High Performance, Constant Current Switching for White LED and Boost Convertor

General Description

The LP3390 is a high frequency, asynchronous boost converter for constant current white LED driver applications. The internal MOSFET can support up to 8 White LEDs for backlighting and OLED power application, and the internal soft start function can reduce the inrush current. The LED current is initially set with the external sense resistor. To improve efficiency, the feedback voltage is set to 200mV, which reduces the power dissipation in the current setting resistor.

LowPowerSemi 微源半導體

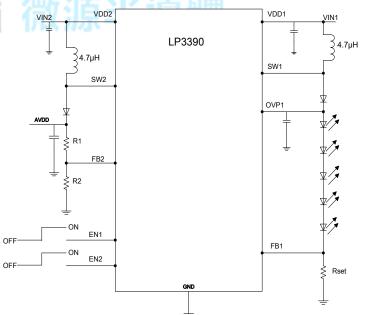
The LP3390 implements a constant frequency 1.2MHz PWM control scheme. Optimized operation frequency can meet the requirement of small LC filters value .Highly integration and internal compensation network minimizes as component counts.to provide the best solution for PCB space saving and total BOM cost. DFN-10 3*3mm packages.

Order Information

0 F: Pb-Free Package Type QV:TDFN-10

Marking information

Device	Marking	Package	Shipping	
LP3390QVF	LPS	QV:SQVF	3K/reel	
	LP3390			
	хххх			
Y:Production year W:Production period X:Production batch				


Features

- ♦ High Efficiency: 95%
- 1.2MHzFixed-Frequency PWM Operation
- Maximum Output Voltage up to 30V
- Operating Range : 2.5V to 5.5V
- Shutdown Supply Current:<1uA
- Minimize the External Component.
- ◆ RoHS Compliant and 100% Lead (Pb)-Free

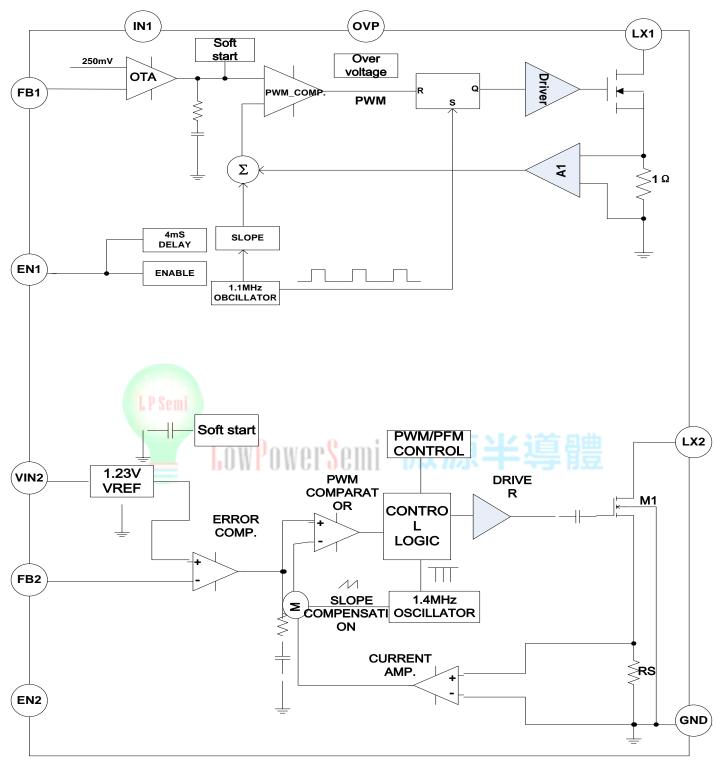
Applications

- ♦ WLED Backlight driver
- ♦ Panel Bias Voltage supply

Typical Application Circuit

Functional Pin Description

Package Type	Pin Configurations			
TDFN-10	Top View GND 0 0 1 0 1 0 9 FB1 4 5 6 VIN1			


Pin Description

Pin	Name	Description
1	GND	Ground Pin
2	VIN2	Supply Input Voltage Pin. Bypass 10uF capacitor to GND to reduce the input noise.
	EN2	Chip Enable (Active High). Voltage sensing input to trigger the function of over voltage protection.
3		Note that this pin is high impedance. There should be a pull low $100k\Omega$ resistor connected to
		GND when the control signal is floating.
4	FB1	Feedback Reference Voltage Pin. Series connect a resistor between WLED and ground as a
-		current sense. Sense the current feedback voltage to set the current rating. FB voltage is 200mV.
5	SW1	Switch Pin. Connect this Pin to inductor and catch diode. Minimize the track area to reduce EMI.
6	VIN1	Supply Input Voltage Pin. Bypass 10uF capacitor to GND to reduce the input noise.
7	OVP	OVP Pin. Overvoltage Sense.
	EN1	Chip Enable (Active High). Voltage sensing input to trigger the function of over voltage protection.
8		Note that this pin is high impedance. There should be a pull low $100k\Omega$ resistor connected to
		GND when the control signal is floating.
	FB2	Feedback Reference Voltage Pin. Series connect a resistor between WLED and ground as a
9		current sense. Sense the current feedback voltage to set the current rating. FB voltage is
		1250mV.
10	SW2	Switch Pin. Connect this Pin to inductor and catch diode. Minimize the track area to reduce EMI.

LP3390

Function Block Diagram

Absolute Maximum Ratings

\diamond	Supply Input Voltage0.3V to 6.5V
\diamond	LX/OVP Pin to GND
\diamond	The Other Pins0.3V to 6.5V
\diamond	Power Dissipation, PD @ TA = 25°C 1.5W
\diamond	Thermal Resistance (JA) 65°C/W
\diamond	Lead Temperature (Soldering, 10 sec.) 260°C
\diamond	Operation Temperature Range20°C to 85°C
\diamond	Storage Temperature Range65°C to 165°C

Electrical Characteristics

Parameter	Symbol	Test Condition	Min	Тур.	Max	Units
System Supply Input						
Operation voltage Range	Vdd		2.5		5.5	V
Under Voltage Lock Out	UVLO			2.3		V
Supply Current	IDD	FB=0V, Switching		0.8	1.3	mA
Shut Down Current	IDD	Ven < 0.4V		0.1	1	uA
Line Regulation		VIN : 3.0~4.3V		3		%
Oscillator						
Operation Frequency	Fosc	Ver'Seint fix ils	Ŧ∜	1.2		MHz
Maximum Duty Cycle			89	92	96	%
Dimming Frequency			100		1M	Hz
Feedback1 Voltage	VFB1		185	200	215	mV
Feedback2Voltage	VFB2		1220	1250	1280	mV
MOSFET						
On Resistance of MOSFET	RDS(ON)			0.5		Ω
Protection						
OVP Threshold	Vovp			29		V
OVP Sink Current				5		μA
OCP				1250		mA
Shut Down Voltage	VEN				0.4	V
Enable Voltage	VEN		1.5			V

Applications Information

LED Current Control

The loop of Boost structure will keep the FB pin voltage equal to the reference voltage VREF.

FB voltage is 200mV,Therefore, when Rset connects FB pin and GND, the current flows from VOUT through LED and RSET to GND will be decided by the current on RSET, which is equal to following equation:

ILED=VFB1/Rset

Dimming Control

a. Using a PWM Signal to EN Pin

To control the brightness of LED, the LP3302 can perform the dimming control by applying a PWM signal to EN pin. The internal soft-start and wide range dimming frequency from 100Hz to 1MHz can insignificantly reduce audio noise when dimming.

The average LED current is proportional to the PWM signal duty cycle. The magnitude of the PWM signal should be higher than the maximum enable voltage of EN pin, in order to let the dimming control perform correctly.

b. Using a DC Voltage

Using a variable DC voltage to adjust the brightness is a popular method in some applications. The dimming control using a DC voltage circuit. The output voltage can be calculated by the following Equations.

c. Using a Filtered PWM signal

Another common application is using a filtered PWM signal as an adjustable DC voltage for LED dimming control. A filtered PWM signal acts as the DC voltage

to regulate the output current. In this circuit, the output ripple depends on the frequency of PWM signal. For smaller output voltage ripple (<100mV), the recommended frequency of 2.8V PWM signal should be above 2kHz. To fix the frequency of PWM signal and change the duty cycle of PWM signal can get different output current.

Constant Output Voltage Control

The output voltage of the LP3390 can be adjusted by the divider circuit on the FB pin. The output voltage can be calculated by the following Equations.

Vout=VFB2 x(R1/R2+1)

Power Sequence

In order to assure the normal soft start function for suppressing the inrush current the input voltage should be ready before EN pulls high.

Soft-Start

The function of soft-start is made for suppressing the inrush current to an acceptable value at the beginning of power on. The LP3390 provides a built-in soft-start function by clamping the output voltage of error amplifier so that the duty cycle of the PWM will be increased gradually in the soft-start period.

Current Limiting

The current flow through inductor as charging period is detected by a current sensing circuit. As the value comes across the current limiting threshold, the N-MOSFET will be turned off so that the inductor will be forced to leave charging stage and enter discharging stage. Therefore, the inductor current will not increase over the current limiting threshold.

OVP/UVLO/OTP

The Over Voltage Protection is detected by a junction breakdown detecting circuit. Once VOUT goes over the detecting voltage, LX pin stops switching and the power N-MOSFET will be turned off. Then, the VOUT will be clamped to be near VOVP. As the output voltage is higher than a specified value or input voltage is lower than a specified value, the chip will enter protection mode to

prevent abnormal function. As the die temperature is higher then 150°C, the chip also will enter protection mode. The power MOSFET will be turned off during protection mode to prevent abnormal operation.

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula :

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

Where TJ(MAX) is the maximum operation junction temperature, TA is the ambient temperature and the qJA is the junction to ambient thermal resistance.

For the recommended operating conditions specification of LP3390, the maximum junction temperature of the die is 125°C. The junction to ambient thermal resistance Qja is layout dependent.

Layout Consideration

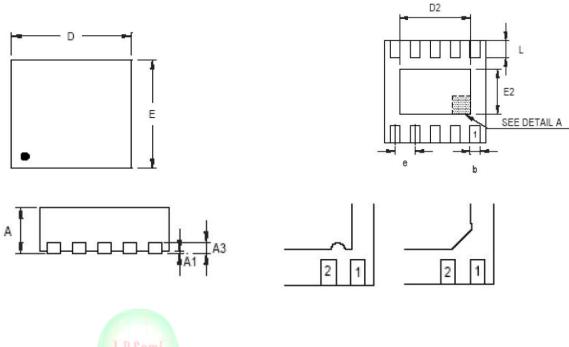
For best performance of the LP3390, the following guidelines must be strictly followed.

- Input and Output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.

- The GND and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.

- Keep the main current traces as possible as short and wide.

- LX node of DC-DC converter is with high frequency voltage swing. It should be kept at a small area.


- Place the feedback components as close as possible to the IC and keep away from the noisy devices.

微源半導體

www.lowpowersemi.com

Packaging Information

DETAIL A

L P S

Pin#1 ID and TIE Bar Mark Options

Note: The configuration of Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min	Max	Min	Max
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.180	0.300	0.007	0.012
D	2.950	3.050	0.116	0.120
D2	2.300	2.650	0.091	0.104
E	2.950	3.050	0.116	0.120
E2	1.500	1.750	0.059	0.069
e	0.500		0.020	
L	0.350	0.450	0.014	0.018