

TABLE OF CONTENTS

DESCRIPTION3 -
FEATURES 3 -
TYPICAL APPLICATION 3 -
TYPICAL APPLICATION CIRCUIT 4 -
PIN CONFIGURATION 4 -
TERMINAL DESCRIPTION 4 -
BLOCK DIAGRAM 5 -
ABSOLUTE MAXIMUM RATINGS 5 -
ELECTRICAL CHARACTERISTICS 6 -
TYPICAL PERFORMANCE CHARACTERISTICS
PACKAGE MECHANACAL DATA 8 -

Description

The LP3772 is a high performance AC/DC power supply controller for battery charger and adapter applications. The device uses Pulse Frequency Modulation (PFM) method to build discontinuous conduction mode (DCM) flyback power supplies.

The LP3772 provides accurate constant voltage, constant current (CV/CC) regulation without requiring an opto-coupler and the secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining good stability. The LP3772 can achieve excellent regulation and high average efficiency, yet meets no-load consumption less than 75mW.

The LP3772 has a proprietary cable voltage drop compensation function, namely the output loss compensation, loss compensation amount can be controlled by adjusting the FB divider resistances to adjust the maximum amount of compensation, the output voltage is 12%, the loss of pressure drop can be effectively compensated output current at the output line.

Vcc

V2.1

Features

- Primary Side Control for Tight Constant Current and Constant Voltage
- 75mW No-load Input Power
- Bipolar Junction Transistor (BJT) Driving
- Proprietary Adjustable Cable voltage drop Compensation
- Random Frequency Modulation to Reduce System EMI
- Enhanced Audio Noise Suppression
- **Open Circuit Protection**
- Over Voltage Protection
- Short Circuit Protection
- Adjustable line loss compensation

Produce selection

LP3772 typ	e information		Lee
Туре	Package	Specification	Printing
LP3772-1	SOT23-6	Maximum output power of 5V/1.5A, integrated 3K ohm CS compensation resistor, external drive BJT	LP-1
LP3772-2	SOT23-6	Maximum output power 5V / 1.5A, external transistors, not integrated CS compensation resistor , fully compatible AP3772	LP-2

Typical Application

- Adapters/Chargers for Cell/cordless Phones, PDAs, MP3 and Other Portable Devices
- LED Driver
- Upgrading the best choice linear power supply and RCC switching power supply
- Standby and Auxiliary Power Supplies

Typical Application Circuit

Figure 1a:LP3772-1 Typical Application

Figure 1b:LP3772-2 Typical Application

Pin Configuration

Figure 2: Pin Assignments

Terminal Description

Pin	Name	Description
1	OUT	The OUT pin is used to turn on and turn off the power switch. When turning on the power switch, the OUT pin will output 30mA source current to support the base current of the power BJT. When turning off the power switch, the resistance between the OUT and GND will become to 5Ω
2	GND	The GND pin is the ground of the IC. When the power BJT is turned off, a fast reverse sinking current to the gate of BJT will flow out from this pin. Attention should be paid to in the PCB layout
3	VCC	The VCC pin supplies the power for the IC. In order to get the correct operation of the IC, a capacitor with low ESR should be placed as close as possible to the VCC pin
4	CS	The CS is the current sense pin of the IC. The IC will turn off the power BJT according to the voltage on the CS pin.
5	NC	This pin must be floating.
6	FB	The CV and CC regulation are realized based on the voltage sampling of this pin

Table 1

Block Diagram

Figure 3: LP3772-x Block Diagram

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Supply Voltage	VCC	7 to 30	V
CS to GND	Vcs	-0.3 to 7	V
FB Input Voltage	VFB	-40 to 8.5	V
Source Current at OUT Pin	ISOURCE	Internally Limited	А
Operating Junction	TJ	150	°C
Storage Temperature	TST	-65 to 150	°C
Lead Temperature (Soldering,	TLEAD	300	°C
Thermal Resistance	JA	250	°C/W
ESD (Human Body Model)		2000	V

Table 2

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability. Electrical Characteristics

Electrical Characteristics

Parameter		Symbol	Conditions	Min	Тур	Max	Unit	
UVLOSECTION								
Startup Threshold		VST		13	15.5	18	V	
Minimal C	Operating	VUVLO		3.5	4	4.5	V	
Voltage		10110		5.5	+		Ÿ	
STANDB	Y CURRI	ENT SECTION	N			r		
Startup Current		Ist	$V_{CC}=V_{TH}(ST)-1V$, Before Startup	0	0.2	0.6	uА	
Operating	Current	Icc	Static current		500		μΛ	
DRIVE O	UTPUT S	SECTION				-		
Output	Sink	\mathbf{I}_{sink}	Apply 1V @OUT pin	150	200	330	mA	
Current	Source	ISOURCE		24	30	40	mA	
Maximum Off		T _{OFFMAX}			18		ms	
CURREN	T SENSE	ESECTION						
Current Sense Threshold Voltage at CC Mode		Vcsi			500		mV	
Current Sense Threshold Voltage at light load		VCS2			330		mV	
Leading Edge Blanking		TLEB	The minimum POWER SWITCH		500		ns	
FEEDBA	CK INPU	T SECTION	·					
Input Resistance of		R _{FB}	V _{FB} =4V	1	1.6	2	MΩ	
Foodbook		Ved		3 94	4	4.06	V	
LINE CO	MPENSA	TION SECTION	ON	5.91	•	1.00	·	
Line Compensation		VCOMP_LINE	Vfb=-10V,RLINE=30K Ω (Figure 4)		120		mV	
Sink Current of ED								
Pin		Ifb	100% output current		100		μΑ	
PROTECTION SECTION								
Over Volta	ıge	VFBOVP		6	6.5	7	V	
Max. On Time of Primary Side		Топрмах			25		uS	

 V_{CC} =15V, T_A =25°C, unless otherwise specified.

Typical Performance Characteristics

Figure 5. Operating Current Vs. Temperature

Figure 2. Drive Current Vs. Vcc Voltage

Figure 4. Minimal Operation Voltage Vs. Temperature

Figure 6. Startup Current Vs. Temperature

Figure 7. Vcs Vs. Temperature

Package Mechanical Data

SOT-23-6 PACKAGE

Printing Information

SOT23-6

"LP-1" refers to type: LP3772-1

"LP-2" refers to type: LP3772-2

WUXI CHIP HOPE MICRO-ELECTRONICS LTD.

V2.1 http://www.chip-hope.com