# **LCD Specification**

**LCD** Group

# LQ030B7UB02 LCD Module

# Product Specification December 2009

Wide-QVGA, LED-backlit Transflective Portraitmode panel featuring a symmetrical viewing cone of 160° (reflective mode). Module has 10% reflectivity and 15:1 contrast (reflective) and brightness of 150 nits and contrast of 100:1 in transmissive mode.

Full Specifications Listing



| PREPARED BY:  **Religious Toyota** |
|------------------------------------|
| APPROVED BY:                       |
| H. Yalunchi                        |
| H. Yabunchi                        |

# SHARP

SPEC No. LCY-09083C FILE No. ISSUED: December.4.2009 PAGE: 33 pages APPLICABLE GROUP MOBILE LIQUID CRYSTAL DISPLAY GROUP

MOBILE LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION

# **SPECIFICATION**

# DEVICE SPECIFICATION FOR

# TFT-LCD module

MODEL No. LQ030B7UB02

These parts have corresponded with the RoHS directive.

| CUSTOMER'S APPROVAL |                                      |
|---------------------|--------------------------------------|
| DATE                |                                      |
|                     | PRESENTED                            |
| ВУ                  | BY J. Lemoto                         |
|                     | T. IEMOTO                            |
|                     | Department assistant General manager |
|                     | Engineering Department 3             |
|                     | Mobile LCD Division 2                |
|                     | Mobile Liquid Crystal Display Group  |

SHARP CORPORATION

# RECORDS OF REVISION

MODEL No: LQ030B7UB02

SPEC No : LCY-09083C

|             | NO.     | PAGE    | SUMMARY                              | NOTE                  |
|-------------|---------|---------|--------------------------------------|-----------------------|
| 2009.10. 13 | A       | -       | -                                    | 1 <sup>st</sup> Issue |
| 2009.10.30  | В       | 23      | Correct; LCD outline dimension       | 2 <sup>nd</sup> Issue |
|             |         |         | Outline — ActiveArea (8.3mm → 7.9mm) |                       |
| 2009.12.4   | C       | 2~23    | Addition; interface mode             | 3 <sup>rd</sup> Issue |
|             |         |         | 16bit system interface mode          | _                     |
|             |         |         | VSYNC interface mode                 | -                     |
|             |         | <u></u> | • RGB interface mode                 |                       |
|             |         | 5,30    | Correct; Temperature for operation   |                       |
|             |         |         | -20°C~70°C → -10°C~70°C              |                       |
|             |         |         |                                      | ļ                     |
|             |         |         |                                      | <del> </del>          |
|             |         |         |                                      |                       |
|             |         |         |                                      |                       |
|             |         |         |                                      | ·                     |
|             |         |         |                                      |                       |
|             |         |         |                                      |                       |
|             |         |         |                                      | <u> </u>              |
|             |         |         |                                      | <u> </u>              |
|             |         |         |                                      | ļ                     |
|             |         |         |                                      | <u> </u>              |
|             |         |         |                                      |                       |
|             | <u></u> |         |                                      | 1                     |
|             |         |         |                                      | ļ                     |
|             |         |         |                                      |                       |
|             |         |         |                                      |                       |
|             |         |         |                                      |                       |
|             |         |         |                                      |                       |
|             |         |         |                                      |                       |
|             |         |         |                                      | -                     |
|             |         |         |                                      |                       |
|             |         |         |                                      |                       |

#### NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

- Personal computers Office automation Telecommunication equipment
- Test and measurement equipment Industrial control Personal digital assistant
- Audio visual and multimedia equipment Consumer electronics Personal navigation device

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals Gas leakage sensor breakers
- Alarm equipment Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
   Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

#### 1. Applicable Scope

This specification is applicable to TFT-LCD Module "LQ030B7UB02".

#### 2. General Description

This module is a color reflective and active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor), named AD-TFT(Advanced TFT). It is composed of a color TFT-LCD panel, driver IC, a FPC and metal bezels.

- 1) When it is used by system interface mode, Graphics and texts can be displayed on a 240 x RGB x 400 dots panel with about 262k or 65K colors by supplying 18 or 16bit system interface signals, three control signals (RS/CS/WR), logic (Typ. +1.8V), analog (Typ. +3.0V or +2.8V) supply voltages for TFT-LCD panel driving and supply voltage for back light.
- 2) When it is used by RGB interface mode, Graphics and texts can be displayed on a 240 x RGB x 400 dots panel with about 262k colors by supplying 18 bit data signals (6bit x RGB), four timing signals, 3wires 24bit serial interface signals, logic (Typ. +1.8V), analog (Typ. +3.0V or +2.8V) supply voltages for TFT-LCD panel driving and supply voltage for back light.

  Optimum view angle is 12 o'clock.

#### 3. Mechanical (Physical) Specifications

| Item                    | Specifications                 | Unit  |
|-------------------------|--------------------------------|-------|
| Screen size             | 7.6 (3.0" type) diagonal       | cm    |
| Active area             | 38.88 (H) × 64.8 (V)           | mm    |
| Divolformed             | 240 (H) x 400 (V)              | Pixel |
| Pixel format            | 1Pixel =R+G+B dots             | -     |
| Pixel pitch             | 0.162 (H) x 0.162 (V)          | mm    |
| Pixel configuration     | R,G,B vertical stripes         | -     |
| Display mode            | Normally white                 | -     |
| Unit outline dimensions | 47.28 (W) x 76.4 (H) x3.25 (D) | mm    |
| Mass                    | Approx.24                      | g     |
| Surface hardness        | 3H                             | -     |
| Surface treatment       | Anti reflection                |       |

<sup>\*</sup>The above-mentioned table indicates module sizes without some projections and FPC. For detailed measurements and tolerances, please refer to 17. Outline Dimensions.

# 4. Input/Output terminal and Functions

Recommendation CN: [HIROSE] FH19SC-45S-0.5SH(05)

When it is used by 18 or16bits system Interface

|          | t is used by 18 o | 1                                            | 1                                              |          |
|----------|-------------------|----------------------------------------------|------------------------------------------------|----------|
| Pin No.  | Symbol            | I/O                                          | <u>Description</u>                             | Remarks  |
| 1        | GND               | -                                            | Ground                                         |          |
| 2        | LED-K             | -                                            | Power supply for LED (Cathode)                 |          |
| 3        | LED-A2            | -                                            | Power supply for LED of 1pc (Anode)            |          |
| 4        | LED-A1            | -                                            | Power supply for LED of full(Anode)            |          |
| 5        | GND               | -                                            | Ground                                         |          |
| 6        | GND               | -                                            | Ground                                         |          |
| 7        | RESB              | I                                            | System reset                                   |          |
| 8        | GND               | -                                            | Ground                                         |          |
| 9        | DB17              | l                                            | Data signal                                    |          |
| 10       | DB16              | l                                            | Data signal                                    |          |
| 11       | DB15              | l                                            | Data signal                                    |          |
| 12       | DB14              | <u> </u>                                     | Data signal                                    |          |
| 13       | DB13              | <u>                                     </u> | Data signal                                    |          |
| 14       | DB12              | <u> </u>                                     | Data signal                                    |          |
| 15       | DB11              |                                              | Data signal                                    |          |
| 16       | DB10              |                                              | Data signal                                    |          |
| 17<br>18 | DB9               | 1                                            | Data signal  Data signal                       |          |
| 19       | DB8               |                                              | Data signal                                    |          |
| 20       | DB7<br>DB6        |                                              | Data signal                                    |          |
| 21       | DB6<br>DB5        | <u> </u>                                     | Data signal                                    |          |
| 22       | DB3<br>DB4        | i                                            | Data signal                                    |          |
| 23       | DB3               | i                                            | Data signal                                    |          |
| 24       | DB2               | i                                            | Data signal                                    |          |
| 25       | DB1               | i                                            | Data signal                                    |          |
| 26       | DB0               | I                                            | Data signal                                    |          |
| 27       | GND               | -                                            | Ground                                         |          |
| 28       | NC                | -                                            | Not connect                                    |          |
| 29       | VCCIO             | -                                            | Voltage input pin for logic I/O                |          |
| 30       | WR                | I                                            | Write control input pin                        | Note 4-1 |
| 31       | RS                | l l                                          | Register select input pin                      | Note 4-2 |
| 32       | CS                | I                                            | Chip select pin                                | Note 4-3 |
| 33       | GND               | -                                            | Ground                                         |          |
| 34       | VSYNC             | I                                            | Frame synchronization signal (VSYNC interface) | Note 4-4 |
| 35       | GND               | -                                            | Ground                                         |          |
| 36       | GND               | -                                            | Ground                                         |          |
| 37       | NC                | -                                            | Not connect                                    |          |
| 38       | VCCIO             | -                                            | Voltage input pin for logic I/O                |          |
| 39       | VCC               | -                                            | Booster input voltage pin                      | N        |
| 40       | IMO               | <u> </u>                                     | Select a mode to interface                     | Note 4-5 |
| 41       | IM1               | <u> </u>                                     | Select a mode to interface                     | Note 4-5 |
| 42       | IM2               | <u> </u>                                     | Select a mode to interface                     | Note 4-5 |
| 43       | GND               | -                                            | Ground                                         |          |
| 44       | GND               | _                                            | Ground                                         |          |
| 45       | GND               |                                              | Ground                                         |          |

When it is used by RGB system Interface

| Pin No.  | Symbol       | I/O      | Description                                            | Remarks  |
|----------|--------------|----------|--------------------------------------------------------|----------|
| 1        | GND          | -        | Ground                                                 |          |
| 2        | LED-K        | -        | Power supply for LED (Cathode)                         |          |
| 3        | LED-A2       | -        | Power supply for LED of 1pc (Anode)                    |          |
| 4        | LED-A1       | -        | Power supply for LED of full(Anode)                    |          |
| 5        | GND          | -        | Ground                                                 |          |
| 6        | GND          | -        | Ground                                                 |          |
| 7        | RESB         | I        | System reset                                           |          |
| 8        | GND          | -        | Ground                                                 |          |
| 9        | R5           | I        | RED data signal(MSB)                                   |          |
| 10       | R4           | I        | RED data signal                                        |          |
| 11       | R3           | I        | RED data signal                                        |          |
| 12       | R2           | I        | RED data signal                                        |          |
| 13       | R1           | I        | RED data signal                                        |          |
| 14       | R0           | I        | RED data signal(LSB)                                   |          |
| 15       | G5           | I        | GREEN data signal(MSB)                                 |          |
| 16       | G4           |          | GREEN data signal                                      |          |
| 17       | G3           | <u> </u> | GREEN data signal                                      |          |
| 18       | G2           |          | GREEN data signal                                      |          |
| 19       | G1           |          | GREEN data signal                                      |          |
| 20       | G0           | <u> </u> | GREEN data signal(LSB)                                 |          |
| 21       | B5           |          | BLUE data signal(MSB)                                  |          |
| 22       | <u>B4</u>    |          | BLUE data signal                                       |          |
| 23       | <u>B3</u>    |          | BLUE data signal                                       |          |
| 24       | B2           |          | BLUE data signal                                       |          |
| 25       | <u>B1</u>    |          | BLUE data signal                                       |          |
| 26       | B0           |          | BLUE data signal(LSB)                                  |          |
| 27       | SDI          |          | Data input pin in serial mode                          |          |
| 28       | NC NC        | -        | Not connect                                            |          |
| 29       | VCCIO        | -        | Voltage input pin for logic I/O                        |          |
| 30<br>31 | SCL          | l        | Serial clock signal  Voltage input pin for logic I/O   |          |
| 32       | VCCIO        | -        | Chip select pin                                        | Note 4-3 |
| 33       | CS<br>ENABLE |          |                                                        | Note 4-3 |
| 34       | VSYNC        |          | Data enable signal Frame synchronization signal        |          |
| 35       | HSYNC        |          | Line synchronization signal                            |          |
| 36       | DOTCLK       |          | Dot-clock signal                                       |          |
| 37       | NC NC        | _        | Not connect                                            |          |
| 38       | VCCIO        | _        | Voltage input pin for logic I/O                        |          |
| 39       | VCC          | _        | Booster input voltage pin                              |          |
| 40       | IM0          |          | Select a mode to interface                             | Note 4-5 |
| 41       | IM1          | i        | Select a mode to interface  Select a mode to interface | Note 4-5 |
| 42       | IM2          | i        | Select a mode to interface                             | Note 4-5 |
| 43       | GND          | _        | Ground                                                 |          |
| 44       | GND          | -        | Ground                                                 |          |
| 45       | GND          | _        | Ground                                                 |          |

Note 4-1) Write strobe signal in system interface operation and enables write operation when WR\* is low.

Note 4-2) "L"=Select status Register. "H"=Select control Register

Note 4-3) "L" = Selected and accessible. "H" = Not selected and not accessible.

Note 4-4) This terminal (VSYNC) is used at the VSYNC interface mode.

Please fix to GND when not in used.

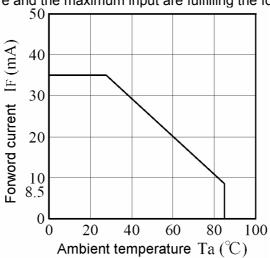
Please refer to 7-1-2) for the VSYNC interface mode.

Note 4-5)

| Display interface mode | IM2 | IM1 | IM0 |
|------------------------|-----|-----|-----|
| 16bit system interface | "L" | "H" | "L" |
| 18bit system interface | "L" | "L" | "L" |
| RGB interface          | "H" | "L" | "L" |

5. Absolute Maximum Ratings

| Item                           | Symbol           | Conditions Rated value |                 | Unit | Remarks   |
|--------------------------------|------------------|------------------------|-----------------|------|-----------|
| Input voltage                  | VI               | Ta = 25°C              | -0.3 ~VCCIO+0.3 | V    | Note5-1   |
| Logic I/O power supply voltage | VCCIO            | Ta = 25°C              | -0.3 ~ +4.0     | V    |           |
| Analog power supply voltage    | VCC              | Ta = 25°C              | GND-0.3 ~ +4.6  | V    |           |
| Temperature for storage        | Tstg             | -                      | -30 ~ +80       | °C   | Note5-2   |
| Temperature for operation      | Topr             | -                      | -10 ~ +70       | °C   | Note5-2,3 |
| LED input electric current     | I <sub>LED</sub> | Ta = 25°C              | 35              | mA   | Note5-4   |
| LED electricity consumption    | P <sub>LED</sub> | Ta = 25°C              | 123             | mW   | Note5-4   |


Note5-1) WR, RS, CS, SCL, SDI, ENABLE, VSYNC, HSYNC, DOTCLK, RESB, IM2~IM0, DB17~DB0, R5~R0, G5~G0, B5~B0

Note5-2) Humidity: 95%RH Max. (Ta 40°C)

Note5-3) Panel surface temperature prescribes.

Note5-4) Power consumption of one LED (Ta = 25°C). (use 6 pieces LED)

Ambient temperature and the maximum input are fulfilling the following operating conditions.



Ambient temperature and the maximum input

#### 6. Electrical Characteristics

#### 6-1. TFT LCD Panel Driving

Ta = 25°C

|                |              |                                   |                         |      | 1                       |       | 1a - 25 C |
|----------------|--------------|-----------------------------------|-------------------------|------|-------------------------|-------|-----------|
| Item           |              | Symbol                            | Min.                    | Тур. | Max.                    | Unit  | Remarks   |
|                | DC voltage   | V <sub>CCIO</sub>                 | +1.65                   | +1.8 | VCC                     | ٧     |           |
| Logic I/O      | DC current   | I <sub>VCCIO</sub>                | -                       | 0.04 | 0.10                    | mA    | Note6-1   |
| power supply   | DC voltage   | V <sub>CCIO</sub>                 | +1.65                   | +1.8 | VCC                     | V     |           |
|                | DC current   | I <sub>VCCIO</sub>                | -                       | 0.04 | 0.10                    | mA    | Note6-2   |
|                | DC voltage 1 | V <sub>CC</sub>                   | +2.9                    | +3.0 | +3.1                    | V     | Note6-3   |
|                | DC current 1 | I <sub>VCC</sub>                  | -                       | 13.5 | 20                      | mA    | Note6-4   |
|                | DC voltage 2 | V <sub>CC</sub>                   | +2.7                    | +2.8 | +2.9                    | V     | Note6-3   |
| Analog         | DC current 2 | I <sub>VCC</sub>                  | -                       | 13.5 | 20                      | mA    | Note6-5   |
| power supply   | DC voltage 3 | V <sub>CC</sub>                   | +2.9                    | +3.0 | +3.1                    | V     | Note6-3   |
|                | DC current 3 | I <sub>VCC</sub>                  | -                       | 15.5 | 23                      | mA    | Note6-6   |
|                | DC voltage 4 | V <sub>CC</sub>                   | +2.7                    | +2.8 | +2.9                    | V     | Note6-3   |
|                | DC current 4 | I <sub>VCC</sub>                  | -                       | 15.5 | 23                      | mA    | Note6-7   |
| Permis         | sive input   | V <sub>RFVCCIO</sub>              | -                       | -    | 100                     | mVp-p | Note6-8   |
| Ripple voltage |              | V <sub>RFVCC</sub>                | -                       | -    | 100                     | mVp-p | Note6-8   |
| Logic          | High         | V <sub>IH</sub>                   | 0.8 * V <sub>CCIO</sub> | -    | V <sub>CCIO</sub>       | V     | Note6-9   |
| Input Voltage  | Low          | V <sub>IL</sub>                   | 0                       | -    | 0.2 * V <sub>CCIO</sub> | V     | Note6-9   |
| Logic inp      | out Current  | I <sub>IH</sub> / I <sub>IL</sub> | -1                      | -    | 1                       | μA    | Note6-9   |

Note 6-1) 18 or 16bit system interface mode,  $V_{CCIO}$  = +1.8V,  $V_{CC}$  = +3.0 or +2.8V Current situation for  $I_{VCCIO}$ : Black & White checker flag pattern

Note 6-2) RGB interface mode,  $V_{\text{CCIO}}$  = +1.8V,  $V_{\text{CC}}$  = +3.0 or +2.8V Current situation for  $I_{\text{VCCIO}}$ : Black & White checker flag pattern

Note 6-3) Please refer to Register setting

Note 6-4) 18 or 16bit system interface mode,  $V_{CCIO}$  = +1.8V,  $V_{CI}$  = +3.0V Current situation for  $I_{CI}$ : All black pattern

Note 6-5) 18 or 16bit system interface mode,  $V_{\text{CCIO}}$  = +1.8V,  $V_{\text{CI}}$  = +2.8V Current situation for  $I_{\text{CI}}$ : All black pattern

Note 6-6) RGB interface mode,  $V_{CCIO}$  = +1.8V,  $V_{CI}$  = +3.0V Current situation for  $I_{CI}$ : All black pattern

Note 6-7) RGB interface mode,  $V_{\text{CCIO}}$  = +1.8V,  $V_{\text{CI}}$  = +2.8V Current situation for  $I_{\text{CI}}$ : All black pattern

Note 6-8)  $V_{CCIO}$  = +1.8V,  $V_{CI}$  = +3.0V or +2.8V

# Note 6-9) WR, RS, CS, SCL, SDI, ENABLE, VSYNC, HSYNC, DOTCLK, RESB, IM2~IM0, DB17~DB0, R5~R0, G5~G0, B5~B0

## 6-2. Power up sequence

When it is used by 18 or 16bits system Interface

V<sub>CC</sub> ON (hold Pin No.7:RESB = "L")

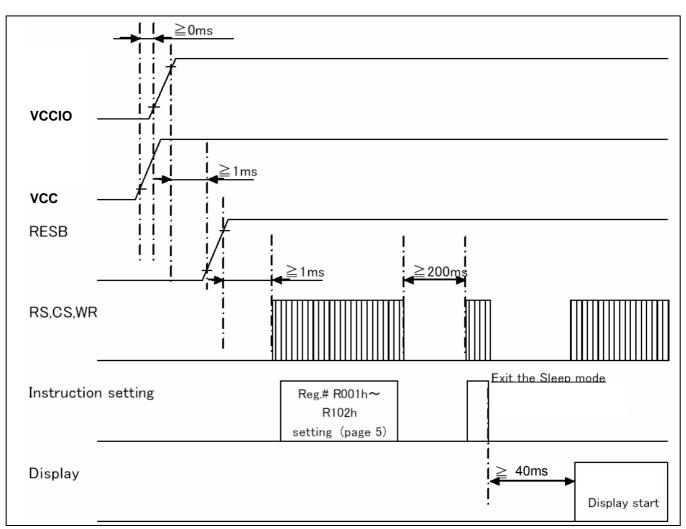
Wait min. 0ms

 $V_{\text{CCIO}}$  ON (hold Pin No.7:RESB = "L")  $\downarrow$  Wait min. 1ms

↓
Hard Reset (No.7:RESB "L" "H")

Wait min. 1ms

| Pog # Pagistor |                | Da       | ata      | Remark |
|----------------|----------------|----------|----------|--------|
| Reg. #         | Register       | VCC=3.0V | VCC=2.8V | Remark |
| R000h          | Dummy Transfer | -        | -        |        |
| R000h          | Dummy Transfer | -        | -        |        |
| R000h          | Dummy Transfer | -        | -        |        |
| R000h          | Dummy Transfer | -        | -        |        |


Instruction setting

| Reg. # | Register                 | Data(Ga | mma 2.2) | Remark   |
|--------|--------------------------|---------|----------|----------|
| R001 h | Power control 1          | 0100 h  | 0100 h   |          |
| R002 h | LCD Driving Wave Control | 0100 h  | 0100 h   |          |
| R003 h | Entry mode               | x030 h  | x030 h   | Note 6-7 |
| R008 h | Power control 2          | 0622 h  | 0622 h   |          |
| R009 h | Power control 3          | 0001 h  | 0001 h   |          |
| R00B h | Power control 4          | 0030 h  | 0030 h   |          |
| R00F h | Power control 5          | 0002 h  | 0002 h   |          |
| R010 h | Power control 6          | 0019 h  | 0019 h   |          |
| R011 h | Power control 7          | 0101 h  | 0101 h   |          |
| R012 h | Power control 8          | 0000 h  | 0000 h   |          |
| R013 h | Power control 9          | 0001 h  | 0001 h   |          |
| R100 h | Power control 10         | 0230 h  | 0130 h   |          |
| R101 h | Power control 11         | 0247 h  | 0247 h   |          |
| R103 h | Power control 12         | 1300 h  | 1300 h   |          |
| R210 h | Power control 13         | 0000 h  | 0000 h   |          |
| R211 h | Power control 14         | 00EF h  | 00EF h   |          |
| R212 h | Power control 15         | 0000 h  | 0000 h   |          |
| R213 h | Power control 16         | 018F h  | 018F h   |          |
| R300 h | Gamma control 1          | 010D h  | 010D h   |          |
| R301 h | Gamma control 2          | A805 h  | A805 h   |          |
| R302 h | Gamma control 3          | 0802 h  | 0802 h   |          |
| R303 h | Gamma control 4          | 011C h  | 011C h   |          |
| R304 h | Gamma control 5          | 0000 h  | 0000 h   |          |
| R305 h | Gamma control 6          | 0A10 h  | 0A10 h   |          |
| R306 h | Gamma control 7          | A805 h  | A805 h   |          |
| R307 h | Gamma control 8          | 0804 h  | 0804 h   |          |
| R308 h | Gamma control 9          | 010E h  | 010E h   |          |
| R309 h | Gamma control 10         | 0000 h  | 0000 h   |          |
| R400 h | Power control 17         | 6A08 h  | 6A08 h   |          |
| R401 h | Power control 18         | 0001 h  | 0001 h   |          |
| R404 h | Power control 19         | 0000 h  | 0000 h   |          |
| R200 h | Power control 20         | 0000 h  | 0000 h   |          |
| R201 h | Power control 21         | 0000 h  | 0000 h   |          |
| R102 h | Power control 23         | A1B0 h  | A1B0 h   |          |

Exit the Sleep mode

| Reg. # | Register                    | Data(Gamma 2.2) |        | Remark   |
|--------|-----------------------------|-----------------|--------|----------|
| R007 h | Power control 24            | 0100 h          | 0100 h | Note 6-9 |
| R00C h | Display interface control 5 | 0xx0 h          | 0xx0 h | Note 6-8 |
| R202 h | Power control 22            | -               | -      |          |

↓ Wait min.40 ms ↓ Back Light ON/Display ON



V<sub>CC</sub> ON (hold Pin No.7:RESB = "L")

Wait min. 0ms

V<sub>CCIO</sub> ON (hold Pin No.7:RESB = "L")

↓ Wait min. 1ms

Hard Reset (No.7:RESB "L" "H")

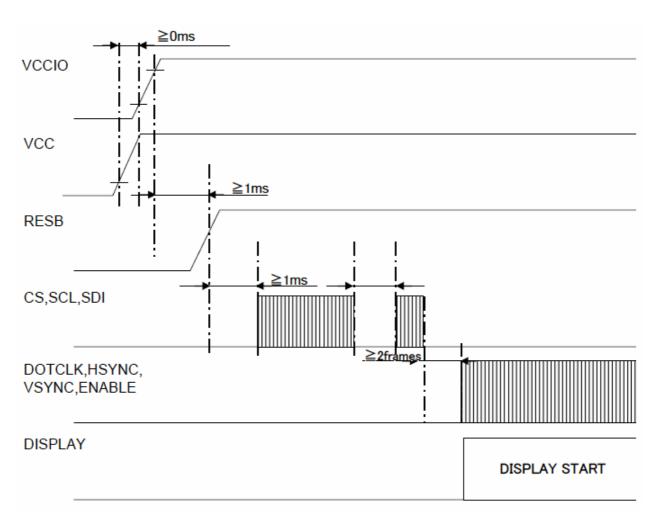
Wait min. 1ms

| Dog #  | Pogiator       | Da       | ata      | Remark |
|--------|----------------|----------|----------|--------|
| Reg. # | Register       | VCC=3.0V | VCC=2.8V | Remark |
| R000h  | Dummy Transfer | -        | -        |        |
| R000h  | Dummy Transfer | -        | -        |        |
| R000h  | Dummy Transfer | -        | ı        |        |
| R000h  | Dummy Transfer | -        | -        |        |

Instruction setting

| Reg. # | Register                 | Data(Ga | mma 2.2) | Remark   |
|--------|--------------------------|---------|----------|----------|
| R001 h | Power control 1          | 0100 h  | 0100 h   |          |
| R002 h | LCD Driving Wave Control | 0100 h  | 0100 h   |          |
| R003 h | Entry mode               | 1030 h  | 1030 h   | Note 6-7 |
| R008 h | Power control 2          | 0622 h  | 0622 h   |          |
| R009 h | Power control 3          | 0001 h  | 0001 h   |          |
| R00B h | Power control 4          | 0030 h  | 0030 h   |          |
| R00F h | Power control 5          | 0002 h  | 0002 h   |          |
| R014 h | Power control 6          | 0055 h  | 0055 h   |          |
| R020 h | Power control 7          | 0019 h  | 0019 h   |          |
| R021 h | Power control 8          | 0101 h  | 0101 h   |          |
| R022 h | Power control 9          | 0000 h  | 0000 h   |          |
| R023 h | Power control 10         | 0001 h  | 0001 h   |          |
| R100 h | Power control 11         | 0230 h  | 0130 h   |          |
| R101 h | Power control 12         | 0247 h  | 0247 h   |          |
| R103 h | Power control 13         | 1300 h  | 1300 h   |          |
| R210 h | Power control 14         | 0000 h  | 0000 h   |          |
| R211 h | Power control 15         | 00EF h  | 00EF h   |          |
| R212 h | Power control 16         | 0000 h  | 0000 h   |          |
| R213 h | Power control 17         | 018F h  | 018F h   |          |
| R300 h | Gamma control 1          | 010D h  | 010D h   |          |
| R301 h | Gamma control 2          | A805 h  | A805 h   |          |
| R302 h | Gamma control 3          | 0802 h  | 0802 h   |          |
| R303 h | Gamma control 4          | 011C h  | 011C h   |          |
| R304 h | Gamma control 5          | 0000 h  | 0000 h   |          |
| R305 h | Gamma control 6          | 0A10 h  | 0A10 h   |          |
| R306 h | Gamma control 7          | A805 h  | A805 h   |          |
| R307 h | Gamma control 8          | 0804 h  | 0804 h   |          |
| R308 h | Gamma control 9          | 010E h  | 010E h   |          |
| R309 h | Gamma control 10         | 0000 h  | 0000 h   |          |
| R400 h | Power control 18         | 6A08 h  | 6A08 h   |          |
| R401 h | Power control 19         | 0001 h  | 0001 h   |          |
| R404 h | Power control 20         | 0000 h  | 0000 h   |          |
| R200 h | Power control 21         | 0000 h  | 0000 h   |          |
| R201 h | Power control 22         | 0000 h  | 0000 h   |          |
| R102 h | Power control 24         | A1B0 h  | A1B0 h   |          |
| R206 h | Power control 25         | 0008 h  | 0008 h   |          |

Wait min.200ms

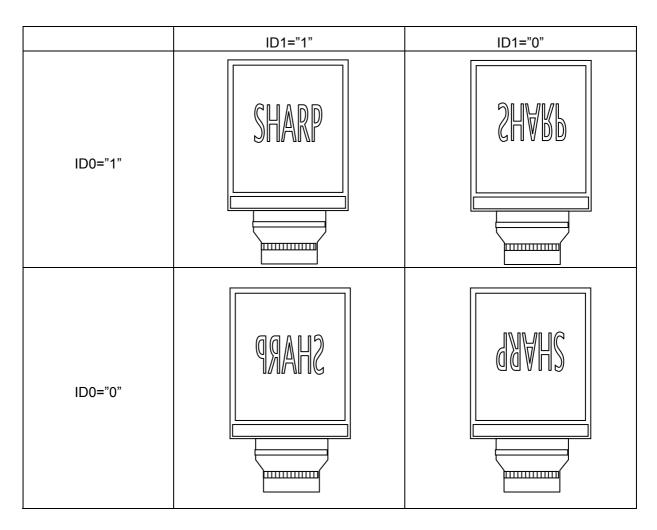

Display Data Start (DOTCLK, HSYNC, VSYNC)

 $\downarrow$ 

Exit the Sleep mode

| Reg. # | Register               | Data(Ga | mma 2.2) | Remark   |
|--------|------------------------|---------|----------|----------|
| R007 h | Power control 26       | 0100 h  | 0100 h   | Note 6-9 |
| R00C h | Display interface mode | 0110 h  | 0110 h   | Note 6-8 |
| R202 h | Power control 23       | _       | _        |          |

↓
Wait min.40 ms
↓
Back Light ON/Display ON




Note 6-7)

## Entry mode(R003h)

| W  | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |  |
|----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| W  | 1  | 0    | DFM  | 0    | 1    | 0    | 0    | 0   | 0   | 0   | 0   | ID1 | ID0 | 0   | 0   | 0   | 0   |  |
| PC | DR | 0    | 0    | 0    | 1    | 0    | 0    | 0   | 0   | 0   | 0   | 1   | 1   | 0   | 0   | 0   | 0   |  |

ID: Selects the output shift direction of the source driver and gate driver The ID0 bit sets in horizontal direction. The ID1 bit sets in vertical direction.



DFM: When it is used by system interface mode, 18 bits or 16 bits modes are selected. When DFM="0", 18bits modes. When DFM="1", 16bits mode.

## Note 6-8)

## Display interface mode(R00Ch)

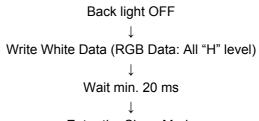
| W  | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W  | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | RM  | 0   | 0   | DM1 | DM0 | 0   | 0   | 0   | 0   |
| PC | )R | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

RM: Selects the interface for RAM access operation.

When RM="0", system interface.

When RM="1", RGB interface mode.

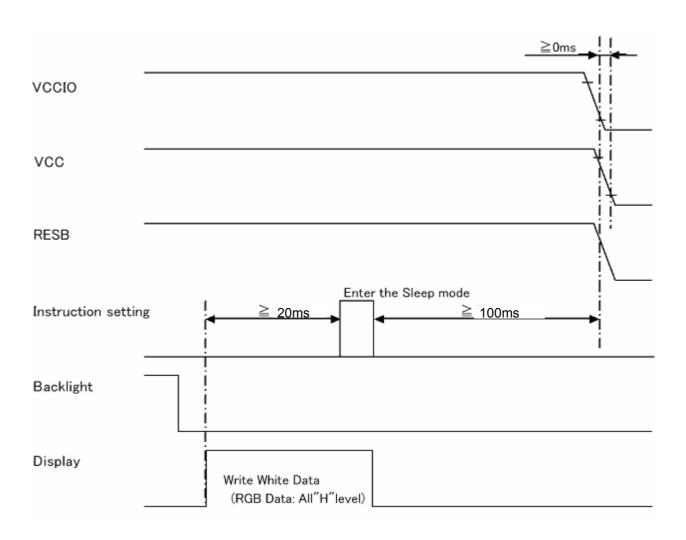
DM: The DM[1:0] setting allows switching between internal clock operation mode and external display interface operation mode.


| DM1 | DM0 | Display interface mode        |
|-----|-----|-------------------------------|
| 0   | 0   | 18 or 16bits system interface |
| 0   | 1   | RGB interface                 |
| 1   | 0   | VSYNC interface               |
| 1   | 1   | Setting inhibited             |

## Note 6-9)

## Sleep mode

| W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8  | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|---|----|------|------|------|------|------|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
| W | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | Disp | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| P | OR | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

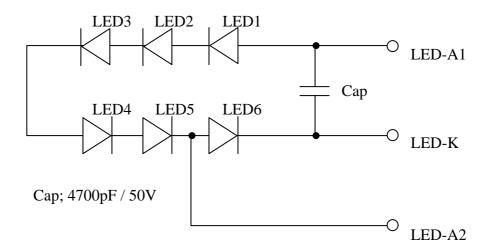

When Disp = "1", operation mode. When Disp = "0", sleep mode.



# Enter the Sleep Mode

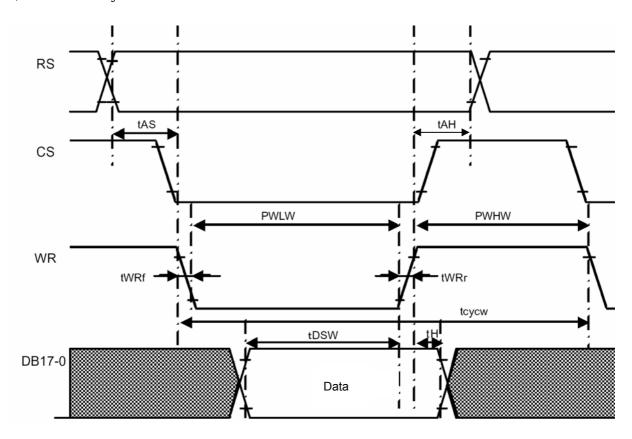
| Reg. # | Register         | Data   | Remark |
|--------|------------------|--------|--------|
| R007h  | Power control 24 | 0000 h |        |
| R102 h | Power control 23 | A180 h |        |

Vait min. 100 ms
↓
V<sub>CCIO</sub> / V<sub>CI</sub> OFF




# 6-4. Backlight driving

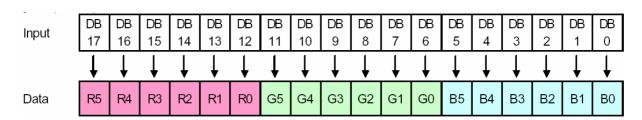
The back light system has 6 pieces LED


| Parameter           | Symbol              | Min. | Тур. | Max. | Unit | Remark                       |
|---------------------|---------------------|------|------|------|------|------------------------------|
| Rated Voltage 1     | $V_{BL	ext{-}full}$ | -    | 19.2 | 21   | V    | Power supply for LED of full |
| Rated Voltage 2     | V <sub>BL-1pc</sub> | -    | 3.2  | 3.5  | V    | Power supply for LED of 1pc  |
| Rated Current       | ΙL                  | -    | 20   | -    | mA   | Ta=25°C                      |
| Power consumption 1 | <b>W</b> L-full     | -    | 384  | -    | mW   | Power supply for LED of full |
| Power consumption 2 | WL-1pc              | -    | 64   | -    | mW   | Power supply for LED of 1pc  |

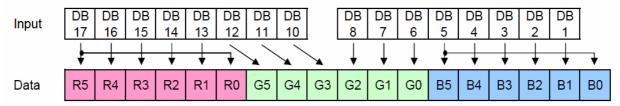
# [LED-FPC circuit]



# 7. Timing characteristics of input signals


# 7-1) 18 or 16bits system interface or VSYNC interface mode




| Parameter              | Symbol                                  | Min. | Тур. | Max. | Unit | Remark |
|------------------------|-----------------------------------------|------|------|------|------|--------|
| Bus cycle time         | tcycw                                   | 75   | -    | -    | ns   |        |
| Low-level pulse width  | PWLW                                    | 30   | -    | -    | ns   |        |
| High-level pulse width | PW <sub>HW</sub>                        | 25   | -    | -    | ns   |        |
| Rise/Fall time         | tw <sub>Rf</sub> /<br>tw <sub>R</sub> r | -    | -    | 15   | ns   |        |
| Setup time             | tas                                     | 0    | -    | -    | ns   |        |
| Address hold time      | tан                                     | 2    | -    | -    | ns   |        |
| Data setup time        | tosw                                    | 25   | -    | -    | ns   |        |
| Data hold time         | tн                                      | 10   | -    | -    | ns   |        |

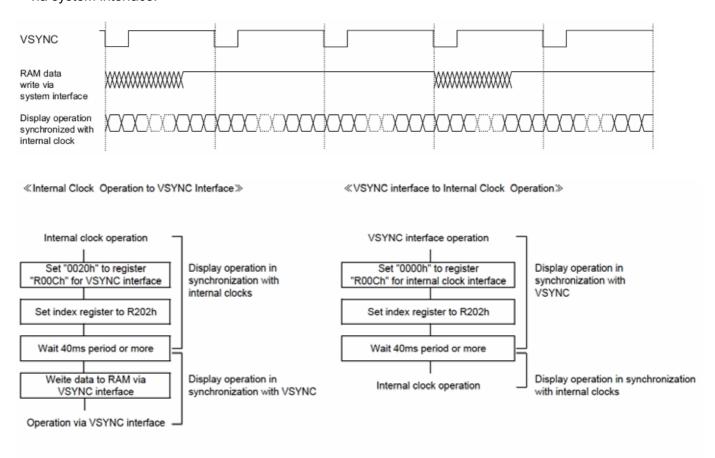
#### 1) Data write

#### a) 18bit mode



#### b) 16bit mode

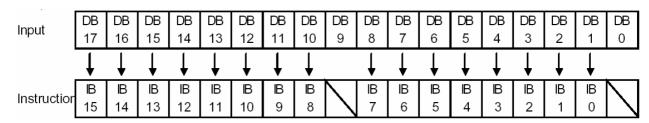



#### 2) Moving picture data transfers via VSYNC interface

#### VSYNC interface mode:

※Input the VSYNC interface signals before setting

the register "R00Ch" to the VSYNC interface operation.

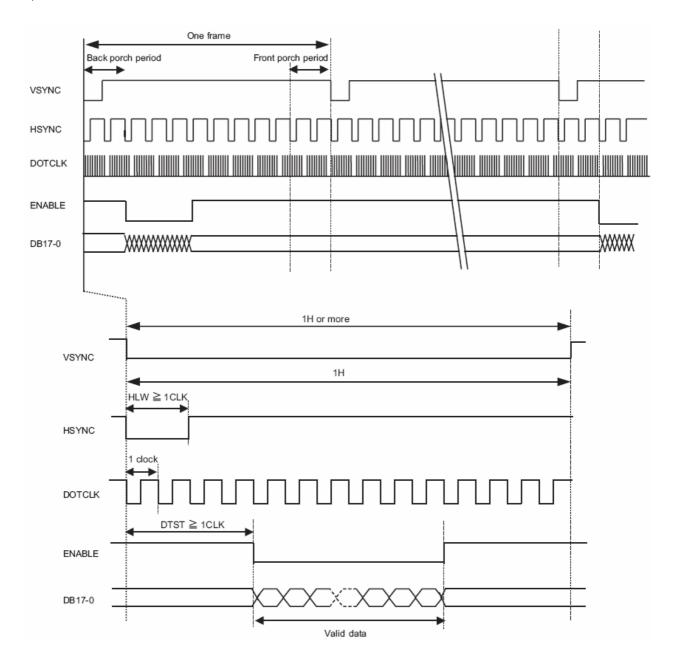

The internal display operation is synchronized with the frame synchronous signal (VSYNC) in this mode. The VSYNC interface is selected by setting Register#.R00Ch. In VSYNC interface operation, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM at faster than the calculated minimum speed (internal display operation speed + margin), it becomes possible to rewrite the moving picture data without flickering the display and display a moving picture via system interface.

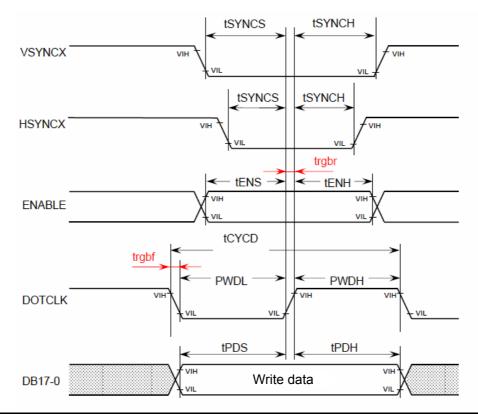


※ Continue VSYNC interface signals at least for one frame period


after setting the register "R00Ch" to internal clock operation.

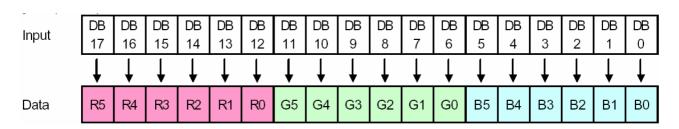
## 3) Instruction write

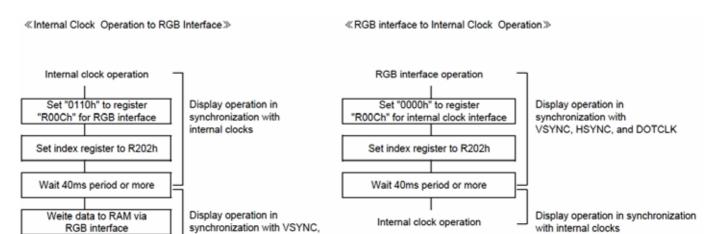




Unused DB pins must be fixed at "VCCIO" or "GND".

The example transmit "1030h" to register R003h.




# 7-2) RGB interface mode



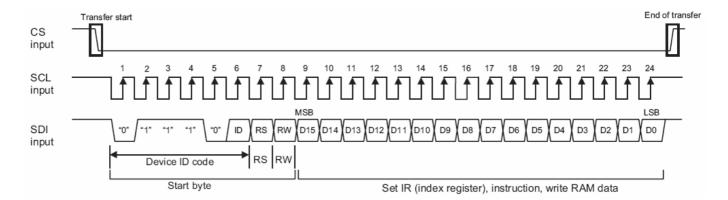


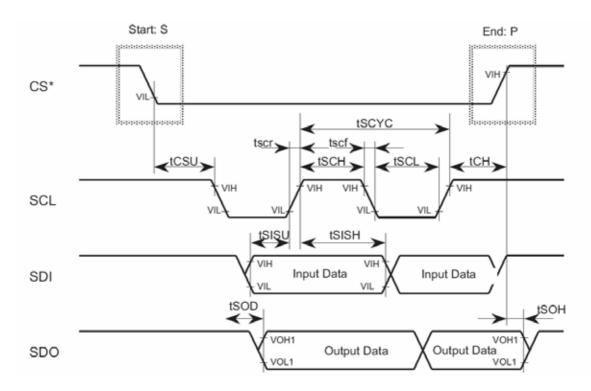

| Parameter                           | Symbol       | Min. | Тур. | Max. | Unit | Remark |
|-------------------------------------|--------------|------|------|------|------|--------|
| VSYNCX/HSYNCX setup time            | tSYNCS       | 30   | -    | -    | ns   |        |
| VSYNC/HSYNC hold time               | tSYNCH       | 30   | -    | -    | ns   |        |
| ENABLE setup time                   | tENS         | 30   | -    | -    | ns   |        |
| ENABLE hold time                    | tENH         | 30   | -    | -    | ns   |        |
| DOTCLK low-level pulse width        | PWDL         | 40   | -    | -    | ns   |        |
| DOTCLK high –level pulse width      | PWDH         | 40   | -    | -    | ns   |        |
| DOTCLK cycle time                   | tCYCD        | 100  | -    | -    | ns   |        |
| Data setup time                     | tPDS         | 40   | -    | -    | ns   |        |
| Data hold time                      | tPDH         | 40   | -    | -    | ns   |        |
| DOTCLK,VSYNCX,HSYNCX rise/fall time | trgbr, trgbf | -    | -    | 15   | ns   |        |

#### 1) Data write



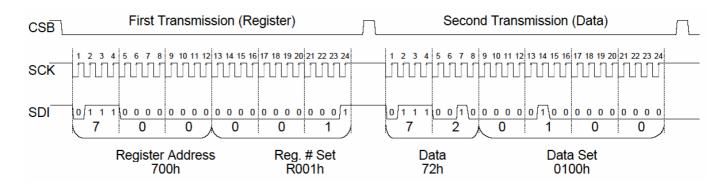



※Input the RGB interface signals before setting the register "R00Ch" to the RGB interface operation.

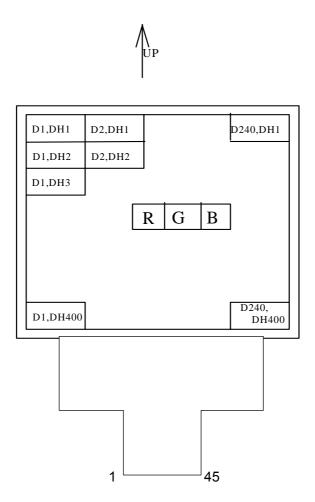

Operation via RGB interface

HSYNC, and DOTCLK

Continue RGB interface signals at least for one frame period
 after setting the register "R00Ch" to internal clock operation.


## 2) Instruction write






| Parameter                     | Symbol    | Min. | Тур. | Max. | Unit | Remark |
|-------------------------------|-----------|------|------|------|------|--------|
| Serial clock cycle time       | Tscyc     | 100  | -    | -    | ns   |        |
| Serial clock high-level width | Тѕсн      | 40   | -    | -    | ns   |        |
| Serial clock low-level width  | tscL      | 40   | -    | -    | ns   |        |
| Serial clock rise/fall time   | Tscr,tscf | -    | -    | 15   | ns   |        |
| Chip select setup time        | Tcsu      | 20   | -    | -    | ns   |        |
| Chip select hold time         | tсн       | 60   | -    | -    | ns   |        |
| Serial input data setup time  | tsısu     | 30   | -    | -    | ns   |        |
| Serial input data hold time   | tsıн      | 30   | -    | -    | ns   |        |
| Serial output data delay time | tsoD      | -    | -    | 130  | ns   |        |
| Serial output data hold time  | tsон      | 0    | -    | -    | ns   |        |

The example transmit "0100h" to register "R001h".



# 7-1. Input Data Signals and Display Position on the screen

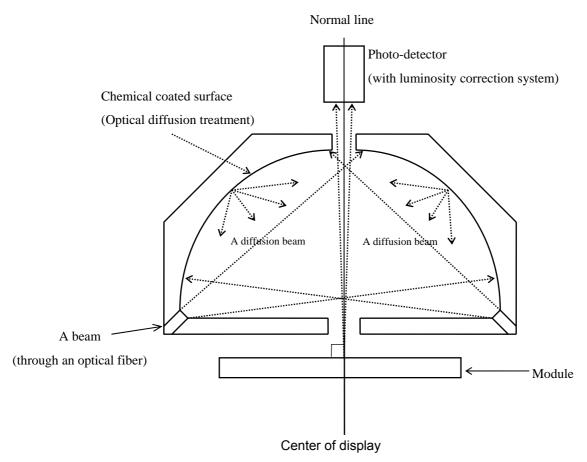


8. Input Signals, Basic Colors and Gray Scale of Each Color

| 0. 11              | Colors & | als, Basic Colors and Gray Scale of Each Color  Date signal |              |    |    |     |    |          |          |    |      |          |          |       |     |       |                |     |        |     |
|--------------------|----------|-------------------------------------------------------------|--------------|----|----|-----|----|----------|----------|----|------|----------|----------|-------|-----|-------|----------------|-----|--------|-----|
|                    |          | 0                                                           | D.C          | D. | DC | D.C | D. | D.5      |          |    |      |          | 0:       | 05    | D.C | D.f   | D.C.           | D.C | Г.     | D.5 |
|                    | Gray     | Gray                                                        | R0           | R1 | R2 | R3  | R4 | R5       | G0       | G1 | G2   | G3       | G4       | G5    | B0  | B1    | B2             | В3  | B4     | B5  |
|                    | Scale    | Scale                                                       | LSB          |    |    |     |    | MSB      | LSB      |    | Ī    | Ī        | l        | MSB   | LSB | Ī     | 1              | ı   |        | MSB |
|                    | Black    | -                                                           | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| Ва                 | Blue     | -                                                           | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 1   | 1     | 1              | 1   | 1      | 1   |
|                    | Green    | -                                                           | 0            | 0  | 0  | 0   | 0  | 0        | 1        | 1  | 1    | 1        | 1        | 1     | 0   | 0     | 0              | 0   | 0      | 0   |
| sic (              | Cyan     | -                                                           | 0            | 0  | 0  | 0   | 0  | 0        | 1        | 1  | 1    | 1        | 1        | 1     | 1   | 1     | 1              | 1   | 1      | 1   |
| Basic Color        | Red      | -                                                           | 1            | 1  | 1  | 1   | 1  | 1        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| ٦                  | Magenta  | -                                                           | 1            | 1  | 1  | 1   | 1  | 1        | 0        | 0  | 0    | 0        | 0        | 0     | 1   | 1     | 1              | 1   | 1      | 1   |
|                    | Yellow   | -                                                           | 1            | 1  | 1  | 1   | 1  | 1        | 1        | 1  | 1    | 1        | 1        | 1     | 0   | 0     | 0              | 0   | 0      | 0   |
|                    | White    | -                                                           | 1            | 1  | 1  | 1   | 1  | 1        | 1        | 1  | 1    | 1        | 1        | 1     | 1   | 1     | 1              | 1   | 1      | 1   |
|                    | Black    | GS0                                                         | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| 9                  | 仓        | GS1                                                         | 1            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| Gray Scale of Red  | Darker   | GS2                                                         | 0            | 1  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| Scal               | 仓        | <b>V</b>                                                    |              |    | 1  | l   |    |          |          |    | `    | L        |          |       |     |       | `              | V   |        |     |
| le of              | Û        | $\downarrow$                                                | $\downarrow$ |    |    |     |    | ↓        |          |    |      | <b>V</b> |          |       |     |       |                |     |        |     |
| Rec                | Brighter | GS61                                                        | 1            | 0  | 1  | 1   | 1  | 1        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| ٦                  | Û        | GS62                                                        | 0            | 1  | 1  | 1   | 1  | 1        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
|                    | Red      | GS63                                                        | 1            | 1  | 1  | 1   | 1  | 1        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
|                    | Black    | GS0                                                         | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| Ð                  | Û        | GS1                                                         | 0            | 0  | 0  | 0   | 0  | 0        | 1        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| Gray Sc            | Darker   | GS2                                                         | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 1  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
| Scal               | 仓        | <b>+</b>                                                    |              |    | 7  | l   |    |          |          |    | `    | L        |          |       |     |       | ,              | V   |        |     |
| e of               | Û        | <b>\</b>                                                    |              |    | 1  | l   |    |          |          |    | `    | L        |          |       |     |       | ,              | V   |        |     |
| ale of Green       | Brighter | GS61                                                        | 0            | 0  | 0  | 0   | 0  | 0        | 1        | 0  | 1    | 1        | 1        | 1     | 0   | 0     | 0              | 0   | 0      | 0   |
| en                 | Û        | GS62                                                        | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 1  | 1    | 1        | 1        | 1     | 0   | 0     | 0              | 0   | 0      | 0   |
|                    | Green    | GS63                                                        | 0            | 0  | 0  | 0   | 0  | 0        | 1        | 1  | 1    | 1        | 1        | 1     | 0   | 0     | 0              | 0   | 0      | 0   |
|                    | Black    | GS0                                                         | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 0     | 0              | 0   | 0      | 0   |
|                    | Û        | GS1                                                         | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 1   | 0     | 0              | 0   | 0      | 0   |
| Gray Scale of Blue | Darker   | GS2                                                         | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 1     | 0              | 0   | 0      | 0   |
| Sca                | 仓        | <b>\</b>                                                    | <b>→</b>     |    |    |     |    | <b>V</b> |          |    |      | <b>V</b> |          |       |     |       |                |     |        |     |
| le o               | Û        | <b>V</b>                                                    |              |    | 1  | ı   |    |          | <b>V</b> |    |      |          | <b>\</b> |       |     |       |                |     |        |     |
| f Blu              | Brighter | GS61                                                        | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 1   | 0     | 1              | 1   | 1      | 1   |
| ie                 | Ţ        | GS62                                                        | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 0   | 1     | 1              | 1   | 1      | 1   |
|                    | Blue     | GS63                                                        | 0            | 0  | 0  | 0   | 0  | 0        | 0        | 0  | 0    | 0        | 0        | 0     | 1   | 1     | 1              | 1   | 1      | 1   |
|                    |          |                                                             |              |    |    |     |    |          |          |    | Λ. Ι | 044      | evel     | volta |     | 4. 11 | l<br>Saula III |     | - 11 - |     |

0: Low level voltage, 1: High level voltage

## 9. Optical Characteristics


# 9-1)Not driving the Back light condition

| la= | =25  | Vccio= | =+1. | .8V, | Vcc=3 | .0V |
|-----|------|--------|------|------|-------|-----|
| 101 | 1.1. | ~ : t  | D G  | rl   |       |     |

| Parameter          |       | Symbol | Condition | Min  | Тур  | Max  | Unit   | Remarks        |
|--------------------|-------|--------|-----------|------|------|------|--------|----------------|
| Viewing an         | ngle  | θ21,22 |           | 50   | 80   | -    | degree | 【Note 9-1,5】   |
| Range              | Range |        | CR≥2      | 50   | 80   | -    | degree |                |
|                    |       |        |           | 50   | 80   | -    | degree |                |
| Contrast ratio     |       | CRmax  | θ =0°     | 7    | 15   | -    | -      | 【Note 9-2,4,5】 |
| Response           | Rise  | τr     |           | -    | 30   | 50   | ms     | 【Note 9-3】     |
| Time               | Fall  | τd     | 000       | -    | 30   | 50   | ms     |                |
| White chromaticity |       | Х      | θ =0°     | 0.26 | 0.31 | 0.36 | -      | 【Note 9-4,5】   |
|                    |       | Y      |           | 0.29 | 0.34 | 0.39 | -      |                |
| Reflection ratio   |       | R      | θ =0°     | 7    | 10   | -    | %      | 【Note 9-6,7】   |

<sup>\*</sup> The measuring method of the optical characteristics is shown by the following figure.

<sup>\*</sup> A measurement device is luminance meter Conoscope.(With the diffusion reflection unit.)



Measuring method (a) for optical characteristics

| Ta=25 | 1/2010 | 1 0\    | / \/  | -2 ∩  | ١, |
|-------|--------|---------|-------|-------|----|
| 12=25 | V CCIO | =+   8\ | / Vcc | =.3 U | w  |

|                    |           |        |                       |      |      |      |       | - ,                    |
|--------------------|-----------|--------|-----------------------|------|------|------|-------|------------------------|
| Paran              | neter     | Symbol | Condition             | Min. | Тур. | Max. | Unit  | Remark                 |
| Viewing            | Horizonta | Θ21    |                       | 45   | 60   | -    | deg.  |                        |
| angle<br>range     | I         | Θ22    | OD: 0                 | 40   | 50   | ı    | deg.  | [Nata 0 4 5]           |
| (Without           | Vertical  | Θ11    | CR≥2                  | 50   | 65   | ı    | deg.  | [Note9-1,5]            |
| Wide View)         | Vertical  | Θ12    |                       | 40   | 50   | ı    | deg.  |                        |
| Contras            | st ratio  | CR     | Optimum viewing angle | 60   | 100  | ı    | -     | [Note9-2,5]            |
| Response           | Rise      | Tr     | 0.00                  | -    | 30   | 50   | ms    | [Nata 0 0 5]           |
| Time               | Decay     | Td     | θ=0°                  | -    | 30   | 50   | ms    | [Note9-3,5]            |
| Chroma             | ticity of | Х      |                       | 0.26 | 0.31 | 0.36 | -     | DI. 1. 0 El            |
| Wh                 | ite       | Y      |                       | 0.29 | 0.34 | 0.39 | -     | [Note9-5]              |
| Luminance of white |           | L      |                       | 100  | 150  | -    | cd/m² | ILED=20mA<br>[Note9-5] |

<sup>\*</sup> The optical characteristics measurements are operated under a stable luminescence (ILED = 20mA) and a dark condition. (Refer to Fig.9-1, 9-2)

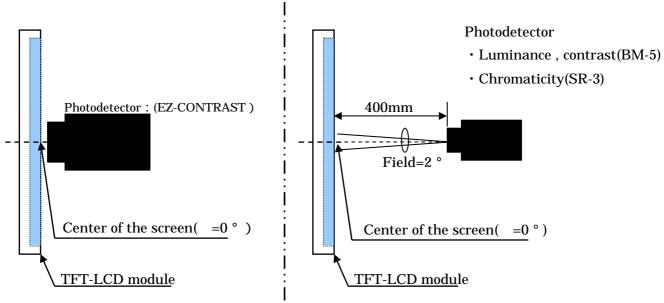
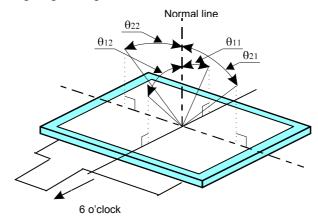



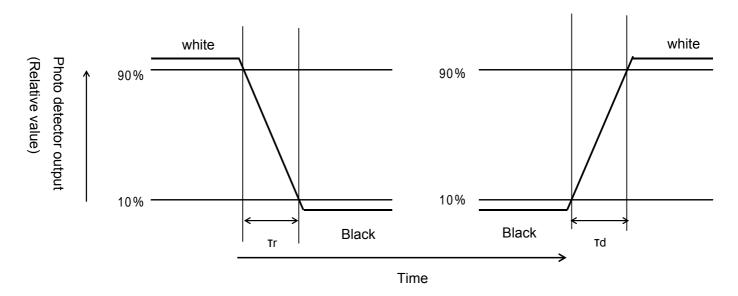

Fig.9-1 Viewing angle range/Response time

measurement method

Fig9-2 Luminance/Contrast/Chromaticity measurement method

## [Note9-1] Definitions of viewing angle range




## [Note9-2] Definition of contrast ratio

The contrast ratio is defined as the following

Contrast ratio (CR) = Luminance (brightness) with all pixels white Luminance (brightness) with all pixels black

#### [Note9-3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white"



[Note9-4] A measurement device is Minolta CM-2002

[Note9-5] This shall be measured at center of the screen.

[Note9-6]Definition of reflection ratio

Reflection ratio = Light detected level of the reflection by the LCD module

Light detected level of the reflection by the standard white board

[Note 9-7]A measurement device is Minolta CM-2002.

#### 10. Handling of modules

- 10-1. Inserting the FPC into its connector and pulling it out.
  - 1) Be sure to turn off the power supply and the signals when inserting or disconnecting the cable.
  - 2) Please insert for too much stress not to join FPC in the case of insertion of FPC.

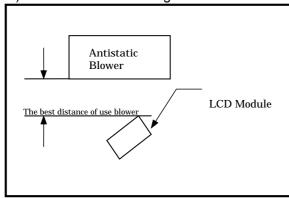
#### 10-2. About handling of FPC

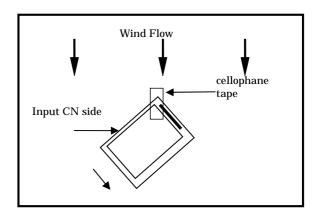
- 1) The bending radius of the FPC should be more than R0.6 mm, and it should be bent evenly.
- 2) Do not dangle the LCD module by holding the FPC, or do not give any stress to it.

#### 10-3. Mounting of the module

- 1) The module should be held on to the plain surface. Do not give any warping or twisting stress to the module.
- 2) Please consider that GND can ground a modular metal portion etc. so that static electricity is not charged to a module.

#### 10-4. Cautions in assembly / Handling pre cautions.


As the polarizer can be easily scratched, be most careful in handling it.


1) Work Environment

Since removing laminator may causes electrostatic charge that tends to attract dust, the following work environment would be desired.

- a) Floor: Conductive treatment having  $1M\Omega$  resistance onto floor's tile
- b) The room free from dust coming from outdoor environment, and put an adhesive mat at entrances.
- c) Humidity from 50% to 70% and temperature from 15°C to 27°C are desirable.
- d) Worker should ware conductive shoes, conductive fatigue, conductive glove and earth wrist band.

#### 2) Instruction for working





- a) Wind direction of an antistatic blower should slightly downward to properly blow the module.
   The distance between the blower and the module should
   be the best distance of use blower. Also, pay attention to the direction of the module.
- b) To prevent polarizer from scratching, adhesive tape (cellophane tape) should be stuck at the part of laminator sheet, which is closed to blower. [See the above]
- c) Pull slowly adhesive tape to peel the laminator off, with spending more than 5 second.
- d) The module without laminator should be moved to the next process to prevent

adhesion of dust.

e) How to eliminate dust on polarizer.

Blow dust away by N<sub>2</sub> blower having measures of electrostatics

Since the front polarizer is easily damaged, wiping dust off is not adequate.

If the polarizer is soiled, it is suggested to peel dust off by using adhesive surface of adhesive tape.

- 3) How the remove dust on the polarizer
  - a) Blow out dust by the use of an N2 blower with antistatic measures taken. Use of an ionized air Gun is recommendable.
  - b) When the panel surface is soiled, wipe it with soft cloth.
- 4) In the case of the module's metal part (shield case) is stained, wipe it with a piece of dry, soft cloth. If rather difficult, give a breath on the metal part to clean better.
- 5) If water dropped, etc. remains stuck on the polarizer for a long time, it is apt to get discolored or cause stains. Wipe it immediately.
- 6) As a glass substrate is used for the TFT-LCD panel, if it is dropped on the floor or hit by something hard, it may be broken or chipped off.
- 7) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.

#### 10-5. Others

1) Regarding storage of LCD modules, avoid storing them at direct sunlight-situation.

You are requested to store under the following conditions:

(Environmental conditions of temperature/humidity for storage)

- a) Temperature: 0 to 40°C
- b) Relative humidity: 95% or less
- As average values of environments (temperature and humidity) for storing, use the following control guidelines:

Summer season: 20 to 35°C, 85% or less Winter season: 5 to 15°C, 85% or less

- If stored under the conditions of 40°C and 95% RH, cumulative time of storage must be less than 240 hours.
- 2) If stored at temperatures below the rated values, the inner liquid crystal may freeze, causing cell destruction. At temperatures exceeding the rated values for storage, the liquid crystal may become isotropic liquid, making it no longer possible to come back to its original state in some cases.
- 3) If the LCD is broken, do not drink liquid crystal in the mouth. If the liquid crystal adheres to a hand or foot or to clothes, immediately cleanse it with soap.
- 4) If a water drop or dust adheres to the polarizer, it is apt to cause deterioration. Wipe it immediately.
- 5) Be sure to observe other caution items for ordinary electronic parts and components.
- 6) Don't use or store the module in corrosive gas environment.
- 7) When the liquid crystal display is seen wearing a polarizing sunglasses, It darkens and distort by the angle.

11. Reliability test items

| No. | Test item                       | Conditions                                                                    |
|-----|---------------------------------|-------------------------------------------------------------------------------|
| 1   | High temperature storage test   | Ta = 80°C 240h                                                                |
| 2   | Low temperature storage test    | Ta = -30°C 240h                                                               |
| 3   | High temperature                | Ta = 40°C ; 95%RH 240h                                                        |
|     | & high humidity operation test  | *No condensation                                                              |
| 4   | High temperature operation test | Tp = 70°C 240h                                                                |
| 5   | Low temperature operation test  | Ta = -10°C 240h                                                               |
| 6   | Thermal shock test              | Ta=-10°C to 70°C /10 cycles                                                   |
| 0   | memiai shock test               | (30 min) (30min)                                                              |
|     | Electro static discharge test   | ± 200V/200pF(0Ω) to Terminals(Contact)                                        |
| 7   | Electio static discharge test   | *1 time for each terminals                                                    |
|     |                                 | Frequency range: 10Hz ~ 55Hz                                                  |
| 8   | Vibration test                  | Stroke: 1.5 mm Sweep: 10Hz ~ 55Hz                                             |
|     |                                 | X,Y,Z 2 hours for each direction (total 6 hours) (JIS C0040,A-10 Condition A) |
|     |                                 | 980 m/s <sup>2</sup> , 6 ms                                                   |
| 9   | Shock test                      | ±X,±Y,±Z 3 times for each direction                                           |
|     |                                 | (JIS C0041, A-7 Condition C)                                                  |

<sup>\*</sup>Note Ta = Ambient temperature, Tp = Panel temperature

# [Check items]

Test No.1 to No.7

In the standard condition, there shall be no practical problems that may affect the display function.

# 12. Display Grade

The standard regarding the grade of color LCD displaying modules should be based on the delivery inspection standard.

#### 13. Delivery Form

13-1. Carton storage conditions

1) Carton piling-up: Max 8 rows

2) Environments

Temperature: 0 ~ 40°C

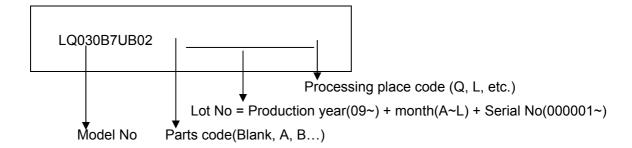
Humidity: 65% RH or less (at 40°C)

There should be no dew condensation even at a low temperature and high humidity.

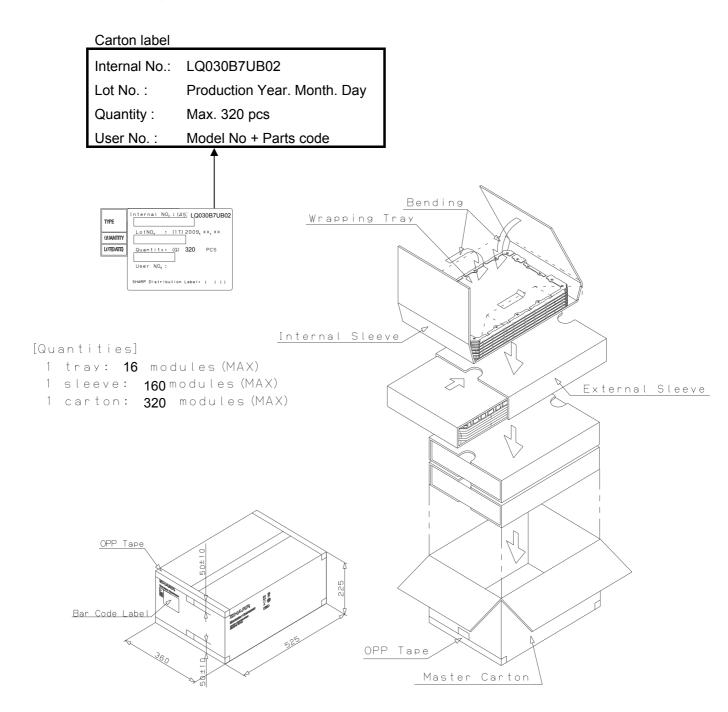
Period: Approximately 3 month

3) Packing form: As shown in Figure.

\*Cartons are weak against damp, and they are apt to be smashed easily due to the compressive pressure applied when piled up. The above environmental conditions of temperature and humidity are set in consideration of reasonable pile-up for storage.


#### 13-2. Packing composition

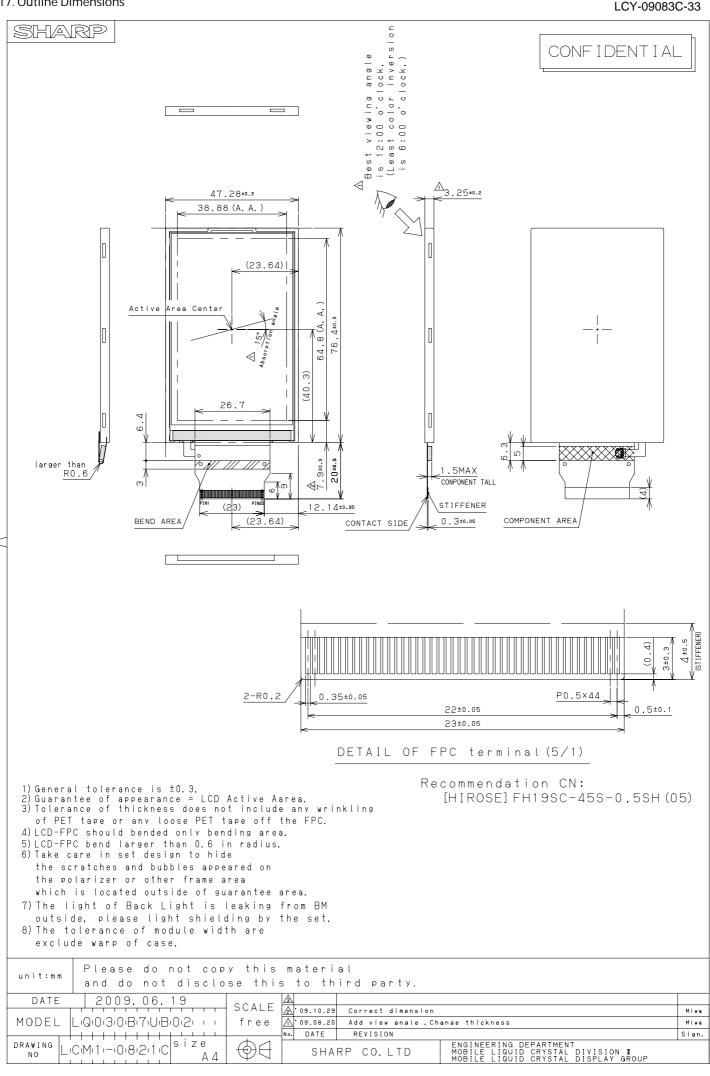
| Name                           | quantity | Note                                               |
|--------------------------------|----------|----------------------------------------------------|
| Carton size                    | 1        | 525×360×225 (mm)                                   |
| Tray                           | 22       | Material: Electrification prevention polypropylene |
| (The number of Module)         | 320      | 16 unit/tray: 320 unit/carton                      |
| Electrification prevention bag | 2        | Material: Electrification prevention polyethylene  |


Carton weight (320 modules): Approx. 13.0 kg

#### 14. Lot No. marking

The lot No. will be indicated on individual inkjet. The location is as shown




#### 15. LCD module packing carton



#### 16. Others

- 1) Disassembling the module can cause permanent damage and you should be strictly avoided.
- 2) Please be careful that you don't keep the screen displayed fixed pattern image for a long time, since retention may occur.
- 3) If you pressed down a liquid crystal display screen with your finger and so on, the alignment disorder of liquid crystal will occur. And then It will become display fault.
  - Therefore, be careful not to touch the screen directly, and to consider not stressing to it.
- 4) If any problem arises regarding the items mentioned in this specification sheet or otherwise, it should be discussed and settled mutually in a good faith for remedy and/or improvement.

17. Outline Dimensions



# **LCD** Specification

#### **LCD Group**



#### NORTH AMERICA

Sharp Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 www.sharpsma.com

#### **TAIWAN**

Sharp Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

#### CHINA

Sharp Microelectronics of China (Shanghai) Co., Ltd.
28 Xin Jin Oiao Road King Tower 16F
Pudong Shanghai, 201206 P.R. China
Phone: (86) 21-5854-7710/21-5834-6056
Fax: (86) 21-5854-4340/21-5834-6057
Head Office:
No. 360, Bashen Road,

Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China

Email: smc@china.global.sharp.co.jp

#### **EUROPE**

Sharp Microelectronics Europe
Division of Sharp Electronics (Europe) GmbH
Sonninstrasse 3
20097 Hamburg, Germany
Phone: (49) 40-2376-2286
Fax: (49) 40-2376-2232

#### SINGAPORE

www.sharpsme.com

Sharp Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

#### **KOREA**

Sharp Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819

#### JAPAN

Sharp Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301

# www.sharp-world.com

Sharp-Roxy (Hong Kong) Ltd.
Level 26, Tower 1, Kowloon Commerce Centre,
No. 51, Kwai Cheong Road, Kwai Chung,
New Territories, Hong Kong
Phone: (852) 28229311
Fax: (852) 28660779
www.sharp.com.hk
Shenzhen Representative Office:
Room 602-603, 6/F,
International Chamber of Commerce Tower,
168 Fuhua Rd. 3, CBD,
Futian District, Shenzhen 518048,
Guangdong, P.R. China
Phone: (86) 755-88313505
Fax: (86) 755-88313515

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
Suggested applications (if any) are for standard use; See Important Restrictions for

limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or responsible in any way, for any incidental or consequential economic or property damage.