1101 0110	
26		Blue/White Low Bits	<u>на</u>		1001 0000	
27 28		Red X Rx = 0.686 Red Y Ry = 0.945	A.	<u> </u>	1010 0010 0101 1000	
29	1D	Green X Gx = 0.302	5	n	0100 1101	Color
90	1E	Green Y Gy = 0.612	9		1001 1100	Characteristic
91	1F	Blue X Bx = 0.147	2	5	0010 0101	
92	20	Blue Y By = 0.072	1	2	0001 0010	
99	21	White X Wx = 0.818	1 5	0	0101 0000	
94		White Y Wy = 0.529	5	4	0101 0100	
95		Established Timing I	0.		0000 0000	Established
96	24	Established Timing II	0		0000 0000	Timinge
97		Manufacturer's Timings	0		0000 0000	
98		Standard Timing Identification 1 was not used		.1	0000 0001	
89	27	Standard Timing Identification 1 was not used	0	1	0000 0001	
40	28	Standard Timing Identification 2 was not used	0		0000 0001	
41	29	Standard Timing Identification 2 was not used	0	1	0000 0001	
42	2A	Standard Timing Identification 9 was not used	0	1	0000 0001	
49	2B	Standard Timing Identification 3 was not used	0	1	0000 0001	
44	20	Standard Timing Identification 4 was not used	0		0000 0001	8tandard
45	2D	Standard Timing Identification 4 was not used	Ŏ		0000 0001	Timing ID
48	2E	Standard Timing Identification 5 was not used	0		0000 0001	
······	2E 2F		l	1		
47		Standard Timing Identification 5 was not used	0		0000 0001	
48	90	Standard Timing Identification 6 was not used	0		0000 0001	
49	91	Standard Timing Identification 6 was not used	0	1	0000 0001	
50	92	Standard Timing Identification 7 was not used	0	1	0000 0001	
51	99	Standard Timing Identification 7 was not used	0	1	0000 0001	
52	94	Standard Timing Identification 8 was not used	0	1	0000 0001	
59	95	Standard Timing Identification 8 was not used	0	1	0000 0001	

Product Specification

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3

Byte ≇	Byte ≇	5111 I D	Va	lue	Value	
(decimal)	(HEX)	Field Name and Comments	(H	EX)	(binary)	
54		1 680 ×1 0 50 @ 60 Hz mode : pixel clock = 1 1 9 HH:	7	С	0111 1100	
55	97	(Stored LSB first)	2	E	0010 1110	
56		Horizontal Active = 1 680 pixels	9	Ō	1001 0000	
57	99	Horizontal Blanking = 160 pixels	I.A.	0	1010 0000	
50	- 9A -	Horizontal Active : Horizontal Blanking = 1680 : 160	6	0	0110 0000	
59	ЭB	Vertical Avtive = 1 050 lines	1	A	0001 1010	
60	эC	Vertical Blanking = 28 lines	1	С	0001 1100	Detailed
61	эD	Vertical Active : Vertical Blanking = 1050 : 28	4	10	10100 00001	Timing
62	θE	Horizontal Sync. Offset = 48 pixels	9	0	0011 0000 0010 0000	Description
69	9F	Horizontal Sync Pulse Width = 32 pixels	2	0	0010 0000	#1
64	40	Vertical Sync Offset = 3 lines, Sync Width = 6 lines	19	16	10011 01101	
65	41	Horizontal Vertical Sync Offset/Width upper 2bits = 0	0	0	0000 0000 1011 0001	
66	42	Horizontal Image Size = 499.44m	В	1	1011 0001	
67	49	Vertical Image 8ize = 270.9mm	Г П	IF.	10000 1111	
68	44	Horizontal & Vertical Image Bize	1	1	0001 0001	
69	45	Horizontal Border = 0	0	0	0001 0001 0000 0000	
70	46	Vertical Border = 0	0	0	[0000 0000]	
71	47	llon−interlaced,llormal display,no stereo,Digital separate sync,H/V pol negatives	1	9	0001 1001	
72	48	Detailed Timing Descriptor #2	0		0000 0000	
79	49				0000 0000	
74	4A		0	0	0000 0000	
75	4B		0		0000 0000	
76	4C		0		0000 0000	
77	4D		0		0000 0000	
78	4E		Ō		0000 0000	Detailed
79	4F		0		0000 0000	Timing
80	50		0		0000 0000	Description
81	51		0		0000 0000	\$2
82	52		0		0000 0000	
69	59		0	0	0000 0000	
84	55		0		0000 0000	
85	55		0		0000 0000	
86	56		0		0000 0000	
87	57		0		0000 0000	
88	50		0		0000 0000	
89	59		Ō		0000 0000	
90	5A	Detailed Timing Descriptor #9	0	0	0000 0000	
91	5B		Ō	0	0000 0000	
92	5C		0	0	0000 0000	
99	5D		0 F	E	0000 0000 1111 1110	
94	5E		0	0	0000 0000	
95	5F	L	4	С	0000 0000 0100 1100	
96	60	G	4	7	0100 0111	Detailed
97	61	Р	5	0	0101 0000	Timing
98	62	h	6		0110 1000	Description
99	69	i	6	9	0110 1001	# 9
100	64		6		0110 1100	
1 0 1	65	i	6		0110 1001	
102	66	p	7	0	0111 0000	
109	67	6	7	9	0111 0011	
104	68	L	4	С	0100 1100	
105	69	C	4	9	0100 0011	
108	6A	D	4	4	0100 0100	
107	6B	Ŀ	0		0000 1010	

Product Specification

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 3/3

Byte # (decimal)	Byte ≇ (HEX)	Field Name and Comments	_	lue EX)	Value (binary)	
100 109 110 111 112 119 114 115 116 117 118 119 120 121 122 123 124 125		Detailed Timing Descriptor #4	000459995492544902	0 0 0 2 0 1 7 5 1 0 4 0 1 1 4 0	0000 0000 0000 0000 0100 1100 0101 0000 0011 0010 0011 0000 0011 0001 0101 0111 0100 0101 0011 0001 0010 1100 0100 1100 0100 0001 0000 1010 0000 1010	Detailed Timing Description ≇4
128	7E	Extension flag = 00 Checksum	0	0	0000 0000	Extension Flag Checksum