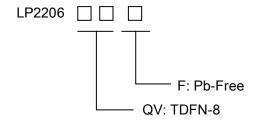
### 2×600mA, Dual Channel Ultra-Fast CMOS LDO Regulator


#### **General Description**

The LP2206 is a dual channel, low noise, and low dropout regulator sourcing up to 600mA at each channel. The range of output voltage is from 0.81V to Vin by operating from 2.5V to 5.5V input.

LP2206 offers 2% accuracy, extremely low dropout voltage (280mV @ 400mA), and extremely low ground current, only 75µA per LDO. The shutdown current is near zero current which is suitable for battery-power devices. Other features include current limiting, over temperature, output short circuit protection.

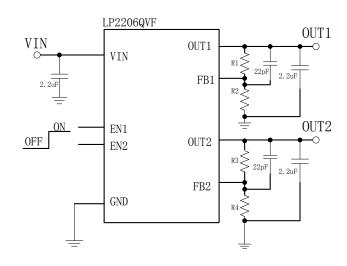
LP2206 can operate stably with very small ceramic output capacitors, reducing required board space and component cost. LP2206 is available in fixed output voltages in the TDFN-8(2\*2mm) package.

#### **Ordering Information**

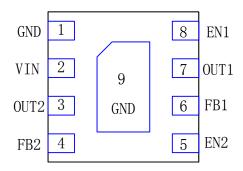


#### **Marking Information**

| Device                                        | Marking | Package | Shipping |  |  |
|-----------------------------------------------|---------|---------|----------|--|--|
| LP2206                                        | LPS     | TDFN-8  | 3K/REEL  |  |  |
|                                               | LP2206  |         |          |  |  |
|                                               | YWX     |         |          |  |  |
| Y: Year code. W: Week code. X: Batch numbers. |         |         |          |  |  |


#### **Features**

- Wide Operating Voltage Ranges: 2.5V to 6.0V
- Low-Noise for RF Applications
- ♦ High PSRR: -68dB at 1kHz
- No Noise Bypass Capacitor Required
- Fast Response in Line/Load Transient
- ◆ TTL-Logic-Controlled Shutdown Input
- ◆ Dual LDO Outputs (280mV/400mA)
- High Output Accuracy 2%
- ◆ Ultra-low Quiescent Current 75uA
- Thermal Shutdown Protection
- RoHS Compliant and 100% Lead (Pb)-Free

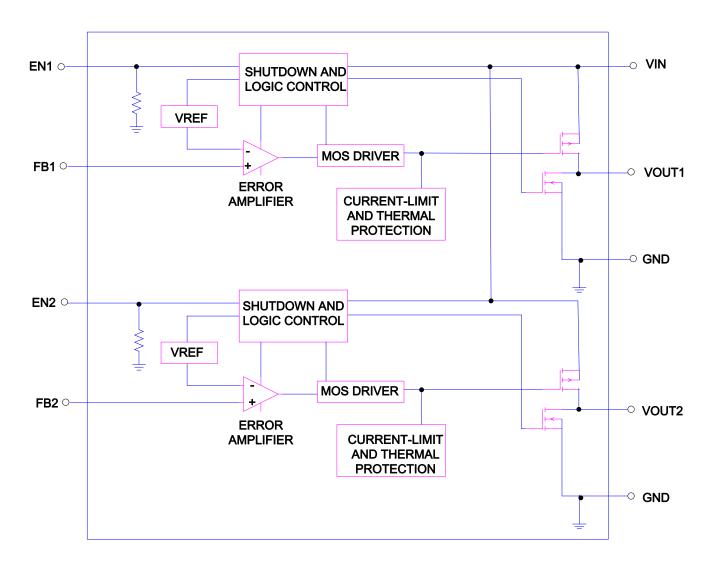

#### **Applications**

- ♦ CDMA/GSM Cellular Handsets
- ♦ Smart mobile phone
- ♦ Battery-Powered Equipment
- ♦ DSC Sensor
- ♦ Wireless Card

## **Typical Application Circuit**



# **Pin Configurations**




TDFN-8 (Top View)

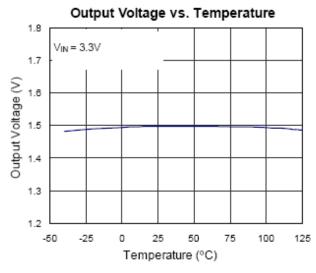
# **Functional Pin Description**

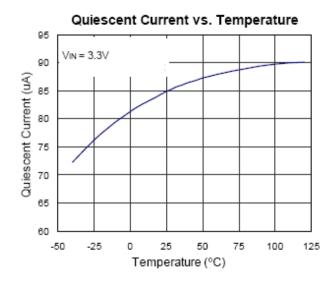
| Pin No. | Pin Name | Pin Function               |
|---------|----------|----------------------------|
| 1       | GND      | Ground pin.                |
| 2       | VIN      | Input pin.                 |
| 3       | OUT2     | Output pin of channel 2.   |
| 4       | FB2      | Feedback pin of channel 2. |
| 5       | EN2      | Enable pin of channel 2.   |
| 6       | FB1      | Feedback pin of channel 2. |
| 7       | OUT1     | Output pin of channel 1.   |
| 8       | EN1      | Enable pin of channel 2.   |
| 9       | GND      | Ground pin.                |

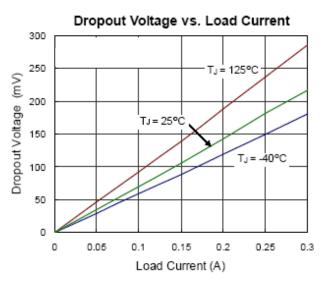
## **Function Block Diagram**

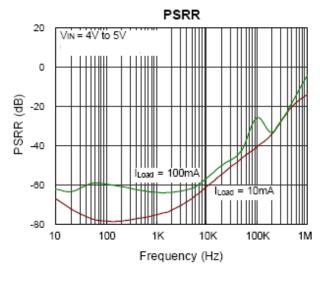


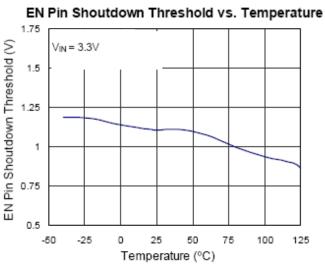
## **Absolute Maximum Ratings**

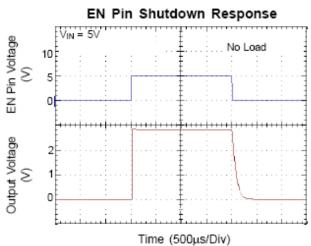

| Supply Input Voltage                                                                                        | 7V    |
|-------------------------------------------------------------------------------------------------------------|-------|
| Power Dissipation, PD @ TA = 25°C TDFN-8                                                                    | 1.2W  |
| Package Thermal Resistance TDFN-8, θJA Lead Temperature (Soldering, 10 sec.) Storage Temperature Range      | 260°C |
| ESD Susceptibility HBM (Human Body Mode) MM(Machine-Mode)                                                   |       |
| Recommended Operating Conditions  Operation Junction Temperature Range  Operation Ambient Temperature Range |       |


#### **Electrical Characteristics**

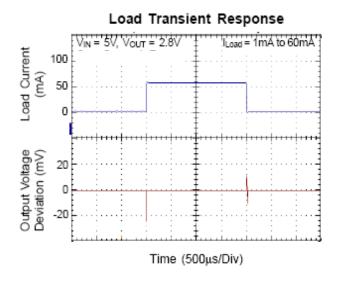

 $(V_{IN} = V_{OUT} + 1V, C_{IN} = C_{OUT} = 2.2\mu F, C_{FB} = 22pF, T_A = 25^{\circ} C, unless otherwise specified)$ 

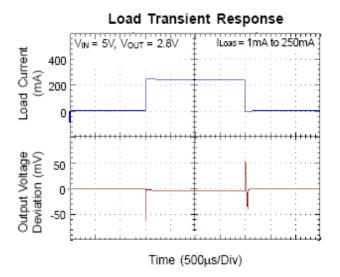

| Parameter                                             |                    | Symbol            | Test Conditions                                        | Min                                              | Тур. | Max   | Units    |    |
|-------------------------------------------------------|--------------------|-------------------|--------------------------------------------------------|--------------------------------------------------|------|-------|----------|----|
| Output Loading Current                                |                    | Iload             | $V_{EN}=V_{IN},V_{IN}>2.5V$                            |                                                  | 600  |       | mA       |    |
| Current Lim                                           | Current Limit      |                   | I <sub>LIM</sub>                                       | $R_{LOAD} = 1\Omega$                             |      | 750   |          | mA |
| Adjustable voltage reference                          |                    | $V_{FB}$          | I <sub>OUT</sub> =1mA                                  | 0.784                                            | 0.8  | 0.816 | V        |    |
| Quiescent                                             | Current            |                   | ΙQ                                                     | V <sub>EN</sub> ≥ 1.4V, I <sub>OUT</sub> = 0mA   |      | 75    | 130      | μΑ |
| D (1)///                                              |                    |                   | I <sub>OUT</sub> = 200mA, V <sub>OUT</sub> >2.8V       |                                                  | 140  | 160   | ms\ /    |    |
| Dropout vo                                            | Dropout Voltage    |                   | $V_{DROP}$                                             | I <sub>OUT</sub> = 400mA, V <sub>OUT</sub> >2.8V |      | 280   | 320      | mV |
| Line Regulation                                       |                    | $\Delta V_{LINE}$ | $V_{IN} = (V_{OUT} + 1V)$ to 5.5V,<br>$I_{OUT} = 1$ mA |                                                  |      | 0.3   | %        |    |
| Load Regulation                                       |                    | $\Delta_{LOAD}$   | 1mA < I <sub>OUT</sub> < 400mA                         |                                                  |      | 0.6   | %        |    |
| Standby Current                                       |                    | I <sub>STBY</sub> | V <sub>EN</sub> = GND, Shutdown                        |                                                  | 0.01 | 1     | μΑ       |    |
| EN Input Bias Current                                 |                    | I <sub>EN</sub>   | V <sub>EN</sub> = 1V or 5V                             | 8.0                                              |      | 5.3   | uA       |    |
| Threshold                                             | Logic-Lo           | ow Voltage        | V <sub>IL</sub>                                        | $V_{IN} = 3V$ to 5.5V,<br>Shutdown               |      |       | 0.4<br>V |    |
|                                                       | Logic-High Voltage |                   | V <sub>IH</sub>                                        | V <sub>IN</sub> = 3V to 5.5V, Start-Up           | 1.4  |       |          | v  |
| Output Noise Voltage                                  |                    |                   | 10Hz to 100kHz,<br>I <sub>OUT</sub> = 200mA            |                                                  | 100  |       | uVRMS    |    |
| Power Supply $f = 100Hz$<br>Rejection Rate $f = 1kHz$ |                    |                   |                                                        |                                                  | -76  |       |          |    |
|                                                       |                    | f = 1kHz          | PSRR                                                   | I <sub>OUT</sub> = 10mA                          |      | -68   |          | dB |
| Thermal<br>Temperatu                                  | re                 | Shutdown          | T <sub>SD</sub>                                        |                                                  |      | 150   |          | °C |

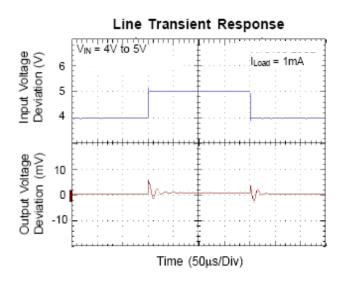

## **Typical Operating Characteristics**









www.lowpowersemi.com







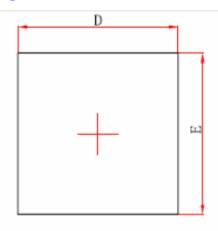


### **Application Information**

Like any low-dropout regulator, the external capacitors used with the LP2206 must be carefully selected for regulator stability and performance. Using a capacitor whose value is > 2µF on the LP2206 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The LP2206 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1 $\mu F$  with ESR is > 25m $\Omega$  on theLP2206 output ensures stability. The LP2206 still works well with output capacitor of other types due to the wide stable ESR range. Output capacitor of larger capacitance can reduce noise and improve load transient response. The output capacitor should

be located no more than 0.5 inch from the  $V_{\text{OUT}}$  pin of the LP2206 and returned to a clean analog ground.

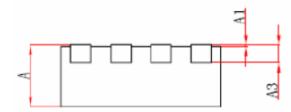
#### **Start-up Function Enable Function**


The LP2206 features an LDO regulator enable/disable function. To ensure the LDO regulator will switch on, the EN turn on control level must be greater than 1.4 volts. The LDO regulator will go into the shutdown mode when the voltage on the EN pin falls below 0.4 volts. To protect the system, the LP2206 have a quick-discharge function. If the enable function is not needed in a specific application, it may be tied to  $V_{\text{IN}}$  to keep the LDO regulator in a continuously on state mode.

#### **Setting the Output Voltage**

Set the output voltage by selecting the resistive voltage divider ratio. The voltage divider drops the output voltage to the 0.8V feedback voltage. Use a 100K resistor for R2 of the voltage divider. Determine the high-side resistor R1 by the equation:

 $Vout=(R1/R2+1) \times V_{FB}$ 


# **Packaging Information**





Top Vlew

**Bottom View** 



#### Side View

| Symbol | Dimensions I | n Millimeters | Dimensions In Inches |             |  |
|--------|--------------|---------------|----------------------|-------------|--|
|        | Min          | Max           | Min                  | Max         |  |
| Α      | 0.700/0.800  | 0.800/0.900   | 0.028/0.031          | 0.031/0.035 |  |
| A1     | 0.000        | 0.050         | 0.000                | 0.002       |  |
| A3     | 0.203REF     |               | 0.006                | 0.010       |  |
| D      | 1.900        | 2.100         | 0.075                | 0.083       |  |
| E      | 1.900        | 2.100         | 0.075                | 0.083       |  |
| D1     | 1.100        | 1.300         | 0.043                | 0.051       |  |
| E1     | 0.500        | 0.700         | 0.020                | 0.028       |  |
| k      | 0.200MIN     |               | 0.008MIN             |             |  |
| b      | 0.180        | 0.300         | 0.007                | 0.012       |  |
| е      | 0.500TYP     |               | 0.020TYP             |             |  |
| L      | 0.250        | 0.450         | 0.010                | 0.018       |  |

www.lowpowersemi.com