

LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION SPECIFICATION

 SPEC No.
 LCY – 10059

 FILE No.
 ISSUE:
 27, Apr, 2011

 PAGE :
 30Pages

 APPLICABLE GROUP
 Display Device Business Group

DEVICE SPECIFICATION FOR

TFT-LCD module

MODEL No. LQ065Y9RA01

CUSTOMER'S APPROVAL

PRESENTED

BY Bon Maple, Shings Shingela

T.MAKII Division Deputy General Manager Development Department II Liquid Crystal Display Division II Display Device Business Group SHARP CORPORATION

DATE

<u>BY</u>

RECORDS OF REVISION

	LQ065Y9RA01		DACE		ΝΟΤΓ
SPEC No.	Date	NO.	PAGE	SUMMARY	NOTE
LCY-10059	2011. 4. 27		-	-	1 st Issue

TFT-LCD MODULE

LQ065Y9RA01

DEVICE SPECIFICATION

CONTENTS

(1)	Summary	р3
(2)	Features	р3
(3)	Structure and module dimensions	р3
(4)	Mechanical specifications	р3
(5)	I/O terminal name and functions	p4
(6)	Absolute maximum ratings	P7
(7)	Electrical characteristics	P8
(8)	Input signals, basic display color and gray scale of each color	P15
(9)	Optical characteristics	P17
(10)	Mechanical characteristics	p21
(11)	Display quality	p22
(12)	Handling instruction of TFT-LCD module	p22
(13)	Packing form	P24
(14)	Other	p25
(15)	Reliability test contents	p26
Fig.1	Outline dimensions	p27
Fig.2	Structure of TFT-LCD module	p28
Fig.3	Packing form	p29
Appendix	Adjusting method of optimum DC bias voltage of common	p30
	electrode driving signal	

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs , such as:

Car Navigation system
 Automotive auxiliary information display
 Automotive audio visual equipment

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e.,aircraft,trains,automobiles,etc.)
- Traffic signals
 Gas leakage sensor breakers
 Alarm equipment
 Various safety devices
 etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

Military and space applications
 Nuclear power control equipment
 Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

(1) Summary

This TFT-LCD module is a color active matrix LCD module incorporating amorphous silicon TFT. An outline of the module is given in Table 4-1.

(2) Features

•SHARP SM-LCD panel and LED Backlight is adopted in this module.

- •6bit RSDS™ *(Reduced Swing Differential Signaling) interface is adopted in this module.
- ·Utilizes a panel with a 16:9 aspect ratio, which makes the module suitable for use in wide-screen systems.
- The 6.5 screen produces a high resolution image that is composed of 384,000 pixels elements in a stripe arrangement.
- •Graphics and texts can be displayed on a 800×3×480 dots panel with 262,144 colors by supplying 18 bit data signals(6 bit/color).
- •This module features both transmissive and reflective display technology.
- ·Wide viewing field angle technology is employed.(The most suitable viewing angle is in the All directions.)
- ·Viewing angle control technology is employed.
- •By adopting an active matrix drive, a picture with high contrast is realized.
- •Reduced reflection as a result of low reflection black matrix and an AG(antiglare)AR(antireflection) top polarizer.
- •By COG method, realized a slim, lightweight, and compact module.
- •Transparent intensity is raised by adoption of the rate LCD panel of a high aperture, a high transparently color filter, and a high transparently polarizing plate.
- •An inverted video display in the vertical and horizontal directions is possible.
- * RSDSTM is a trademark of National Semiconductor Corporation.

(3) Structure and Outline dimensions

Outline dimensions of the module are given in Fig.1.

Structure of the TFT-LCD module is given in Fig.2.

This TFT-LCD module is composed of the color TFT-LCD panel, driver ICs, FPC, frame, shielding front case, shielding back case and LED backlight unit.(LED circuit to drive the backlight is not built into this module.)

(4) Mechanical specifications

Table4-1

Parameter	Specifications	Units	Remarks
Screen size (Diagonal)	16.4 [6.5″]	cm	
Active area	143.4(W) × 79.32(H)	mm	
Display format	800 × RGB(W) × 480(H)	dots	
Dot pitch	0.05975(W) × 0.16525(H)	mm	
Pixel configuration	R,G,B Stripe configuration		
Display mode	Normally black		
Outline dimension	161.8(W) × 94.7(H) × 11.5(D)	mm	[Note4-1]
Mass	Max 215	g	

[Note4-1] Typical values are shown.

For detailed measurements and tolerances, please refer to Fig.1. (Projection portions, Backlight harness, FPC are excepted.)

(5) I/O terminal name and functions

5-1) TFT-LCD panel driving part

Table5-1

Tables-1			Recommended connector	. 3027 30 00 31 (1000
Pin No.	Symbol	i/o	Description	Remarks
1	CS	-	CS Signal input	
2	CS	_	CS Signal input	
3	COM	_	COM Signal input	
4	COM	_	COM Signal input	
5	GND	_	Ground	
6	TH	0	Internal thermistor signal output	
7	VH	i	Gamma reference power supply	[Note5-3]
8	VL	i	Gamma reference power supply	[Note5-3]
9	VP1	i	Power supply of gray image(L15)	
10	VP2	i	Power supply of gray image(L31)	
11	VP3	i	Power supply of gray image(L47)	
12	VN1	i	Power supply of gray image(L15)	
13	VN2	i	Power supply of gray image(L31)	
14	VN3	i	Power supply of gray image(L47)	
15	VSHA	_	Power Supply of Source part	-
16	VSHA	_	Power supply of Source part	-
17	GND	_	Ground	-
18	VDD	_	LCD Power Supply of Gate part	-
19	GND	_	Ground	-
20	VEE	_	LCD Power Supply of Gate part	-
21	GND	_	Ground	-
22	GSPOI	i/o	Gate start pulse signal	[Note5-2]
23	GCK	i	Gate clock pulse signal input	
24	GOE	i	Gate output enable signal input	
25	GSPIO	i/o	Gate Start Pulse Signal	[Note5-2]
26	R/L	i	Setting signal of vertical display position	[Note5-2]
27	VCCG	_	Power supply of gate part	[Note5-1]
28	GND	_	Ground	
29	VCCS	_	Power supply of source part	[Note5-1]
30	VCCS	_	Power supply of source part	[Note5-1]
31	SPOI	i/o	Source start pulse signal	[Note5-2]
32	LP	i	Source data transfer signal input	
33	REV	i	Polarity reversing signal of LCD output	1
34	LBR	i	Setting signal of horizontal display position	[Note5-2]
35	SPIO	i/o	Source start pulse signal	[Note5-2]
36	GND		Ground	
37	X0P	i	Data Input signal(X0P)	[Note5-4]
38	XON	i	Data Input signal(X0N)	[Note5-4]
39	X1P	i	Data Input signal(X1P)	[Note5-4]
40	X1N	i	Data Input signal(X1N)	[Note5-4]

	. ,			
Pin No.	Symbol	i/o	Description	Remarks
41	X2P	i	Data Input signal(X2P)	[Note5-4]
42	X2N	i	Data Input signal(X2N)	[Note5-4]
43	GND	_	Ground	
44	СКР	i	Source clock signal(CKP)	
45	CKN	i	Source clock signal(CKN)	
46	GND	_	Ground	
47	YOP	i	Data Input signal(Y0P)	[Note5-4]
48	YON	i	Data Input signal(Y0N)	[Note5-4]
49	Y1P	i	Data Input signal(Y1P)	[Note5-4]
50	Y1N	i	Data Input signal(Y1N)	[Note5-4]
51	Y2P	i	Data Input signal(Y2P)	[Note5-4]
52	Y2N	i	Data Input signal(Y2N)	[Note5-4]
53	GND	_	Ground	
54	ZOP	i	Data Input signal(Z0P)	[Note5-4]
55	ZON	i	Data Input signal(Z0N)	[Note5-4]
56	Z1P	i	Data Input signal(Z1P)	[Note5-4]
57	Z1N	i	Data Input signal(Z1N)	[Note5-4]
58	Z2P	i	Data Input signal(Z2P)	[Note5-4]
59	Z2N	i	Data Input signal(Z2N)	[Note5-4]
60	GND	_	Ground	

Table5-1 (sequel)

[Note5-1] VCCS and VCCG can input same level voltage.

[Note5-2]	Setting signal	of horizontal	and vertical	display position

	LBR	R/L	SPOI	SPIO	GSPOI	GSPIO
Normal displayed	Hi	Lo	Input	Output	Input	Output
Right/Left reverse mode	Lo	Lo	Output	Input	Input	Output
Up/Down reverse mode	Hi	Hi	Input	Output	Output	Input
Right/Left & Up/Down reverse mode	Lo	Hi	Output	Input	Output	Input

Caution) Hi=VCCS , Lo=GND(0V)

[Note5-3] Please set the following.

VH = VSHA, VL = GND (0V)

[Note5-4] Refer to (8), Table8-1, Fig8-1.

5-2) LED Backlight system driving part

Table5-2	Recommen	nded connector : Hirose FH28-10S-0.5SH(10)	

Pin No.	Symbol	Description	Remarks				
1	TH	Internal thermistor signal output	Open (N.U.)				
2	GND	Internal thermistor GND	Open (N.U.)				
3	N.C.	OPEN					
4	N.C.	OPEN					
5	C3	LED power supply input 3 $(-)$	Cathode side 3				
6	C2	LED power supply input 2 $(-)$	Cathode side 2				
7	C1	LED power supply input 1 $(-)$	Cathode side 1				
8	N.C.	OPEN					
9	A2	LED power supply input (+)	Anode side				
10	A1	LED power supply input (+)	Anode side				

[Note5-5] Don't input the voltage to the N.C terminal.

(6) Absolute maximum ratings

Tebl	e6-1
1001	CO 1

Teble6-1						GND=0V
Parameter		Symbol	MIN	MAX	Unit	Remark
Power supply	Analog	VSHA	-0.3	+6.0	V	Ta=25 °C
of source part	Digital	VCCS	-0.3	+4.3	V]]
Power supply		VDD	-0.3	+38.0	V	11
of gate part	t	VCCG	-0.3	+6.0	V	11
		VEE	-23.0	+0.3	V	11
		VDD-VEE	-0.3	+38.0	V	11
Input signal	Digital	VID	-0.3	VCCS(G)+0.3	V	" ,[Note6-1]
	Analog	VIA	-0.3	VSHA+0.3	V	" ,[Note6-2]
Common electroo	dedriving signal	COM,CS	-20	+35.0	V	″ ,COM <35Vp-p
Power supply of I	LED Back Light	ILED	_	90	mA	",1line
Storage temp	erature	Tstg	-40	+95	°C	[Note6-3,4,7]
Operating ten	nperature	Topr1	-40	+85	°C	[Note6-3,4,5,7]
(LCD panel surface)						
Operating temperature		Topr2	-40	+85	°C	[Note6-6]
(Ambient tem	perature)					

[Note6-1] SPOI,SPIO,X0P~X2P,X0N~X2N,Y0P~Y2P,Y0N~Y2N,Z0P~Z2P,Z0N~Z2N,LP,CKP,CKN,REV, LBR, GSPIO, GSPOI, GCK, R/L

[Note6-2] VH,VL,VP1,VN1,VP2,VN2,VP3,VN3

[Note6-3] This rating applies to all parts of the module and should not be exceeded. Operating temp: -40 to -31 °C, does not provide a correct image on the LCD, but no damage of the display function will occur.

[Note6-4] Maximum wet-bulb temperature is 49 °C . Avoid dew condensation on the module. Otherwise electrical current leaks will occur, and it cannot meet the specifications.

[Note6-5] The operating temperature guarantees only operation of the circuit. For contrast, speed of response, and other factors related to display quality are determined in the circumstances with Ta=+25 °C.

[Note6-6] Ambient temperature when the backlight is lit (reference value).

At a temperature specified by the application LED current must be reduced in order to keep the agreed panel operating temperature of $+85^{\circ}C(max)$

[Note6-7] Refer to Table 15-1.

(7) Electrical characteristics

7-1) TFT-LCD panel driving section

Table7-1Recommended operating conditionsGND=0V , Ta=25 °C								
Para	meter		Symbol	MIN	TYP	MAX	Unit	Remarks
Power supply	Analog		VSHA	+5.6	+5.7	+5.8	V	
of source driver	Digital	-	VCCS	+3.0	+3.3	+3.6	V	[Note7-1]
Power supply	TFT	Hi	VDD	+14.5	+15.0	+15.5	V	
of gate driver	driving	Lo	VEEDC	-11.5	-12.0	-12.5	V	VEEDC Bias
			VEEAC		COM AC		Vp-p	[Note7-2]
	Logic	Hi	VCCG	+3.0	+3.3	+3.6	V	[Note7-1]
			VDD-VEE	_	_	+38V	V	
Power supply of	gray image	е	VH,VL					
		VP1,VN1	0	_	VSHA	v	[Niete7 2]	
		VP2,VN2	0		VJIA	v	[Note7-3]	
			VP3,VN3					

[Note7-1] VCCS and VCCG can input same level voltage.

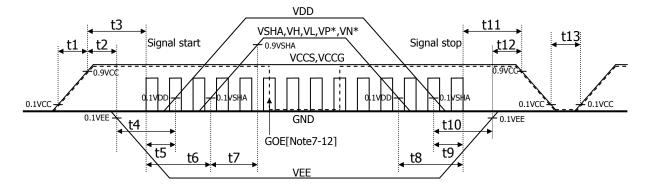
[Note7-2] VEE AC must be the same phase and amplitude as common electrode driving signal.

[Note7-3] VH>VP3>VP2>VP1>VL, VH>VN1>VN2>VN3>VL

Table7-2 Electric characteristic

Ta=-40 °C ~+85 °C

Parameter		Symbol	MIN	TYP	MAX	Unit	Remarks
Input voltage	Hi input	VIHS	0.7×VCCS	_	VCCS	V	[Noto7 4]
of source part	Lo input	VILS	GND		0.3×VCCS	V	[Note7-4]
	Hi input	VIHRSDS	70	100	—	mV	
	Lo input	VILRSDS		-100	-70	mV	[Note7-5]
	RSDS standard voltage range	VCOM RSDS	GND+0.1	1.2	VCCS-1.2	V	
Input current	Hi input	IIHS1	-60		—	μA	[Note7-6]
of source part		IIHS2	-10		—	μA	[Note7-7]
	Lo input	IILS1			60	μA	[Note7-6]
		IILS2			10	μA	[Note7-7]
Input voltage	Hi input	VIHG	0.7×VCCG		VCCG	V	[Noto7 9]
of gate part	Lo input	VILG	GND		0.3×VCCG	V	[Note7-8]
Input current	Hi input	IIHG1			10	μA	VI=VCCG,[Note7-8]
of gate part		IIHG2	_	_	40	μA	VI=VCCG,[Note7-9]
	Lo input	IILG			10	μA	VI=GND,[Note7-8,9]
Common electrode	AC component	COM AC		±4.0	±5.0	V	
driving signal	DC component	COM DC	+0.5	_	+2.5	V	[Note7-10]
CS driving signal	AC component	CS AC	_	COM AC	_	V	[Note7-11]
	DC component	CS DC	_	COM DC		V	


* The supply voltage condition is a range in Table 7-1.

[caution] Notes when power supply is turned on.

Please do a power supply on and the power-off in the following order.

Turn on VCCS, VCCG \rightarrow VEE, Logic signal \rightarrow VDD, VSHA, VH, VL, VP*, VN*

Turn off VSHA, VH, VL, VP* ,VN*, VDD \rightarrow Logic signal, VEE \rightarrow VCCS,VCCG

symbol	MIN	MAX	UNIT	
t1	0	10	ms	
t2	10	—	us	
t3	0	—	ms	
t4	0	—	ms	
t5	0	—	ms	
t6	0	_	ms	
t7	0	50	ms	

Table7-3	On-off	conditions	for	supply	voltage
rabie, o	011 011	contancionio		Sapp.,	voicage


symbol	MIN	MAX	UNIT
t8	0		ms
t9	0	_	ms
t10	0		ms
t11	0		ms
t12	0		ms
t13	35		us

[Note7-4] SPIO, SPOI, LP, LBR, REV

[Note7-5] X0P~X2N,Y0P~Y2N,Z0P~Z2N,CKP,CKN

Please refer to the following for VIHRSDS, VILRSDS, and VCOMRSDS.

RSDS Single end wave form

VRSDS_P:Wave form on P side of single end VRSDS_N:Wave form on N side of single end

[Note7-6] LP, LBR, REV, X0P~X2N,Y0P~Y2N,Z0P~Z2N,CKP,CKN

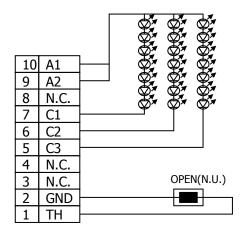
[Note7-7] SPIO, SPOI

[Note7-8] GCK, GSPOI, GSPIO, GOE

[Note7-9] R/L

[Note7-10] Please switch polarity of COM AC for every one level scan and every one vertical scan. Moreover, please adjust COM DC so that contrast becomes the maximum and a flicker becomes the minimum for every module.

[Note7-11] CS AC must be the same phase and amplitude as common electrode driving signal.


[Note7-12] As for the power sequence for GOE, it is recommended to keep it at high voltage until after all power supplies rise in power on sequence, and before all power supplies start to fall off and more than 1 frame after displaying black screen in power off sequence. Otherwise display image may get disturbed, although no harm to the module itself. 7-2) LED backlight unit driving section

The backlight system is edge-lighting type with 21 White-LED(White Light Emitting Diode). Table7-4 Ta= 25° C

Parameter	symbol	MIN	TYP	MAX	UNIT	Remark
Input Voltage	VLED	18.5	20.5	23.0	V	iLED=60mA (1Line)
Current consumption	ILED	-	0.18	0.27	A	Total current value
Power consumption	WLED	-	3.69	-	W	
Variation of VLED	-	18.0	-	24.5	v	Tp=-30-+85°C/ILED=60mA
Number of circuit strings	—		3	_	—	[Note7-13]
Specification of LED-Type	white LED					

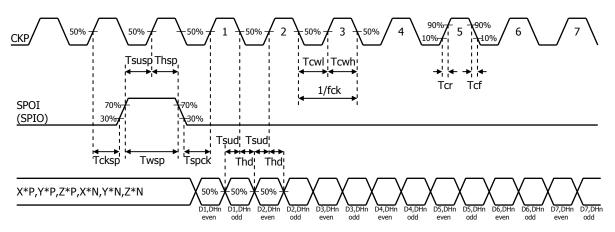
[Note7-13] The LED backlight is composed by 3 strings from which 7 LED is connected with the series.

The figure below shows the circuit chart of each string.

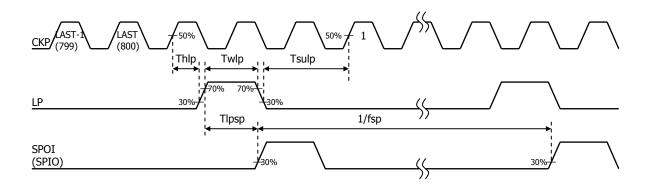
7-3) Temperature monitoring interface

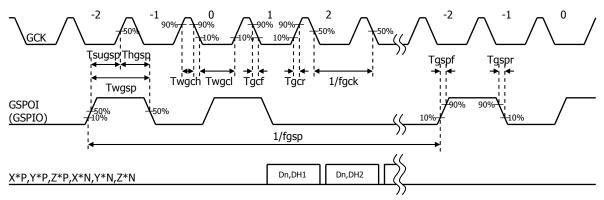
Temperature Sensor Thermister Type : TH11-3T223GT made by MITSUBISHI MATERIALS CORPORATION

Table7-5				(Referen	ice data)
Temperature	R-Thermistor	Remark	Temperature	R-Thermistor	Remark
°C	kΩ (AVE)		(C	k. (AVE)	
_	-		40	11.93	
-40	568.60		50	8.165	
-30	326.60		60	5.71	
-20	193.90		70	4.07	
-10	115.10	[Note7-14]	80	2.96	[Note7-14]
0	69.41		90	2.19	
10	42.97		100	1.65	
20	27.32		110	1.26	
30	17.83		120	0.97	

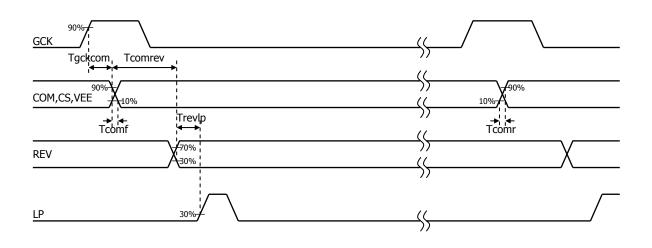

[Note7-14] The above-mentioned value is a characteristic value of the thermally sensitive resistor unit at LED backlight off. Please confirm the characteristic in the state of the product when using it.

7-4) AC characteristics of input signals

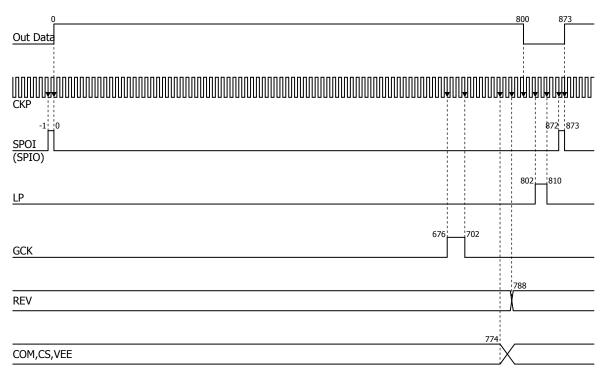

VCCS、VCCG=3.3V,VSHA=5.7V,GND=0V,Ta=25°C


Table	Parameter	Symbol	MIN	TYP	MAX	Unit	Terminal
	Operating Clock frequency	fck	_	26.2	60	MHz	
ŀ	High level clock width	Tcwh	6	_		ns	-
	Low level clock width	Tcwl	6			ns	СКР
	Clock rise time	Tcr		_	5	ns	- CKN
	Clock fall time	Tcf	_	_	5	ns	
	Start pulse frequency	fsp		30	200	kHz	
	Start pulse set up time	Tsusp	1	_		ns	-
	Start pulse hold time	Thsp	2	_	_	ns	-
rce part	CKP rise time \rightarrow Start pulse rise time	Tcksp	6	_	_	ns	SPOI ,SPIO [Note7-15]
Source	Start pulse fall time \rightarrow CKP rise time	Tspck	3	_	_	ns	
	Start pulse H width	Twsp	1	—	2	Tcwh(l)	
	Latch pulse set up time	Tsulp	5	—	—	ns	
	Latch pulse hold time	Thlp	6	—	—	ns	LP
	Latch pulse H width	Twlp	1/fck	_		ns	
	Latch pulse Start pulse set up time	Tlpsp	1/fck	—	—	ns	
	Data set up time	Tsud	3	—	_	ns	X0P~X2N,Y0P~Y2N
	Data hold time	Thd	2	—	—	ns	,ZOP~Z2N
	Operating Gate clock frequency	fgck		30	200	kHz	
	Gate clock pulse L width	Twgcl	25	—	_	μs	
	Gate clock pulse H width	Twgch	1	—	—	μs	GCK
	Gate clock rise time	Tgcr		—	100	ns	
part	Gate clock fall time	Tgcf	_	_	100	ns	
e pa	Gate start pulse frequency	fgsp		60	65	Hz	
Gate	Gate start pulse set up time	Tsugsp	100	—	—	ns	
	Gate start pulse hold time	Thgsp	100	—	—	ns	GSPIO
	Gate start pulse width	Twgsp	200	—	—	ns	GSPOI
	Gate start pulse rise time	Tgspr	_	_	100	ns	
	Gate start pulse fall time	Tgspf	_	_	100	ns	
GC	K rise \rightarrow COM change time	Tgckcom	2.5	_		μs	
COM	$change \rightarrow Reverse change time$	Tcomrev	0	_	_	μs	GCK
	COM signal rise time	Tcomr	_	_	2	μs	COM,CS,VEE REV
COM signal fall time		Tcomf		—	2	μs	
Rever	se change→ Latch pulse rise time	Trevlp	300			ns	

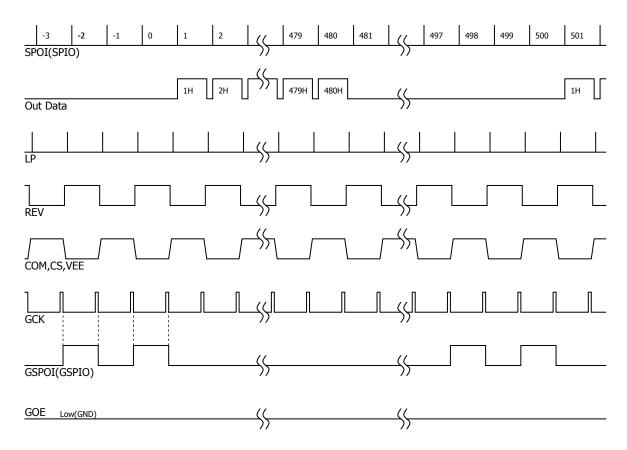
[Note7-15] The rising pulse in CKP is existed only 1 time during Hi period (Twsp) on start pulse.



Begin the uptake of data with the rise of the 1st CKP after having taken in the high voltage of SPOI(SPIO) by a rise of CKP_{\circ} Refer to Fig8-1,8-2,8-3,8-4



Please input GSPOI(GSPIO) in skip 2pluse like an upper figure.



The example of the timing chart

Horizontal timing chart

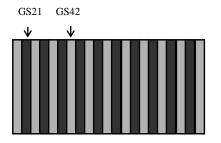
Vertical timing chart

7-5) Electric power consumption

Fable	e7-7

Ta = 25°C

Parame	ter	symbol	Voltage conditions	Min	Тур	Max	Unit
Current for	Analog	ISHA	VSHA=+5.7V	_	20	30	mA
source driver	Digital	ICCS	VCCS,VCCG=+3.3V	—	20	30	mA
Current for	Hi	IDD	VDD=+15.0V	—	0.3	1	mA
gate driver	Lo	IEE _(RMS)	VEE DC=-12.0V	—	35	50	mA
	Logic	ICCG	VEE AC=8.0Vp-p	_	0.2	0.5	mA
Danal		ICOM _(RMS)	COM AC=8.0Vp-p	_	10	15	mA
Panel		ICS _(RMS)	CS AC=8.0Vp-p		40	60	mA


*Conditions

Driving conditions:

fck=26.2MHz , fgck=30kHz , fgsp=60Hz , Normal displayed

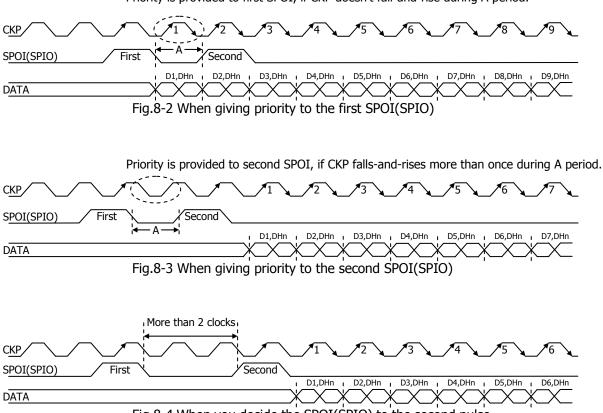
Display pattern:

Vertical stripe pattern alternating 21 gray scale (GS21) with 42 gray scale (GS42) every 1 dot.

7-6) Input Data Signals and Display Position on the screen

D1,DH1	D2,DH1	D3,DH1		D800,DH1
D1,DH2	D2,DH2			
D1,DH3				
		R	G B	
D1,DH480				D800,DH480

(8) Input signals, basic display color and gray scale of each color


Table8-1

1		1																		
	Colors &	5 & Data signal 0 : **P = Low level voltage, **N					, **N =	= High level voltage 1 : **P = High le				vel voltage, **N = Low level voltage								
	Gray scale	Gray Scale	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	B0	B1	B2	B3	B4	B5
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
œ	Green		0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
asic	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Basic color	Red	<u> </u>	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
T	Magenta	_	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of red	仓	\checkmark			١	L					1	/								
le of	Û	\checkmark				1					1	/								
" red	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	仓	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ray S	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Scale	仓	\checkmark			١	L					1	/								
e of c	Û	\checkmark			1	V					1	/								
Gray Scale of green	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
	Û	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
àray	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Gray Scale of blue	仓	\checkmark			1	L					1	/								
e of	Û	\checkmark			1	L					1	/								
blue	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
1	Û	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	· ·																			

Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144-color display can be achieved on the screen.

SPOI(SPIO)	<
X0P-X0N	I D1,DHn I D2,DHn I D3,DHn I D4,DHn I D5,DHn I D6,DHn I D7,DHn I D8,DHn I D9,DHn I D
X1P-X1N	<u> </u>
X2P-X2N	<u></u>
YOP-YON	
Y1P-Y1N	
Y2P-Y2N	<u></u>
ZOP-ZON	<u>X80X81X80X81X80X81X80X81X80X81X80X81X80X81X80X81X80X81X80X81</u>
Z1P-Z1N	<u></u>
Z2P-Z2N	<u></u>
	Fig.8-1 Timing Diagram

It is necessary to leave space more than two clocks like Fig.8-4 when you decide the SPOI(SPIO) to the second pulse. Otherwise, whether the state is Fig.8-2 or Fig.8-3 is not decided.

Priority is provided to first SPOI, if CKP doesn't fall-and-rise during A period.

Fig.8-4 When you decide the SPOI(SPIO) to the second pulse

(9) Optical characteristics<initial value>

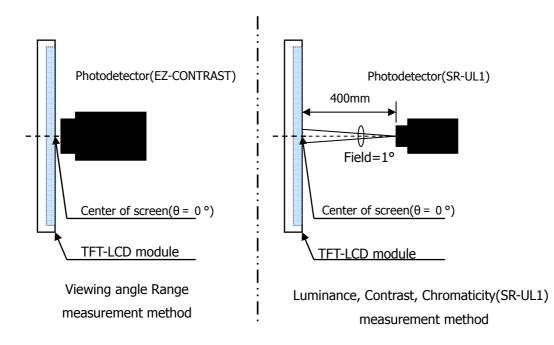
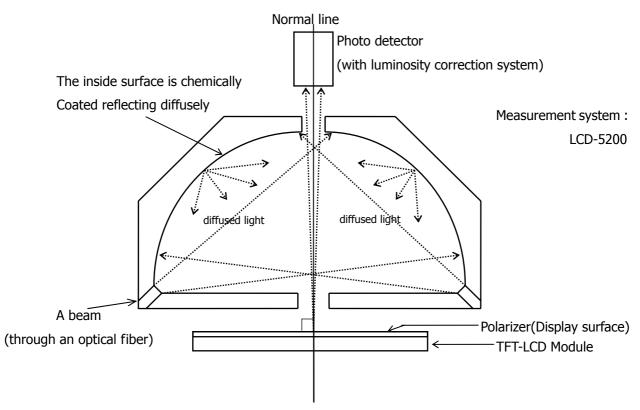
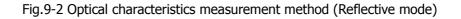
Table9-1

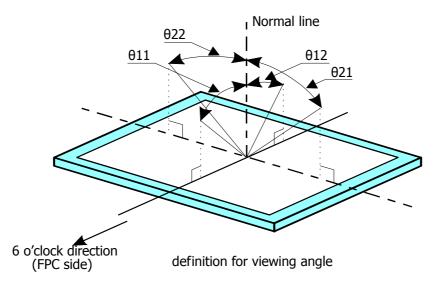
Ta=25°C

IdD	le9-1								Ta=25°C
	Param	eter	Symbol	Condition	MIN	TYP	MAX	Unit	Remarks
	Contra	st ratio 1	θ11,θ12	20degree	150	250	-		[Note9-1,2]
	Contra		θ21, θ22	60degree	20	60	-		
			CRmax	Optimal(Ta=25)	800	1200	-		[Note9-2,12]
			-	θ=0°,Ta=80	-	-25	-	%	[Note9-2,3]
	Contra	st ratio 2	-	θ=0°,Ta=60	-	-15	-	%	[Note9-2,3]
	Contras		-	θ=0°,Ta=-10	-	-15	-	%	[Note9-2,3]
			-	θ=0°,Ta=-30	-	-30	-	%	[Note9-2,3]
			r ₇₀	θ=0°,Β W	-	5	7	ms	[Note9-4]
		Ta=70	r ₇₀ (B-L8)	θ = 0°, L0 L8	-	25	40	ms	[Note9-4]
			d ₇₀	θ=0°,W Β	-	2	5	ms	[Note9-4]
			d ₇₀ (L16-L8)	θ=0°,L16 L8	-	10	15	ms	[Note9-4]
			r	θ=0°,Β W	-	12	20	ms	[Note9-4]
		Ta=25	r(B-L8)	θ = 0°, L0 L8	-	63	80	ms	[Note9-4]
		1a-25	d	θ=0°,W Β	-	4	8	ms	[Note9-4]
			d(L16-L8)	θ=0°,L16 L8	-	27	40	ms	[Note9-4]
			r _o	θ=0°,Β W	-	15	25	ms	[Note9-4]
		Ta=0	r ₀ (B-L8)	θ = 0°, L0 L8	-	161	210	ms	[Note9-4]
			d ₀	θ=0°,W Β	-	12	25	ms	[Note9-4]
le	Response		d ₀ (L16-L8)	θ=0°,L16 L8	-	65	90	ms	[Note9-4]
moc	Time		r ₋₂₀	θ=0°,Β W	-	54	90	ms	[Note9-4]
ve I		Ta=-20	r₋ ₂₀ (B-L8)	θ = 0°, L0 L8	-	545	700	ms	[Note9-4]
issi			d ₋₂₀	θ=0°,W Β	-	70	100	ms	[Note9-4]
Transmissive mode			d ₋₂₀ (L16-L8)	θ = 0°,L16 L8	-	250	350	ms	[Note9-4]
Tra		Ta=-30	r ₋₃₀	θ=0°,B W	-	124	200	ms	[Note9-4]
			r ₋₃₀ (B-L8)	θ = 0°, L0 L8	-	1440	1850	ms	[Note9-4]
			d ₋₃₀	θ=0°,W Β	-	160	200	ms	[Note9-4]
			d₋ ₃₀ (L16-L8)	θ=0°,L16 L8	-	600	840	ms	[Note9-4]
	White lun	ninance	Lw	$\theta = 0^{\circ}$	225	300	450	cd/m ²	[Note9-5,6]
	Black lum	inance	Lb	$\theta = 0^{\circ}$	-	-	0.7	cd/m ²	[Note9-5,6]
	Uniformity o	of luminance	-	$\theta = 0^{\circ}$	75	83	-	%	[Note9-5,6,7]
	Gamma		-	Value at L31	1.83	-	2.55		[Note9-11]
	White chro	omaticity	х	$\theta = 0^{\circ}$	0.271	0.301	0.331		[Note9-5,6]
			У	$\theta = 0^{\circ}$	0.300	0.330	0.360		[Note9-5,6]
	Red chron	naticity	х	$\theta = 0^{\circ}$	0.566	0.596	0.626		[Note9-5,6]
			у	$\theta = 0^{\circ}$	0.284	0.314	0.344		[Note9-5,6]
	Green chr	omaticity	х	$\theta = 0^{\circ}$	0.301	0.331	0.361		[Note9-5,6]
		-	У	$\theta = 0^{\circ}$	0.575	0.605	0.635		[Note9-5,6]
	Blue chr	omaticity	x	$\theta = 0^{\circ}$	0.119	0.149	0.179		[Note9-5,6]
		•	У	$\theta = 0^{\circ}$	0.064	0.094	0.124		[Note9-5,6]
	BLACK ch	romaticity	x	$\theta = 0^{\circ}$	0.233	0.303	0.373		[Note9-5,6]
		,	У	θ = 0°	0.240	0.310	0.380		[Note9-5,6]
	NTSC	C ratio	-	θ = 0°	55	60	-	%	

Tab	le9-1 (sequel)							Ta=25℃
	Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Remarks
		θ11,θ12	20degree	2	4	-		[Noto0 1 2]
	Contrast ratio	θ21, θ22	60degree	1.1	2			[Note9-1,2]
		CR _{ref}	$\theta = 0^{\circ}, Optimal$	3	4.5	-		[Note9-1,2]
	Response Time	r _{ref}	B W	-	15	-	ms	[Note9-4]
	Response nine	d _{ref}	W B	-	4	-	ms	
	Reflection ratio	Rf	$\theta = 0^{\circ}$	-	3.7	-	%	[Note9-8]
<u>e</u>	White chromaticity	Х	$\theta = 0^{\circ}$	0.303	0.353	0.403		
mode		Y	$\theta = 0^{\circ}$	0.334	0.384	0.434		
	Red chromaticity	х	$\theta = 0^{\circ}$	0.416	0.466	0.516		
Reflective		У	$\theta = 0^{\circ}$	0.245	0.295	0.345		
Ref	Green chromaticity	х	$\theta = 0^{\circ}$	0.236	0.286	0.336		
		У	$\theta = 0^{\circ}$	0.414	0.464	0.514		[Note9-9]
	Blue chromaticity	х	$\theta = 0^{\circ}$	0.178	0.228	0.278		
		у	$\theta = 0^{\circ}$	0.167	0.217	0.267		
	Black chromaticity	х	$\theta = 0^{\circ}$	0.190	0.240	0.290		
		У	$\theta = 0^{\circ}$	0.123	0.173	0.223		
	NTSC ratio	-	$\theta = 0^{\circ}$	-	17	-	%	
	Surface reflectance	SRf		-	0.5	0.6	%	[Note9-8]
LED lifetime +25		-	continuation	10000	-	-	Hour	[Note9-10]

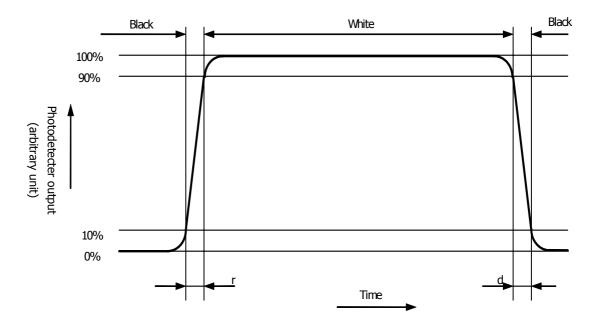
*The measurement data of above optical characteristics are measured 30 minutes after lighting the B/L. they are measured in a dark room or an equivalent state by the method shown in the following figure.


Fig.9-1 Optical characteristics measurement method (Transmissive mode)

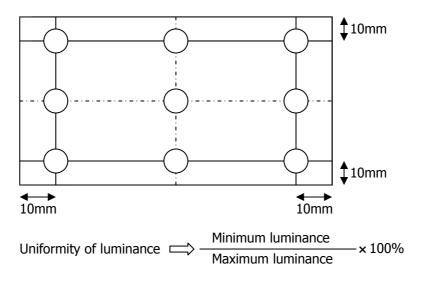
Contrast / Viewing angle Range / Response time measurement method

[Note 9-1] Viewing angle range is defined as follows.


[Note 9-2] Contrast ratio is defined as follows:

Contrast ratio(CR)= Photo detector output with LCD being "white(GS63)" Photo detector output with LCD being "black(GS0)" [Note 9-3] The change rate by the ambient temperature of the contrast is defined as follows.

It is a change rate against the CR value of 25 in ambient temperature of the module.


[Note 9-4] Response time is defined as follows:

Response time is obtained by measuring the transition time of photo detector output, when input signals are applied so as to make the area "black" to and from "white". Measurement system:LCD-5200(Transmissive mode/ Reflective mode)

[Note 9-5] LED driving condition is refer to Table7-4.

- [Note 9-6] Measured on the center area of the panel at a viewing cone 1-degree by TOPCON luminance meter SR-UL1.(After 30 minutes operation)
- [Note 9-7] Uniformity of luminance is measured in the measurement part shown in the figure below. The measurement part is " " symbol it shown.

[Note 9-8] Reflectance is defined as follows

Reflection ratio= Light detected level of the reflection by the LCD × 100 Light detected level of the reflection by the standard

- [Note 9-9] It is assumed that chromaticity of the light source is (x=0.313,y=0.329). The measuring system is CM-2002(with the unit reflecting diffusely) made by MINOLTA co., ltd.
- [Note 9-10] LED life is the time when the Brightness level of the panel surface doesn't become equal or less than 80% of the brightness of the initial value on the following conditions.
 - * LED driving condition is refer to Table7-4. PWM dimming 100%~5%(Ta=25°C)

[Note 9-11] When you adjust the power supply voltage level and signal voltage level to the following set value .

VSHA=VH=5.7V, VL=0V, COM AC=8.0Vp-p, VP1=2.11V, VP2=2.52V, VP3=3.16V, VN1=3.43V, VN2=3.01V, VN3=2.33V

[Note 9-12] Minimum contrast value is defined as below conditions.

- * Contrast value is defined as the average of 9 point contrast values. Please refer to Note 9-7 for the position of 9 points.
- * This minimum value of contrast can't be guaranteed based on Cpk.
- * In case customer's measurement result of contrast at panel center position is under '800', we will exchange new LCD module for free of which the contrast at panel center position is more than '800', but it is not counted as the LCD module failure. And if after mass production there are many LCD modules in mass production which are under '800' at customer's measurement but are more than '800' at SHARP 9 point measurement, it's necessary for customer and SHARP to discuss the handling of the LCD modules.
- (10) Mechanical characteristics
 - 10-1) External appearance

No significant defects permitted. (See Fig. 1)

10-2) Panel toughness

The panel should not be broken, when press to the center of the panel by (30N) power using smooth surface with 15mm diameter.

Caution: If the pressure is added on the active area of the panel over the long time, even if the pressure is very small weight, the functional damage might occur in the panel.

- 10-3) I/O connector performance
 - A) Input/output connectors to control the LCD module
 - 1) Applicable Connector : 502790-6091(MOLEX)
 - FPC flexibility

Slit on the film cover lay coat part of one side printing

If it had been tested bending under radius nothingness and bending angle

180degrees, the FPC should not be cut.

(It should be bend by hand and only at once).

B) Input/output connector of LED backlight driving circuit

1) Applicable Connector : FH28-10S-0.5SH(10) (Hirose)

2) FPC flexibility

Slit on the film cover lay coat part of one side printing

If it had been tested bending under radius nothingness and bending angle

180degrees, the FPC should not be cut.

(It should be bend by hand and only at once).

(11) Display quality

The display quality of the color TFT-LCD module is controlled by the Incoming Inspection Standard.

(12) Handling instruction of TFT-LCD module

12-1) Handling of FPC

FPC can be bent only in the input part straight wiring part. Please do not hang the LCD module from the FPC or do not apply excessive force to FPC. Please do not impact on the part equipped with parts of FPC.

12-2) Installation of TFT-LCD module

When assembling the TFT-LCD module, ensure module is fixed in its natural flat plane, and avoid stressing the module causing it to twist or wrap.

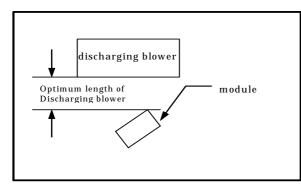
Do not apply pressure to the module from the user application (user push-buttons etc.) since this may distort the display images.

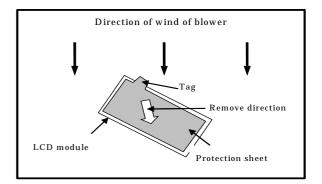
Remove all electrical power before connecting or disconnecting the module FPCs.

Be sure to connect the metallic shielding cases of the LCD module and the GND of your component surely.

12-3) Precautions in mounting

Polarizer adhesion the surface of the LCD is made of a soft material and should be handled carefully to avoid damage. Protection sheet is applied on the LCD top surface to safeguard the polarizer against scratches and dirt. It is recommended to remove the protection sheet immediately before use, taking care to avoid static electric charges.


Precautions in removing the protection sheet


A) Work environment

When the protection sheet is removed off, static electricity may cause dust to stick to the polarizer surface. To avoid this, the following working environment is desirable. a) Floor : Conductive treatment of $1M\Omega$ or more on the tile. (conductive mat or conductive paint on the tile)

- b) Clean room free form dust and with an adhesive mat on the doorway
- c) Advisable humidity:50% ~ 70% Advisable temperature:15 °C ~ 27 °C
- d) Workers shall wear conductive shoes, conductive work clothes, conductive gloves and an earth band.
- B) Working procedures
 - a) Direct the air of discharging blower in downward to ensure that module is blown sufficiently.
 Keep the distance between module and discharging blower within optimum length of discharging blower.
 - b) Pull the tag of protection sheet and remove it slowly to your side.
 - c) On removing off the protection sheet, pass the module to the next work process to prevent the module to get dust.
 - d) Method of removing dust from polarizer
 - Blow off dust with N2 blower for which static electricity preventive measure has been taken.
 - · Since polarizer is vulnerable, wiping should be avoided if necessary.

However, please wipe it carefully with the cloth for a lens wipe when it is necessary to wipe the surface.

When metal part of the TFT-LCD module (shielding case) soiled, wipe it with soft dry cloth.

The LCD used in the module is made of glass. If drop the module or bump it on hard surface, the LCD should be broken.Please handle with care.

Since CMOS LSI is used in this module, take care of static electricity and earth your body when handling the module.

12-4) Caution of product design

Protect the LCD module from water/salt-water by the waterproof cover, etc.

12-5) Other

Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours. Liquid crystal is deteriorated by ultraviolet rays.

Store the module at a temperature near the room temperature. At lower than the rated storage temperature, liquid crystal solidifies, causing the panel to be damaged. At higher than the rated storage temperature, liquid crystal turns into isotropic liquid and may not recover.

Be sure to adjust DC bias voltage of common electrode driving signal(COM DC) in the state of the last product. When not adjusted, it becomes the cause of a deterioration of display quality. Observe all precautionary requirements of general electronic components.

(13) Packing form

13-1) Package form (Refer to Fig.3)

a) Maximum number of cartons for stacking	: 7
b) Package quantity in one carton	: 25
c) carton size(mm)	: $624(W) \times 419(H) \times 196(D)$
d) Total mass of one carton(kg)	: 7.1

13-2) Carton keeping conditions

Environments		
Temperature	:	0 ~ 40°C
Humidity	:	60%RH or less(at 40 °C)
Atmosphere	:	No dew condensation at low temperature and high humidity. Harmful gas such as acid or alkaline that corrodes electronic components
		or wires, must not be avoided.
Storage periods	:	Max of approx 3 months
Opening of	:	In order to prevent the LCD module from breakdown by electrostatic
the package		charges, please control the humidity over 50%RH and open the package
		taking sufficient countermeasures against electrostatic charges, such as
		earth, etc.

(14) Other

14-1) Indication of the lot number

The lot number is shown on a label. Attached location is shown in Fig.1 (Outline Dimensions).

Indicated contents of the label :

		← Model name + Distribution code(X or Y or Z) ← Lot number Label size: 27mm x 10mm
		QR code size: 5.3mm x 5.3mm
contents of lot No.	the 1st figure	production year (ex. 2010 : 0、2011: 1 ····)
	the 2nd figure	production month 1,2,3,,9,X,Y,Z
	the 3rd \sim 8th figure	serial No. 000001 \sim
	the 9th figure	revision marks A,B,C
Contents of QR cod	e : LQ065Y9RA01Y0Z000001	

Model name + Distribution code

14-2) Maximum number of trays for stacking

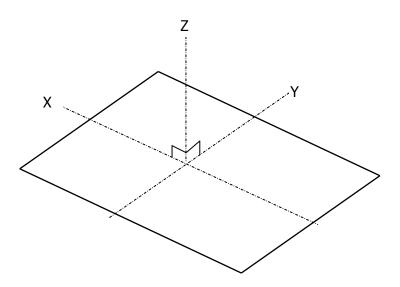
Maximum number of trays for stacking : 5

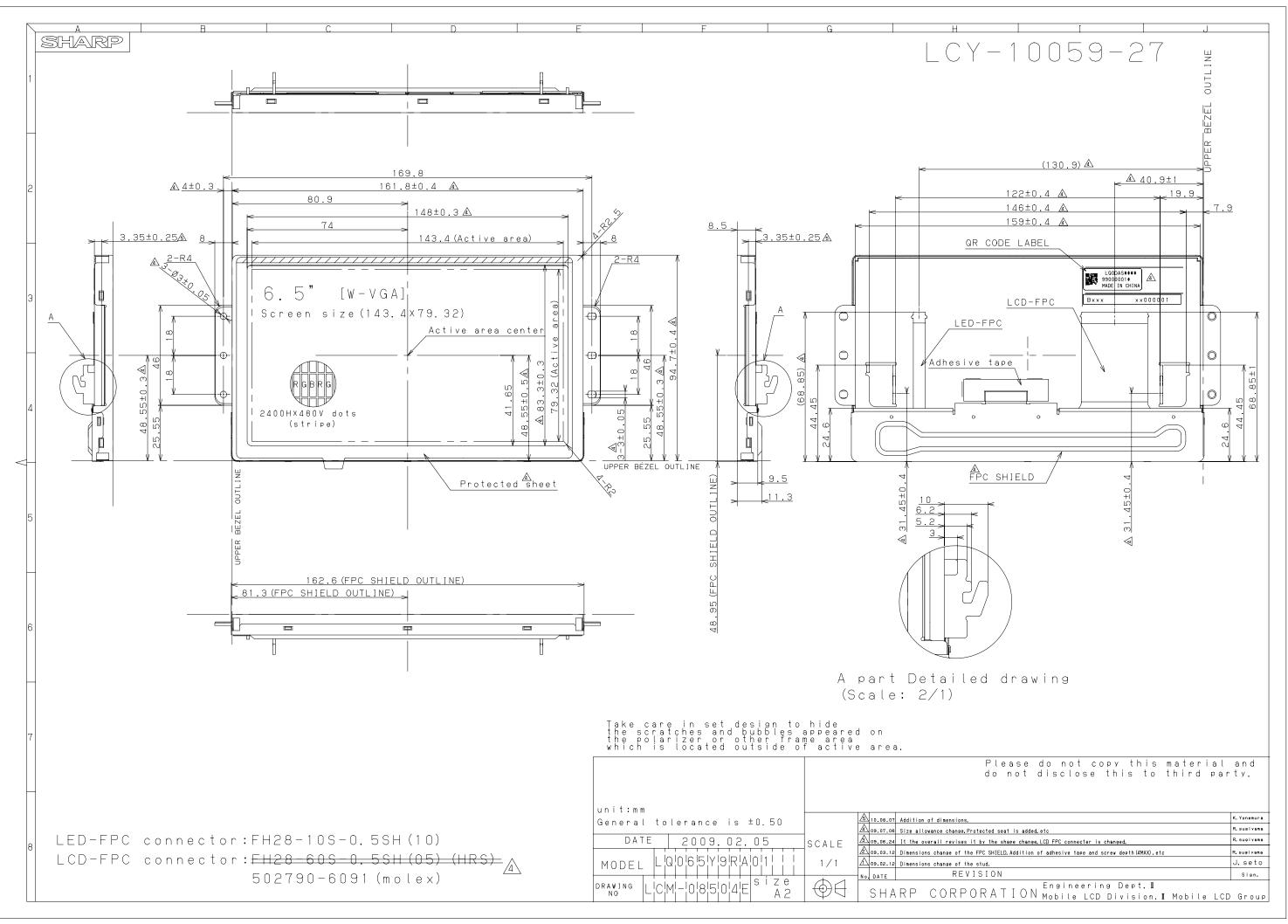
14-3) RoHS

This TFT-LCD module is RoHS compliant products.

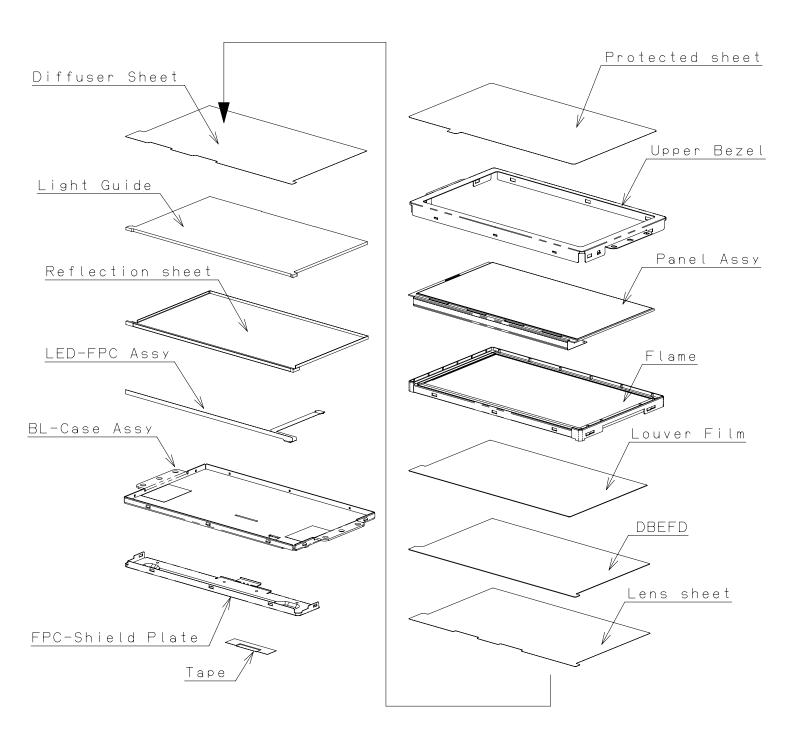
- 14-4) Instructions for disposing of LCD modules.Please dispose in accordance to regulations for this module.
- 14-5) The country of origin of the TFT-LCD module P.R.China
- 14-6) The manufacturing site of TFT-LCD SHARP CORPORATION 1177-1, GOSANA, TAKI-CHO, TAKI-GUNN MIE MOBILE LIOUID CRYSTAL DISPLAY GROUP 3 MIE PLANT 1
- 14-7) The manufacturing site of TFT-LCD module
 WUSI SHARP ELECTRONIC COMPONENTS CO.,LTD
 No.54 Area, Wuxi National High & New Tech Industrial Development Zone,
 Wuxi, Jiangsu, 214028 P.R. China
- 14-8) When any question or issue occurs, it shall be solved by mutual discussion.

(15) Reliability test contents

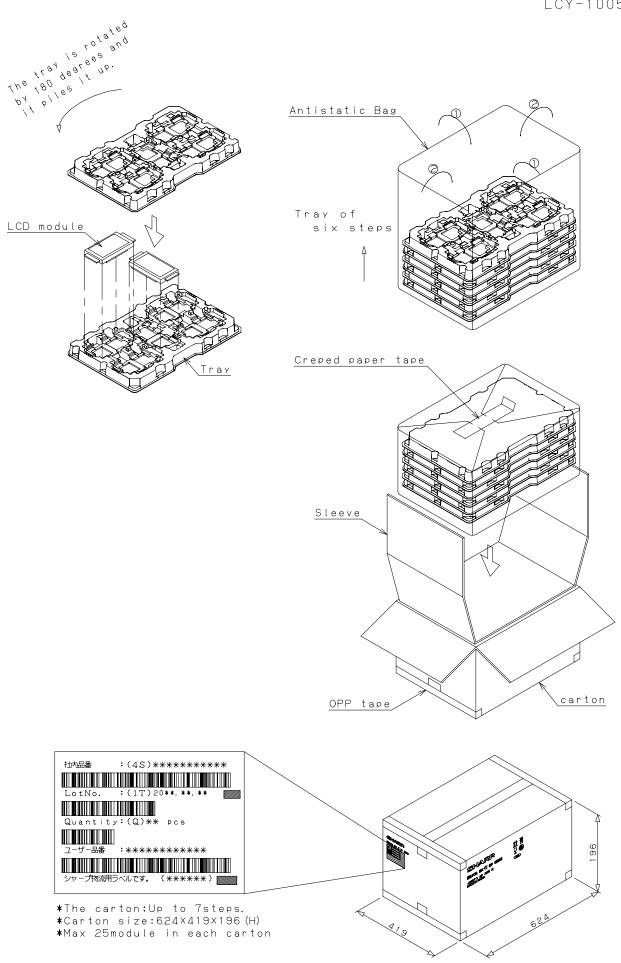

9 Vibration test Frequency : 8~33.3Hz , Stroke : 1.3mm Frequency : 33.3Hz~400Hz,Acceleration : 29.4m/s ² Cycle : 15 minutes			
2High temperature storage testTa = +95 °C120h3Low temperature storage testTa = -40 °C240h4High temperature and high humidity operation testTp = +50 °C , 95%RH240h5Hi temperature operating testTp = +85 °C240h6Low temperature operating testTa = -40 °C240h7Electro static discharge test $\pm 200V \cdot 200pF(0\Omega)$ 1 time for each terminals $\pm 2KV \cdot 150pF(330\Omega)$ 3 time for each terminals $\pm 15KV \cdot 150pF(330\Omega)$ 3 time for the display center8Shock test980m/s² · 6ms, $\pm X$; $\pm Y$; $\pm Z$ 3 times for each direction (JIS C0041, A-7 Condition C) [caution]9Vibration testFrequency : $8 \sim 33.3Hz$ ~ 400Hz,Acceleration : 29.4m/s² Cycle : 15 minutes X,Z 2 hours for each direction, 4 hours for Y direction (tota 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta = -30 °C ~ +85 °C / 200 cycles (0.5h)	No.	Test items	Test condition
3Low temperature storage testTa = -40 °C240h4High temperature and high humidity operation testTp = +50 °C , 95%RH240h5Hi temperature operating testTp = +85 °C240h6Low temperature operating testTa = -40 °C240h7Electro static discharge test $\pm 200V \cdot 200pF(0\Omega)$ 1 time for each terminals $\pm 15KV \cdot 150pF(330\Omega)$ 3 time for each terminals $\pm 15KV \cdot 150pF(330\Omega)$ 3 time for the display center8Shock test $980m/s^2 \cdot 6ms, \pm X ; \pm Y ; \pm Z$ 3 times for each direction (JIS C0041, A-7 Condition C) [caution]9Vibration testFrequency : $8 \sim 33.3Hz$, Stroke : 1.3mm Frequency : $33.3Hz \sim 400Hz$, Acceleration : 29.4m/s² Cycle : 15 minutes X,Z 2 hours for each direction, 4 hours for Y direction (tota 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta = -30 °C ~ +85 °C / 200 cycles (0.5h)	1	High temperature storage test	Ta = +85 °C 240h
4High temperature and high humidity operation testTp = $+50 ^{\circ}\text{C}$, 95%RH240h5Hi temperature operating testTp = $+85 ^{\circ}\text{C}$ 240h6Low temperature operating testTa = $-40 ^{\circ}\text{C}$ 240h7Electro static discharge test $\pm 200V \cdot 200pF(0\Omega)$ 1 time for each terminals $\pm 2KV \cdot 150pF(330\Omega)$ 3 time for each terminals $\pm 15KV \cdot 150pF(330\Omega)$ 3 time for the display center8Shock test9980m/s ² · 6ms, $\pm X$; $\pm Y$; $\pm Z$ 3 times for each direction (JIS C0041, A-7 Condition C) [caution]9Vibration testFrequency: $33.3Hz$, $400Hz$, Acceleration: $29.4m/s^2$ Cycle: 15 minutesX,Z 2 hours for each directions, 4 hours for Y direction (tota 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta= $-30 ^{\circ}\text{C} \sim +85 ^{\circ}\text{C} / 200$ cycles (0.5h)	2	High temperature storage test	Ta = +95 °C 120h
humidity operation testTp = +85 °C240h5Hi temperature operating testTp = +85 °C240h6Low temperature operating testTa = -40 °C240h7Electro static discharge test $\pm 200V \cdot 200pF(0\Omega)$ 1 time for each terminals $\pm 2KV \cdot 150pF(330\Omega)$ 3 time for each terminals $\pm 15KV \cdot 150pF(330\Omega)$ 3 time for the display center8Shock test $980m/s^2 \cdot 6ms, \pm X; \pm Y; \pm Z$ 3 times for each direction (JIS C0041, A-7 Condition C) [caution]9Vibration testFrequency : $8 \sim 33.3Hz$, Stroke : 1.3mm Frequency : $33.3Hz \sim 400Hz$, Acceleration : $29.4m/s^2$ Cycle : 15 minutes X,Z 2 hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta = $-30 °C \sim +85 °C / 200$ cycles (0.5h)	3	Low temperature storage test	Ta = -40 °C 240h
5Hi temperature operating test $Tp = +85 ^{\circ}C$ 240h6Low temperature operating test $Ta = -40 ^{\circ}C$ 240h7Electro static discharge test $\pm 200V \cdot 200pF(0\Omega)$ 1 time for each terminals $\pm 2KV \cdot 150pF(330\Omega)$ 3 time for each terminals $\pm 15KV \cdot 150pF(330\Omega)$ 3 time for the display center8Shock test980m/s ² · 6ms, $\pm X$; $\pm Y$; $\pm Z$ 3 times for each direction(JIS C0041, A-7 Condition C) [caution]9Vibration testFrequency : $8 \sim 33.3Hz$, Stroke : 1.3mmFrequency : $33.3Hz \sim 400Hz$, Acceleration : 29.4m/s ² Cycle : 15 minutesX,Z 2 hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)10Heat shock test(Storage)70Ta = $-30 ^{\circ}C \sim +85 ^{\circ}C / 200$ cycles (0.5h)	4	High temperature and high	Tp = +50 °C , 95%RH 240h
6Low temperature operating testTa = -40 °C240h7Electro static discharge test $\pm 200V \cdot 200pF(0\Omega)$ 1 time for each terminals $\pm 2KV \cdot 150pF(330\Omega)$ 3 time for each terminals $\pm 15KV \cdot 150pF(330\Omega)$ 3 time for the display center8Shock test9Vibration test9Vibration test7Frequency : $8 \sim 33.3Hz$, Stroke : 1.3mm7Frequency : $33.3Hz \sim 400Hz$, Acceleration : $29.4m/s^2$ 7Cycle8Shock test(Storage)10Heat shock test(Storage)10Heat shock test(Storage)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)10(0.5h)		humidity operation test	
7 Electro static discharge test ±200V · 200pF(0Ω) 1 time for each terminals ±2KV · 150pF(330Ω) 3 time for each terminals ±2KV · 150pF(330Ω) 3 time for the display center 8 Shock test 980m/s² · 6ms, ±X ; ±Y ; ±Z 3 times for each direction (JIS C0041, A-7 Condition C) [caution] 9 Vibration test Frequency : 8~33.3Hz , Stroke : 1.3mm Frequency : 33.3Hz~400Hz,Acceleration : 29.4m/s² Cycle : 15 minutes X,Z 2 hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601) Ta=-30 °C ~ +85 °C / 200 cycles 10 Heat shock test(Storage) Ta=-30 °C ~ +85 °C / 200 cycles	5	Hi temperature operating test	$Tp = +85 ^{\circ}C$ 240h
$\begin{array}{c} \pm 2KV \cdot 150 \text{pF}(330\Omega) 3 \text{ time for each terminals} \\ \pm 15KV \cdot 150 \text{pF}(330\Omega) 3 \text{ time for the display center} \\ \end{array}$ $\begin{array}{c} 8 \\ \text{Shock test} \\ \end{array}$ $\begin{array}{c} 980 \text{m/s}^2 \cdot 6\text{ms}, \pm X ; \pm Y ; \pm Z 3 \text{ times for each direction} \\ (\text{JIS C0041, A-7 Condition C) [caution]} \\ \end{array}$ $\begin{array}{c} 9 \\ \text{Vibration test} \\ \end{array}$ $\begin{array}{c} \text{Frequency} : 8 \sim 33.3 \text{Hz} , \text{Stroke} : 1.3 \text{mm} \\ \text{Frequency} : 33.3 \text{Hz} \sim 400 \text{Hz}, \text{Acceleration} : 29.4 \text{m/s}^2 \\ \text{Cycle} : 15 \text{ minutes} \\ \text{X}, Z \ 2 \text{ hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601) \\ \end{array}$ $\begin{array}{c} 10 \\ \text{Heat shock test(Storage)} \\ \end{array}$ $\begin{array}{c} \text{Ta} = -30 ^{\circ}\text{C} \ \sim \ +85 ^{\circ}\text{C} / 200 \text{ cycles} \\ (0.5 \text{h}) (0.5 \text{h}) \\ \end{array}$	6	Low temperature operating test	Ta = -40 °C 240h
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Electro static discharge test	$\pm 200V \cdot 200$ pF(0Ω) 1 time for each terminals
8Shock test $980m/s^2 \cdot 6ms, \pm X ; \pm Y ; \pm Z 3 times for each direction(JIS C0041, A-7 Condition C) [caution]9Vibration testFrequency : 8 \sim 33.3Hz , Stroke : 1.3mmFrequency : 33.3Hz \sim 400Hz,Acceleration : 29.4m/s²Cycle : 15 minutesX,Z 2 hours for each directions, 4 hours for Y direction (total8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta=-30 ^{\circ}C \sim +85 ^{\circ}C / 200 cycles(0.5h) (0.5h)$			\pm 2KV \cdot 150pF(330Ω) 3 time for each terminals
9Vibration testFrequency : $8 \sim 33.3$ Hz , Stroke : 1.3mm Frequency : 33.3 Hz ~ 400 Hz,Acceleration : 29.4m/s² Cycle : 15 minutes X,Z 2 hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta= -30 °C \sim +85 °C / 200 cycles (0.5h) (0.5h)			± 15 KV \cdot 150pF(330Ω) 3 time for the display center
9Vibration testFrequency : $8 \sim 33.3$ Hz , Stroke : 1.3mm Frequency : 33.3 Hz ~ 400 Hz, Acceleration : 29.4m/s² Cycle : 15 minutes X,Z 2 hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta= $-30 ^{\circ}$ C $\sim +85 ^{\circ}$ C / 200 cycles (0.5h)	8	Shock test	980m/s ² · 6ms, $\pm X$; $\pm Y$; $\pm Z$ 3 times for each direction
Instruction testInstruction testFrequency : 33.3Hz~400Hz,Acceleration : 29.4m/s²Cycle : 15 minutesX,Z 2 hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta= $-30 ^{\circ}$ C ~ +85 $^{\circ}$ C / 200 cycles (0.5h) (0.5h)			(JIS C0041, A-7 Condition C) [caution]
Cycle: 15 minutesX,Z 2 hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601)10Heat shock test(Storage)Ta= $-30 ^{\circ}$ C \sim +85 $^{\circ}$ C / 200 cycles (0.5h)	9	Vibration test	Frequency : 8 \sim 33.3Hz , Stroke : 1.3mm
YX,Z 2 hours for each directions, 4 hours for Y direction (total 8 hours) [caution] (JIS D1601)10Heat shock test(Storage) $Ta = -30 ^{\circ}C \sim +85 ^{\circ}C / 200$ cycles (0.5h) (0.5h)			Frequency : 33.3Hz \sim 400Hz,Acceleration : 29.4m/s ²
10 Heat shock test(Storage) Ta=-30 °C ~ +85 °C / 200 cycles (0.5h)			Cycle : 15 minutes
10Heat shock test(Storage)Ta= $-30 ^{\circ}$ C \sim +85 $^{\circ}$ C / 200 cycles (0.5h)(0.5h)(0.5h)			X,Z 2 hours for each directions, 4 hours for Y direction (total
(0.5h) (0.5h)			8 hours) [caution] (JIS D1601)
	10	Heat shock test(Storage)	Ta= -30° C \sim +85 $^{\circ}$ C / 200 cycles
[Note] Ta = Ambient temperature, Tp = Panel temperature			(0.5h) (0.5h)
	[No	te] Ta = Ambient te	mperature, Tp = Panel temperature


Table 15-1 Temperature condition is based on operating temperature condition

[Check items] In the standard condition, there shall be no practical problems that may affect the display function.


[caution]

Definition of X, Y, Z direction is shown as follows



LCY-10059-28

- Fig.2 -

(Appendix)

Adjusting method of optimum DC bias voltage of common electrode driving signal

Photoelectric devices are very effective to obtain optimum DC bias voltage of common electrode driving signal accurately, and the accuracy is with 0.1V. (In visual examination method, the accuracy is about 0.5V because of the difference among individuals.)

Adjusting method of DC bias voltage using the photoelectric devices is as follows

Measurement of flicker

Adjust the DC baias voltage so as to minimize flicker at NTSC : 60Hz(30Hz) / PAL : 50Hz(25Hz).

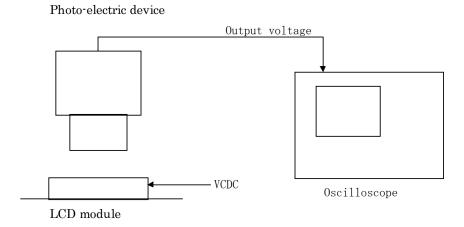
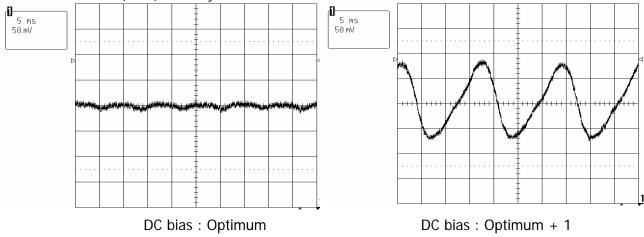
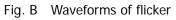


Fig. A Measurement system


Adjusting method of DC bias voltage

Measure the output voltage from Photoelectric device using the oscilloscope at the measurement


system of Fig. A.

Then, change the DC bias voltage in small steps, and adjust it so as to minimize the flicker(target:max5%) at NTSC 60Hz(30Hz) / PAL : 50Hz(25Hz). (Fig.B)

• Measured on the center area of the panel(1 point) by flicker meter. Display pattern is flicker pattern(Horizontal stripe pattern alternating 31 gray scale(GS31) with 0 black(GS0) every 1 dot.).

• Flicker meter(3298) made by YOKOGAWA co., ltd.

