PREPARED BY: DATE	011455	SPEC No.		LCY-W-08	R502
	SHARP	FILE No.		DOI W OC	5502
APPROVED BY: DATE	MOBILE LIQUID CRYSTAL DISPLAY GROUP	ISSUE		May.16.20	008
	SHARP CORPORATION	PAGE	OLE DIV	Pages 3	0
		APPLICAI MOBILE	LCD	CHINA	DESIGN
	· .	CENTER			
		WUXI SH	ARP		
	SPECIFICATION				d 1
		_			
	DEVICE SPECIFICATION for)			
	TFT LCD Module $(320 \times \text{RGB} \times 240 \text{ dots})$:			
	Model No.				
·	LQ035Q1DG04	4			

YAMAMOTO.KUNIHIKO

MOBILE LCD CHINA DESIGN CENTER

GENERAL MANAGER

WUXI SHARP

□CUSTOMER'S APPROVAL

DATE

<u>BY</u>

			DOC. First issue	May.16.2008
,	RECORDS	OF REVISION		LQ035Q1DG04
			Spec. No.	LCY-W-08502*
DATE	REF.PAGE PARAGRAPH DRAWING No.	REVISED NO.	SUMMARY	CHECK AND APPROVAL
2008.5.16	_	_	First Issue	K. Jawaniolo
		,		
			•	
				,
		-		
	<u></u>			
· ·				
		,		
		· · · · · · · · · · · · · · · · · · ·		
<u> </u>				
				353.01
	· .			
		,		

NOTICE

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

The application circuit examples in this publication are provided to explain the representative applications of SHARP's devices and are not intended to guarantee any circuit design or permit any industrial property right or other rights to be executed. SHARP takes no responsibility for any problems related to any industrial property right or a third party resulting from the use of SHARP's devices, except for those resulting directly from device manufacturing processes.

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP's device.

SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structures and other contents described herein at any time without notice in order to improve design or reliability. Contact SHARP in order to obtain the latest specification sheets before using any SHARP's device. Manufacturing locations are also subject to change without notice.

Observe the following points when using any device in this publication. SHARP takes no responsibility for damage caused by improper use of the devices.

The devices in this publication are designed for use in general electronic equipment designs, such as:

- Personal computers
- Office automation
- Telecommunication equipment

- Test and measurement equipment
- Industrial control
- Personal Digital Assistant

- Audio visual and multimedia equipment
- Consumer electronics
- · Personal Navigation Device

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- Transportation control and safety equipment(i.e. aircraft, trains, automobiles, etc.)
- Traffic signals
- · Gas leakage sensor breakers
- Alarm equipment
- · Various safety devices etc.

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

- Military and space applications
- · Nuclear power control equipment
- Medical equipment for life support

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.

1. Applicable Scope

This specification is applicable to TFT-LCD Module "LQ035Q1DG04".

This LCD module is developed for PND (Personal Navigation Devices), not designed for Automotive build-in uses.

2. General Description

This module is a color active matrix LCD module incorporating amorphous silicon TFT (\underline{T} hin \underline{F} ilm \underline{T} ransistor). It is composed of a color TFT-LCD panel, driver IC, Input FPC, a back light unit and a touch panel. Graphics and texts can be displayed on a 320 × RGB × 240 dots panel with about 262k colors by supplying 18bit data signals (6bit × RGB), four timing signals, 3wires 24bit serial interface signals, logic (Typ. +3.3V), analog (Typ. +3.3V) supply voltages for TFT-LCD panel driving and supply voltage for back light.

3. Mechanical (Physical) Specifications

Item	Specifications	Unit
Screen size	3.47" QVGA	inch
Active area	70.56 (H) × 52.92 (V)	mm
Dividence	320 (H) × 240 (V)	pixel
Pixel format	1 Pixel = R+G+B dots	-
Pixel pitch	0.2205 (H) × 0.2205 (V)	mm
Pixel configuration	R,G,B vertical stripes	-
Display mode	Normally white	-
Unit outline dimensions *	76.9 (W) × 63.9 (H) × 4.25 (D)	mm
Mass	Approx. 41	g
Surface hardness	2H	-
Surface treatment	Anti glare	-

^{*}The above-mentioned table indicates module sizes without some projections and FPC. For detailed measurements and tolerances, please refer to 18. Outline Dimensions.

4. Input Terminal Names and Functions

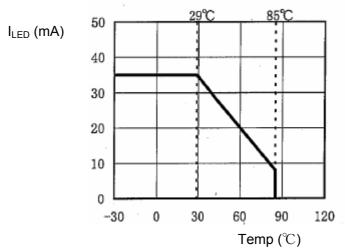
Recommendation CN : [Entery] 6702-E50N-00R

Pin No.	Symbol	Description	Note
1	GND	GND(0V)	
2	GND	GND(0V)	
3	VDDIO	+3.3V power source	
4	VCI	+3.3V power source	
5	R0	NC	NC for 6bit mode
6	R1	NC	NC 101 Obit mode
7	R2	RED data signal(LSB)	
8	R3	RED data signal	
9	R4	RED data signal	
10	R5	RED data signal	
11	R6	RED data signal	
12	R7	RED data signal(MSB)	
13	G0	NC	NO for Chit models
14	G1	NC	NC for 6bit mode
15	G2	GREEN data signal(LSB)	
16	G3	GREEN data signal	
17	G4	GREEN data signal	
18	G5	GREEN data signal	
19	G6	GREEN data signal	
20	G7	GREEN data signal(MSB)	
21	В0	NC	NO for Ohit models
22	B1	NC	NC for 6bit mode
23	B2	BLUE data signal(LSB)	
24	В3	BLUE data signal	
25	B4	BLUE data signal	
26	B5	BLUE data signal	
27	В6	BLUE data signal	
28	В7	BLUE data signal(MSB)	
29	GND	GND(0V)	
30	DOTCLK	Pixel clock signal	
31	CS	Chip select / Power On	
32	Hsync	Horizontal synchronizing signal	
33	Vsync	Vertical synchronizing signal	
34	EN	Data Enable	Note 1
35	GND	GND(0V)	
36	REST	Reset	
37	ID	NC on FPC	
38	SCL	Serial clock	
39	SDI	Serial data input	
40	GND	GND(0V)	

Symbol X1 Y1 X2	Description X right Y bottom	Note
Y1	Y bottom	
X2	V loft	
	∧ IEIL	
Y2	Y top	
GND	GND(0V)	
LED-	LED (Cathode side)	
Dummy	NC on FPC	
LED+	LED (Anode side)	
GND	GND(0V)	
GND	GND(0V)	
	Y2 GND LED- Jummy LED+ GND	Y2 Y top GND GND(0V) LED- LED (Cathode side) nummy NC on FPC LED+ LED (Anode side) GND GND(0V)

Note1) When use H/V mode, connect to VDDIO

5. Absolute Maximum Ratings


Item	Symbol	Conditions	Rated value	Unit	Remarks
Input voltage	VI	Ta = 25°C	-0.3 ~ V _{DDIO} +0.3	V	Note 1
Logic I/O power supply voltage	V_{DDIO}	Ta = 25°C	-0.3 ~ +4.0	V	
Analog power supply voltage	V _{CI}	Ta = 25°C	AGND-0.3 ~ +5.0	V	
Temperature for storage	Tstg	-	-30 ~ +80	°C	Note 2
Temperature for operation	Topr	-	-20 ~ +70	°C	Note 3
LED input electric current	I _{LED}	Ta = 25°C	35	mA	Note 4
LED electricity consumption	P _{LED}	Ta = 25°C	123	mW	Note 4

- Note 1) RESB, SHUT, CSB, SDI, SCK, DEN, B5~B0, G5~G0, R5~R0, VSYNC, HSYNC, DOTCLK
- Note 2) Humidity: 95%RH Max. (Ta≤40°C)

Maximum bulb temperature under 39°C (Ta>40°C) See to it that no dew will be condensed.

- Note 3) Panel surface temperature prescribes.
- Note 4) Power consumption of one LED (Ta = 25°C). (use 6 pieces LED)

 Ambient temperature and the maximum input are fulfilling the following operating conditions.

Ambient temperature and the maximum input

6. Electrical Characteristics

6-1. TFT LCD Panel Driving

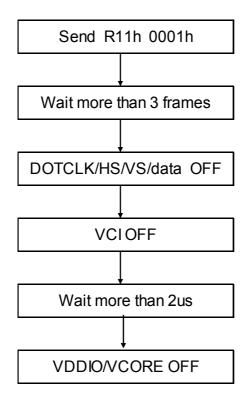
 $Ta = 25^{\circ}C$

It	em	Symbol	Min.	Тур.	Max.	Unit	Remarks
Logic I/O	DC voltage	V_{DDIO}	+2.5	+3.3	+3.6	V	
power supply	DC Current	I _{VDDIO}	-	0.35	0.50	mA	Note 1
Analog	DC voltage	V _{CI}	+3.0	+3.3	+3.6	V	
power supply	DC Current	I _{VCI}	-	13	18	mA	Note 1
Permis	sive input	V _{RFVDDIO}	-	-	100	mVp-p	Note 2
Ripple	voltage	V _{RFVCI}	-	-	100	mVp-p	Note 2
Logic	High	V _{IH}	0.8 V _{DDIO}	-	V_{DDIO}	V	Note 3
Input Voltage	Low	V _{IL}	0	-	0.2 V _{DDIO}	V	Note 3
Logic inp	out Current	I _{IH} / I _{IL}	-1	-	1	μA	Note 3

Note 1) $V_{DDIO} = V_{CI} = +3.3V$

Current situation for I_{VDDIO} : Black & White checker flag pattern

Current situation for I_{CI}: All black pattern


FDOTCLK: 5MHz

Note 2) $V_{DDIO} = V_{CI} = +3.3V$

Note 3) RESB, SHUT, CSB, SDI, SCK, DEN, B7~B0, G7~G0, R7~R0, VSYNC, HSYNC, DOTCLK

6-3. Power down sequence

6-4. Register Setting

Reg. #	Register	Data (Gamma 2.2)	Remark
R01 h	Driver output control	2AEF h	
R02 h	LCD driving AC control	0300 h	
R03 h	Power control 1	080E h	
R0B h	Frame cycle control	D000 h	
R0C h	Power control 2	0005h	
R0D h	Power control 3	000F h	
R0E h	Power control 4	2C00 h	
R11 h	Shut and 8 color	0000 h	Note 1
R12 h	Entry Mode	0064 h	Note 2
R16 h	Pixel per line	9F86 h	Note3
R17 h	Vertical porch	0002 h	Note4
R1E h	Power control 5	0000 h	
R28 h	Extended command 1	0006 h	
R2A h	Extended command 2	0187 h	
R30 h	Gamma control 1	0000 h	
R31 h	Gamma control 2	0103 h	
R32 h	Gamma control 3	0001 h	
R33 h	Gamma control 4	0501 h	
R34 h	Gamma control 5	0607 h	
R35 h	Gamma control 6	0406 h	
R36 h	Gamma control 7	0707 h	
R37 h	Gamma control 8	0305 h	
R3A h	Gamma control 9	0F0F h	
R3B h	Gamma control 10	0F02 h	

*In case is HS/VS mode

NOTE: R12h=0060h: DEN mode R12h=0064h: HS/VS mode

Note 1)

Shut and 8 color (R11h) IB15 IB14 R/W DC IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 \mathbf{CM} 0 0 0 0 0 0 0 SHUT 0 0 0 0 0 0 POR 0 0 0 X 0 0 0 0 0 0 \mathbf{X}

CM: When CM = 1, 8-color mode is selected.

When CM = 0, 262k color mode is selected.

SHUT: When SHUT = 1, the driver enters into the sleep mode. In the sleep mode, the internal display operations are halted.

Note: The default setting of register bits CM and SHUT are defined by the logic stage of corresponding hardware pins. These bits will override the hardware setting once software command was sent to set the bits.

Enter sleep mode automatically while VCI is lower than 2.4V +/-0.1V.

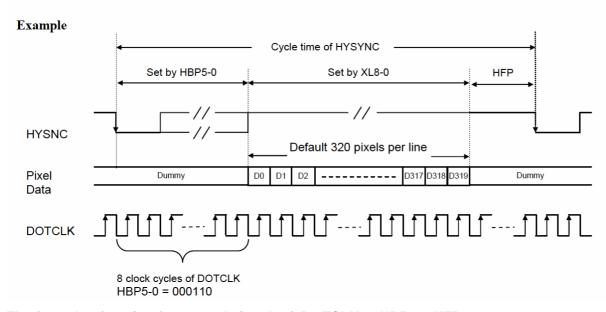
Note 2)

Entry	Entry Mode (R12h)																	
R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
W	1	0	0	0	0	0	0	0	0	0	IF1	IF0	CMI	IFS1	IFS0	0	0	
PC	R	0	0	0	0	0	0	0	0	0	1	1	1	0	1	0	0	

R12h	18-bit parallel	DEN mode	SYNC mode
0060h	Yes	Yes	No
0064h	Yes	No	Yes

Note: For DEN mode, minimum vertical porch = 2 and minimum horizontal porch = 4

Pixel per line (R16h) (POR = 9F86h)																	
R/W	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
\mathbf{W}	1	XL8	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	0	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
PC)R	1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0


Note: Number of dotclk for hypnc active low period must be smaller than that of HBP

XL8-0: Set the number of valid pixel per line.

XL8	XL7	XL6	XL5	XL4	XL3	XL2	XL1	XL0	No. of pixel per line
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	0	1	0	3
				:					:
		Step = 1							
				:					:
1	0	0	1	1	1	1	1	0	319
1	0	0	1	1	1	1	1	1	320
1	0	1	*	*	*	*	*	*	Reserved
1	1	*	*	*	*	*	*	*	Reserved

HBP5-0: Set the delay period from falling edge of HSYNC signal to first valid data.

нвр5	HBP4	нвр3	HBP2	НВР1	нвр0	No. of clock cycle of DOTCLK
0	0	0	0	0	0	2
0	0	0	0	0	1	3
0	0	0	0	1	0	4
0	0	0	0	1	1	5
0	0	0	1	0	0	6
0	0	0	1	0	1	7
0	0	0	1	1	0	8
0	0	0	1	1	1	9
0	0	1	0	0	0	10
			:			: Step = 1 :
1	1	1	1	1	0	64
1	1	1	1	1	1	65

The formula of setting for control signals: f_DOTCLK, t_HBP , t_HFP

t_VBP,t_VFP

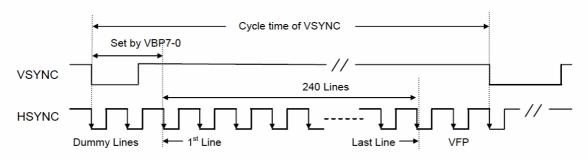
 $fv=60\pm5HZ$

fv=f_DOTCLK/(V_cycleXH_cycle)

V_cycle=240+t_VBP+t_VFP

H_cycle=320+t_HBP+t_HFP≤512

Note 4)


Vertical Porch (R17h) (POR = 0002h)

R/V	V	DC	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	7	1	0	0	0	0	0	0	0	0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
]	PO	R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

VBP7-0: Set the delay period from falling edge of VSYNC to first valid line. The line data within this delay period will be treated as dummy line.

VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	1	1	3
0	0	0	0	0	1	0	0	4
			•	:	•		•	:
				:				Step = 1
				:				:
1	1	1	0	1	1	1	1	239
1	1	1	1	0	0	0	0	240
1	1	1	1	*	*	*	*	Reserved

Example

The formula of setting for control signals: f_DOTCLK, t_HBP, t_HFP

t_VBP,t_VFP

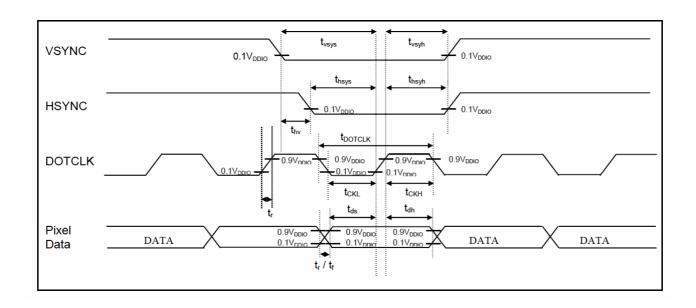
 $fv=60\pm5HZ$

fv=f_DOTCLK/(V_cycleXH_cycle)

V_cycle=240+t_VBP+t_VFP

H_cycle=320+t_HBP+t_HFP≤512

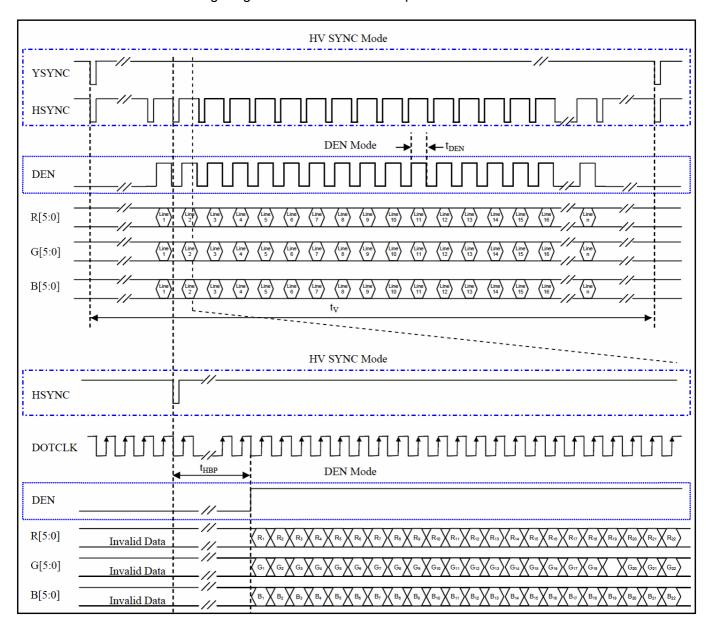
6-5. Back light driving


The back light system has 6 LEDs

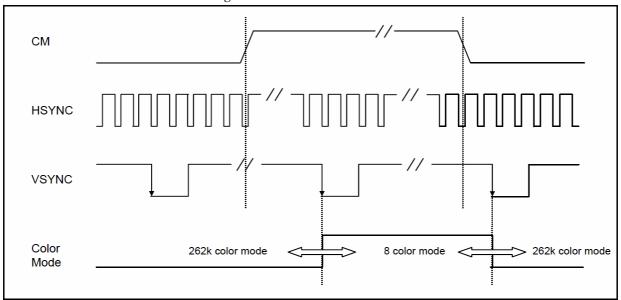
[GM4BW643B2A]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Rated Voltage	V_{BL}	-	19.2	21	V	
Rated Current	ΙL	-	20	-	mA	Ta=25°C
Power consumption	WL	-	400	-	mW	

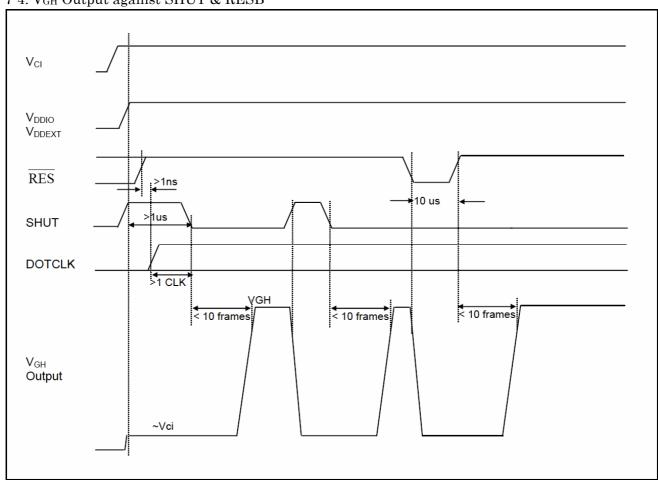
7. Timing characteristics of input signals


7-1. Pixel Clock Timing

Pixel Clock Timing


Characteristics	Symbol	Target Min	Target Typ	Target Max	Units
DOTCLK Frequency	f_{DOTCLK}	-	5	8	MHz
DOTCLK Period	t _{DOTCLK}	125	200	-	nSec
Pixel Clock Period	t_{PIXCLK}	-	1	-	t _{DOTCLK}
Pixel Clock Frequency	f_{PIXCLK}	-	5	8	MHz
Vertical Sync Setup Time	$t_{ m vsys}$	5	-	-	nSec
Vertical Sync Hold Time	$t_{ m vsyh}$	5	-	-	nSec
Horizontal Sync Setup Time	$t_{ m hsys}$	5	-	-	nSec
Horizontal Sync Hold Time	$t_{ m hsyh}$	5	-	-	nSec
Phase difference of Sync Signal Falling Edge	$t_{ m hv}$	0	-	320	t _{DOTCLK}
DOTCLK Low Period	t_{CKL}	16	-	-	nSec
DOTCLK High Period	t _{CKH}	16	-	-	nSec
Data Setup Time	$t_{ m ds}$	10	-	-	nSec
Data Hold Time	$t_{ m dh}$	10	-	-	nSec
Reset Pulse Width	t_{RES}	2.5	-	-	uSec
Rise / Fall Time	$t_{\rm r} / t_{\rm f}$	5	-	25	nSec

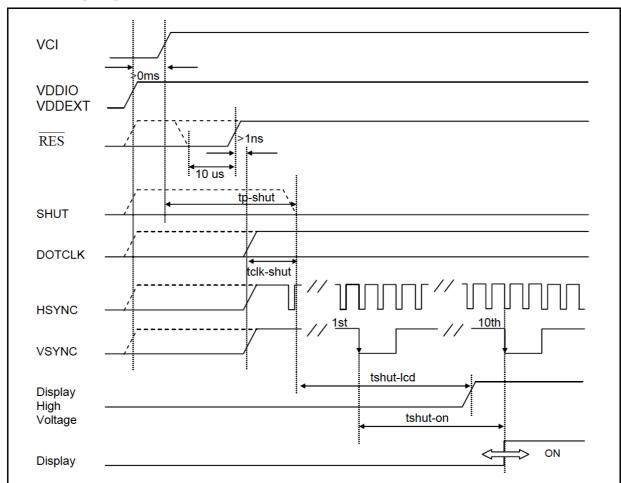
7-2. 18-bit RGB Interface Timing Diagram & Transaction Example


C	Characteristics	Symbol	HV SYNC Mode	DEN Mode	Units
Serial	Clock Frequency	1/t _{DOTCLK}	5	5	MHz
	One Line Period	$t_{ m H}$	336	336	t _{DOTCLK}
	Active Data Period	$t_{ m data}$	320	320	t _{DOTCLK}
Horizontal	Horizontal Back Porch	t _{HBP}	8	-	t _{DOTCLK}
	Horizontal Front Porch	$t_{ m vsys}$	8	-	t _{DOTCLK}
	Data Enable Period	t _{DEN}	-	320	t _{DOTCLK}
	One Field Period	t_{V}	244	244	t_{H}
	Active Line Period	$t_{ m AL}$	240	240	t_{H}
Vertical	Vertical Back Porch	$t_{ m VBP}$	2	-	t _H
	Vertical Front Porch	$t_{ m VFP}$	2	-	t_{H}

7-3. Color Mode Conversion Timing

Note: The color mode conversion starts at the first falling edge of VSYNC after stage change of CM.

7-4. V_{GH} Output against SHUT & RESB

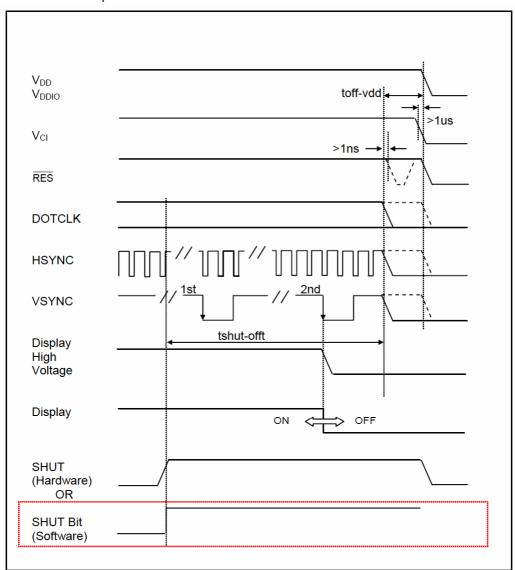

Note1: The minimum cycle time of SHUT is 10 + 2 frames.

Note2: DOTCLK must be provided for boosting of VGH. The above timing diagram assumed voltages and DOTCLK are continuous supplied after power on.

Note3: VGH will be forced to VCI at the low stage of RES.

Note4: The minimum pulse width of RESET is 10us.

7-5. Power Up Sequence



Characteristics	Symbol	Target Min	Target Typ	Target Max	Units
V _{DDEXT} / V _{DDIO} on to falling edge of SHUT	tp-shut	1	-	-	μsec
Start of DOTCLK to SHUT low	tclk-shut	1	-	-	DOTCLK
Falling edge of SHUT to LCD power on	tshut-lcd	-	-	164	msec
Falling edge of SHUT to display start		-	-	10	frame
1 line: 336 clk	tshut-on				
1 frame: 244 line	tsmut-on	-	164	-	msec
PIXCLK = 5.0MHz					

Note1: It is necessary to input DOTCLK before the falling edge of SHUT.

Note2: Display starts at 10th falling edge of VSTNC after the falling edge of SHUT.

7-6. Power Down Sequence

Characteristics	Symbol	Target Min	Target Typ	Target Max	Units
Rising edge of SHUT to display off 1 line: 336 clk	tshut-off	2	-	-	frame
1 frame: 244 line PIXCLK = 5.0 MHz	tshut-on	32.8	-	-	msec
Input-signal-off to V_{DDEXT} / V_{DDIO} off	toff-vdd	1	-	-	μsec

Note1: DOTCLK must be maintained at lease 2 frames after the rising edge of SHUT.

Note 2: Display become off at the 2^{nd} falling edge of VSTNC after the falling edge of SHUT.

Note3: If RESET signal is necessary for power down, provide it after the 2-frames-cycle of the SHUT period.

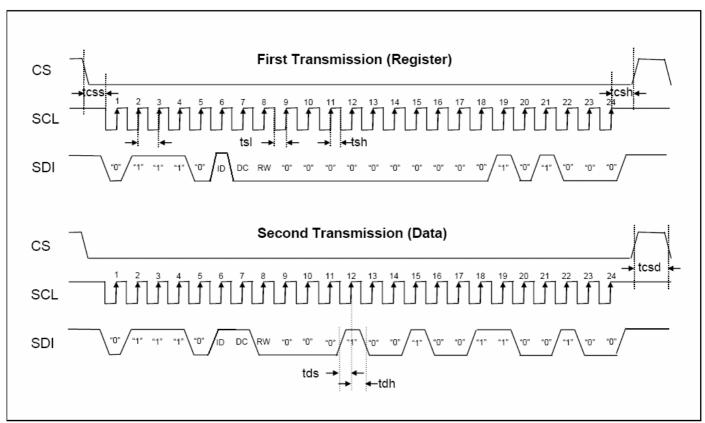


Figure 15-6 - SPI Interface Timing Diagram & Transaction Example

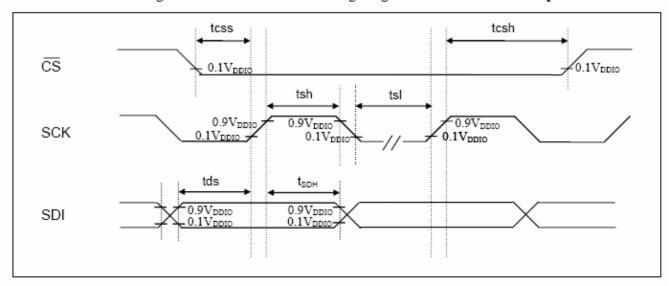
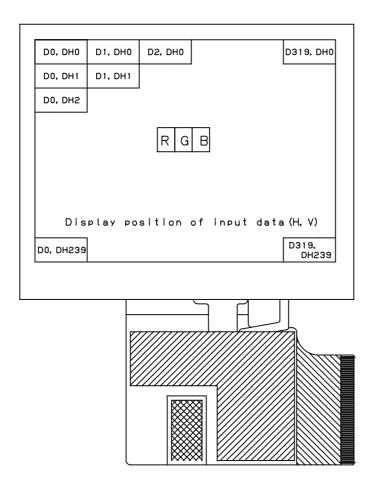



Figure 15-7 - SPI Interface Timing Diagram

Characteristics	Symbol	Target Min	Target Typ	Target Max	Units
Serial Clock Frequency	fclk	-	-	20	MHz
Serial Clock Cycle Time	tclk	50	1	-	nsec
Clock Low Width	ts1	25	1	-	nsec
Clock High Width	tsh	25	-	-	nsec
Chip Select Setup Time	tcss	0	1	-	nsec
Chip Select Hold Time	tcsh	10	ı	1	nsec
Chip Select High Delay Time	tcsd	20	1	1	nsec
Data Setup Time	tds	5	1	1	nsec
Data Hold Time	tdh	10	-	-	nsec

7-8. Input Data Signals and Display Position on the screen

Please refer to Input Terminal Names and Functions

8. Input Signals, Basic Display Colors and Gray Scale of Each Color

0. 111	put Signals, Basic Display Colors and Gray Scale of Each Color																			
	Colors &									Date	sign	al								
	Gray	Gray	R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	B1	B2	В3	B4	B5
	Scale	Scale	LSB					MSB	LSB					MSB	LSB					MSB
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
l	Green	_	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
asic	Cyan	_	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Basic Color	Red	_	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
악	Magenta	-	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sca	仓	\			1	l l					,	V					,	↓		
ile o	Û	\			1	l l					,	V						\downarrow		
f Re	Brighter	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
٥	Û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS63	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	Û	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ray :	Darker	GS2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Scal	仓	\			1	\					,	V					,	↓		
e of	Û	\			1	l l					,	V						\downarrow		
Gray Scale of Green	Brighter	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0
ne	Û	GS62	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	Green	GS63	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Gray Scale of Blue	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Sca	仓	V			1	V					,	V						↓		
le o	Û	V			1	l l					,	V						\downarrow		
f Blu	Brighter	GS61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1
ē	Û	GS62	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	Blue	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ட											Λ. Ι	ow		- 11 -		_	!	<u> </u>	Ĩ	1

0: Low level voltage, 1: High level voltage

9. Optical Characteristics

Ta = 25°C, V_{DDIO} = +3.3V, V_{CI} = +3.3V

		1	1			<u> </u>	0.01, 1	CI - 13.3 V
Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing	Horizontal	θ21		-	60	-	deg.	
angle range		θ22	CR>10	-	60	-	deg.	[N]-4-4 4]
(Without	Vertical	θ11	CR > 10	-	40	-	deg.	[Note1,4]
Wide View)	Vortioal	θ12		-	60	-	deg.	
Contra	st ratio	Optimum CR viewing angle		100	300	-		【Note2,4】
Response	Rise	Tr	0.00	-	30	45	ms	[N + 0 +]
Time	Decay	Td	θ=0°	-	30	45	ms	【Note3,4】
Chroma	ticity of	х		0.26	0.31	0.36		To 1 4 1
Wh	nite	у		0.29	0.34	0.39		[Note4]
Chroma	aticity of	Х		0.54	0.59	0.64		Maria Al
Re	ed	Y		0.25	0.30	0.35		[Note4]
Chroma	aticity of	Х		0.27	0.32	0.37		7 01 (4 3
Gre	een	Y		0.50	0.55	0.60		[Note4]
Chroma	aticity of	Х		0.08	0.13	0.18		7 01 (4 3
Bl	ue	у		0.04	0.09	0.14		[Note4]
Luminanc	e of white	XL1		250	320	-	cd/m²	ILED=20mA 【Note6】
NTSC	ratio				50	-	%	
Unifo	rmity	U		70	80	-	%	[Note5]

^{*} The optical characteristics measurements are operated under a stable luminescence (ILED = 20mA) and a dark condition. (Refer to Fig.9-1)

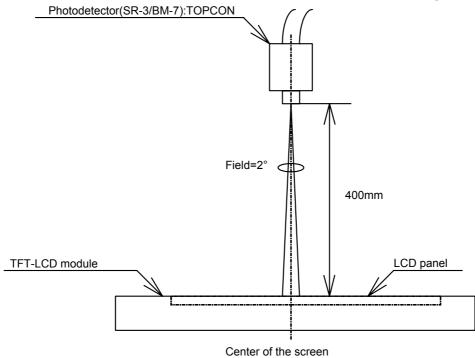
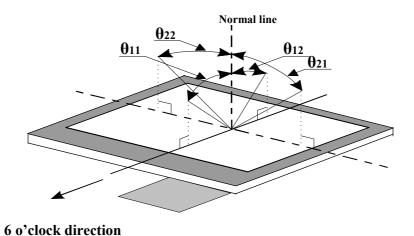
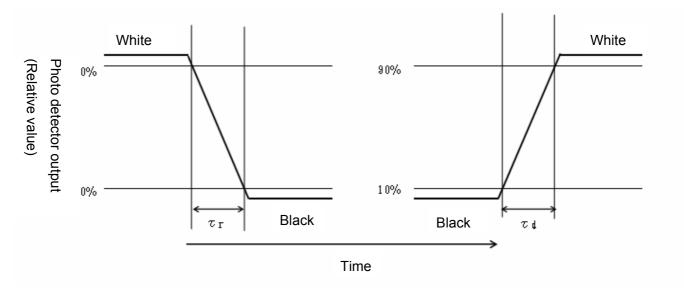



Fig.9-1 Optical characteristics measurement method

[Note 1] Definitions of viewing angle range

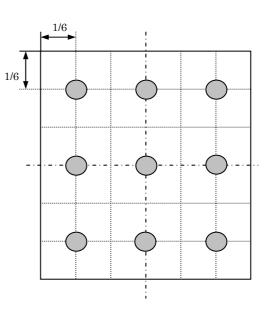


[Note 2] Definition of contrast ratio

The contrast ratio is defined as the following $Contrast\ ratio\ (CR) = \frac{Luminance\ (brightness)\ with\ all\ pixels\ white}{Luminance\ (brightness)\ with\ all\ pixels\ black}$

[Note 3] Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "Black" and "White"



[Note 4] This shall be measured at center of the screen.

[Note 5] Definition of Uniformity

 $Uniformity = \frac{Minimum \, Brightness}{Maximum \, Brightness} \times 100 \, (\%)$

The brightness should be measured on the 9-point as shown in the right figure.

[Note 6] This shall be measured on the 9-point as shown in the right figure.

$$Luminance of white = \frac{Summation of the 9 - point Brightness}{9}$$

10. Touch panel characteristics

Parameter	Min.	Тур.	Max.	Unit	Remark
Input voltage	ı	5.0	7.0	V	
Resistor between terminals(XL-XR)	200	603	900	Ω	Provisional
Resistor between terminals(YU-YD)	200	372	900	Ω	specification
Line linearity(X direction)	-	-	1.5	%	
Line linearity(Y direction)	-	-	1.5	%	
Insuration resistance	20	-	-	ΜΩ	at DC25V
Minimum tension for detecting	-	-	0.79	N	

Note) For use of finger input

11. Handling of modules

- 11-1. Inserting the FPC into its connector and pulling it out
- 1) Be sure to turn off the power supply and the signals when inserting or disconnecting the cable.
- 2) Please insert for too much stress not to join FPC in the case of insertion of FPC.

11-2. About handling of FPC

- 1) The bending radius of the FPC should be more than 0.6mm, and it should be bent evenly.
- 2) Do not dangle the LCD module by holding the FPC, or do not give any stress to it.

11-3. Mounting of the module

- 1) The module should be held on to the plain surface. Do not give any warping or twisting stress to the module.
- 2) Please consider that GND can ground a modular metal portion etc. so that static electricity is not charged to a module.
- 3) Design guidance for touch panel (T/P)
 - a) Example of housing design
 - (1) If a consumer will put a palm on housing in normal usage, care should be taken as follows.
 - (2) Keep the gap, for example 0.3 to 0.7mm, between bezel edge and T/P surface.

 The reason is to avoid the bezel edge from contacting T/P surface that may cause a "short" with bottom layer. (See Fig.11-3-1)
 - (3) Insertion a cushion material is recommended.
 - (4) The cushion material should be limited just on the busbar insulation paste area. If it is over the transparent insulation paste area, a "short" may be occurred.
 - (5) There is one where a resistance film is left in the T/P part of the end of the pole.

 Design to keep insulation from the perimeter to prevent from mis-operation and so on.

- b) Mounting on display and housing bezel
 - (1) In all cases, the T/P should be supported from the backside of the Plastic.
 - (2) Do not to use an adhesive-tape to bond it on the front of T/P and hang it to the housing bezel.
 - (3) Never expand the T/P top layer (PET-film) like a balloon by internal air pressure. The life of the T/P will be extremely short.
 - (4) Top layer, PET, dimension is changing with environmental temperature and humidity. Avoid a stress from housing bezel to top layer, because it may cause "waving".
 - (5) The input to the touch panel sometimes distorts touch panel itself.

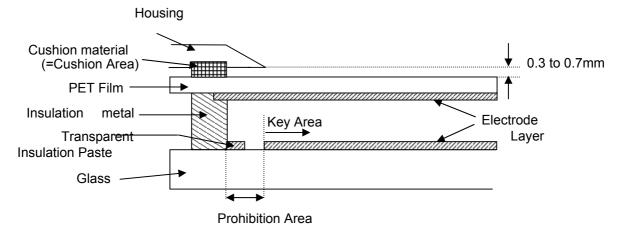


Fig.11-3-1

11-4. Cautions in assembly / Handling pre cautions

As the polarizer can be easily scratched, be most careful in handling it.

- 1) Work environments in assembly.
 - Working under the following environments is desirable:
- a) Implement more than $1M\Omega$ conductive treatment (by placing a conductive mat or applying conductive paint) on the floor or tiles.
- b) No dusts come in to the working room. Place an adhesive, anti-dust mat at the entrance of the room.
- c) Humidity of 50 to 70% and temperature of 15 to 27°C are desirable.
- d) All workers wear conductive shoes, conductive clothes, conductive fingerstalls and grounding belts without fail.
- e) Use a blower for electrostatic removal. Set it in a direction slightly tilt downward so that each Module can be well subjected to its wind. Set the blower at an optimum distance between the blower and the module.
- 2) How the remove dust on the polarizer
- a) Blow out dust by the use of an N2 blower with antistatic measures taken. Use of an ionized air Gun is recommendable.
- b) When the panel surface is soiled, wipe it with soft cloth.
- 3) In the case of the module's metal part (shield case) is stained, wipe it with a piece of dry, soft cloth.

 If rather difficult, give a breath on the metal part to clean better.

- 4) If water dropped, etc. remains stuck on the polarizer for a long time, it is apt to get discolored or cause stains. Wipe it immediately.
- 5) As a glass substrate is used for the TFT-LCD panel, if it is dropped on the floor or hit by something hard, it may be broken or chipped off.
- 6) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.

11-5. Others

1) Regarding storage of LCD modules, avoid storing them at direct sunlight-situation.

You are requested to store under the following conditions:

(Environmental conditions of temperature/humidity for storage)

a) Temperature: 0 to 40°C

b) Relative humidity: 95% or less

As average values of environments (temperature and humidity) for storing, use the following control guidelines:

Summer season: 20 to 35°C, 85% or less Winter season: 5 to 15°C, 85% or less If stored under the conditions of 40°C and 95% RH, cumulative time of storage must be less than 240 hours.

- 2) If stored at temperatures below the rated values, the inner liquid crystal may freeze, causing cell destruction. At temperatures exceeding the rated values for storage, the liquid crystal may become isotropic liquid, making it no longer possible to come back to its original state in some cases.
- 3) If the LCD is broken, do not drink liquid crystal in the mouth. If the liquid crystal adheres to a hand or foot or to clothes, immediately cleanse it with soap.
- 4) If a water drop or dust adheres to the polarizer, it is apt to cause deterioration. Wipe it immediately.
- 5) Be sure to observe other caution items for ordinary electronic parts and components.
- 6) If local pressure joins T/P surface for a long time, it will become the cause of generating of Newton's ring.

12. Reliability test items

No.	Test item	Conditions
1	High temperature storage test	Ta = 80°C 240h
2	Low temperature storage test	Ta = -30°C 240h
3	High temperature	Ta = 40°C; 95%RH 240h
	& high humidity operation test	(No condensation)
4	High temperature operation test	Ta = 70°C 240h
5	Low temperature operation test	Ta = -20°C 240h
6		Frequency range: 10 to 55Hz
	Vibration test (non- operating)	Stroke: 1.5mm
		Sweep time: 1minutes
		Test period: 2 hours for each direction of X,Y,Z
7	Shock test	Direction: ±X, ±Y, ±Z, Time: Third for each direction.
		Impact value: 980m/s², Action time 6ms
8	Thermal shock test	Ta=-20°C to 70°C /10 cycles
		(30 min) (30min)
9	Point activation test	Hit it 100,000 times with a silicon rubber.
	(Touch panel)	Hitting force : 2.4 N
	(Touch panel)	Hitting speed : 2 times per second
10	Electro static discharge test	±200V·200pF(0Ω) to Terminals(Contact)
		(1 time for each terminals)
		1 `
		±4kV•150pF(330Ω) to Housing bezel or T/P(Contact)
		±8kV•150pF(330Ω) to Housing bezel or T/P(in Air)

[Note] Ta = Ambient temperature, Tp = Panel temperature

[Check items]

(a)Test No.1 to No.8

In the standard condition, there shall be no practical problems that may affect the display function.

(b)Test No.9

The measurements after the tests are satisfied "10 Touch panel characteristics".

13. Display Grade

The standard regarding the grade of color LCD displaying modules should be based on the delivery inspection standard.

14. Delivery Form

14-1. Carton storage conditions

1) Carton piling-up: Max 8 rows

2) Environments

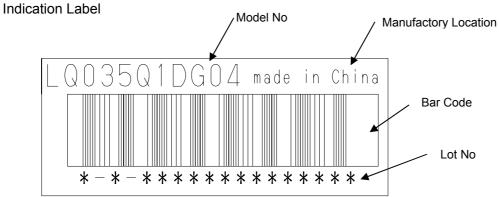
Temperature: 0~40°C

Humidity: 65% RH or less (at 40°C)

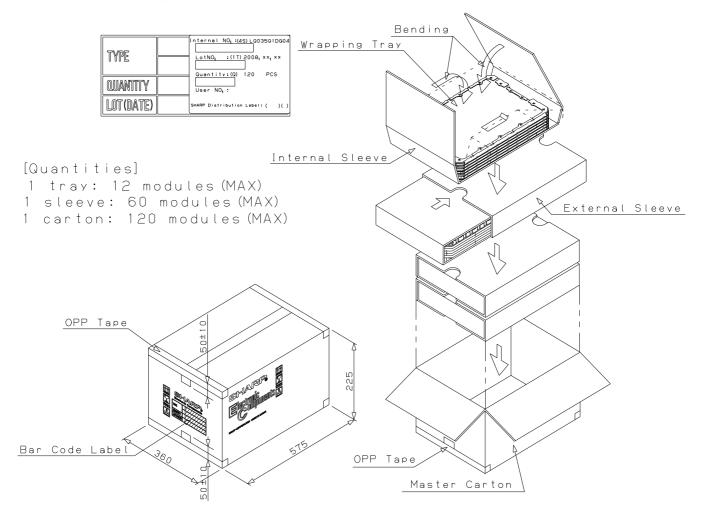
There should be no dew condensation even at a low temperature and high humidity.

3) Packing form: As shown in 16. LCD module packing carton

*Cartons are weak against damp, and they are apt to be smashed easily due to the compressive pressure applied when piled up. The above environmental conditions of temperature and humidity are set in consideration of reasonable pile-up for storage.

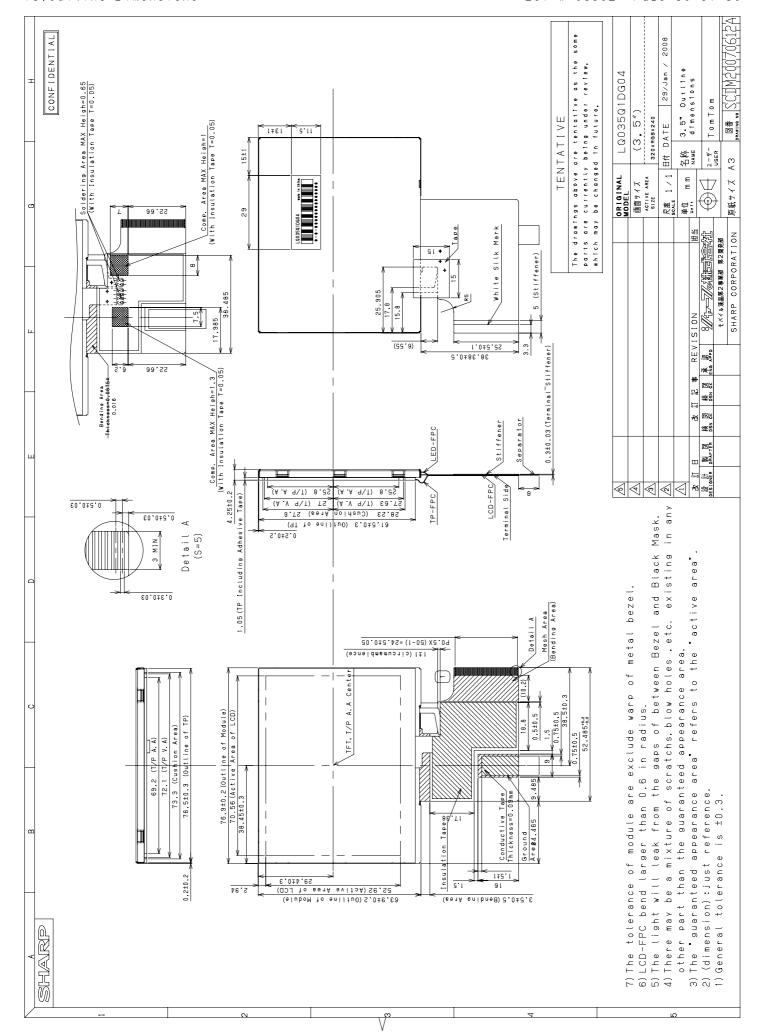

14-2. Packing composition

Name	quantity	Note
Carton size	1	575×360×225 (mm)
Tray	12	Material: Electrification prevention polypropylene
(The number of Module)	12	12 unit/tray: 120 unit/carton
Electrification prevention bag	2	Material: Electrification prevention polyethylene
		680mm(length)×500mm(depth)×50µm(thin)


Carton weight (120 modules): Approx. 9.8kg

15. Lot No. marking

The lot No. will be indicated on individual labels. The location is as shown



16. LCD module packing carton

17. Others

- 1 Disassembling the module can cause permanent damage and you should be strictly avoided.
- 2 Please be careful that you don't keep the screen displayed fixed pattern image for a long time, since retention may occur.
- 3 If you pressed down a liquid crystal display screen with your finger and so on, the alignment disorder of liquid crystal will occur. And then It will become display fault.
 - Therefore, be careful not to touch the screen directly, and to consider not stressing to it.
- 4 If any problem arises regarding the items mentioned in this specification sheet or otherwise, it should be discussed and settled mutually in a good faith for remedy and/or improvement.

