

Specification

LQ420D3LZ19

Version February 2007

MODEL No. : LQ420D3LZ19

SPEC No. : LD-19231

DATE	NO.	REVISED No.	PAGE	SUMMARY	NOTE
2007.02.26	LD-19231	_	_	—	1st Issue
			10		
			177		
			•••••		
		· · · · · · · · · · · · · · · · · · ·		l	
				l	

$\langle \mathcal{O} \rangle$

1. Application

This specification applies to the color 42" TFT-LCD module LQ420D3LZ19.

* These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (<u>Thin Film Transistor</u>). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a $1920 \times RGB \times 1080$ dots panel with 16,777,216 colors by using LVDS (Low Voltage Differential Signaling) to interface, +12V of DC supply voltages.

This module also includes the DC/AC inverter to drive the CCFT. (+24V of DC supply voltage)

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit .In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

Parameter	Specifications	Unit
Display size	163.9 (Diagonal)	cm
Display size	64.5 (Diagonal)	inch
Active area	930.24(H) x 523.26 (V)	mm
Dival Format	1920(H) x 1080(V)	nival
Fixer Format	(1pixel = R + G + B dot)	pixei
Pixel pitch	0.1615(H) x 0.484 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Unit Outline Dimensions (*1)	1035 (W) x 585(H) x 100.0(D)	mm
Mass	33.5 +/- 0.5	kg
Surface treatment	Anti glare, low reflection coating	
Surface ireatifient	Hard coating: 2H	
	11a1a couning. 211	

3. Mechanical Specifications

(*1) Outline dimensions are shown in Fig.1-1,1-2.

4-1. TFT panel driving

CN1 (Interface signals and +12V DC power supply) (Shown in Fig.1)

Using connector

:SM30B-LDYGLS (JST)

Mating connector

:FI-X30H, FI-X30C or FI-X30M (Japan Aviation Electronics Ind. , Ltd.)

Mating LVDS transmitter

:THC63LVDM83A or equivalent device

Pin No.	Symbol	Function	Remark
1	VCC	+12V Power Supply	
2	VCC	+12V Power Supply	
3	VCC	+12V Power Supply	
4	VCC	+12V Power Supply	
5	GND	GND	
6	GND	GND	
7	GND	GND	
8	GND	GND	
9	GND	GND	
10	AIN0-	Aport (-)LVDS CH0 differential data input	LVDS
11	AIN0+	Aport (+)LVDS CH0 differential data input	LVDS
12	AIN1-	Aport (-)LVDS CH1 differential data input	LVDS
13	AIN1+	Aport (+)LVDS CH1 differential data input	LVDS
14	AIN2-	Aport (-)LVDS CH2 differential data input	LVDS
15	AIN2+	Aport (+)LVDS CH2 differential data input	LVDS
16	ACK-	Aport LVDS Clock signal(-)	LVDS
17	ACK+	Aport LVDS Clock signal(+)	LVDS
18	AIN3-	Aport (-)LVDS CH3 differential data input	LVDS
19	AIN3+	Aport (+)LVDS CH3 differential data input	LVDS
20	BIN0-	Bport (-)LVDS CH0 differential data input	LVDS
21	BIN0+	Bport (+)LVDS CH0 differential data input	LVDS
22	BIN1-	Bport (-)LVDS CH1 differential data input	LVDS
23	BIN1+	Bport (+)LVDS CH1 differential data input	LVDS
24	BIN2-	Bport (-)LVDS CH2 differential data input	LVDS
25	BIN2+	Bport (+)LVDS CH2 differential data input	LVDS
26	BCK-	Bport LVDS Clock signal(-)	LVDS
27	BCK+	Bport LVDS Clock signal(+)	LVDS
28	BIN3-	Bport (-)LVDS CH3 differential data input	LVDS
29	BIN3+	Bport (+)LVDS CH3 differential data input	LVDS
30	GND	GND	

[note]GND of a liquid crystal panel drive part has connected with a module chassis.

· Interface block diagram

Corresponding Transmitter: THC63LVDM83R (THine) or equivalent device

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

|--|

[Note 1]SELLVDS

Transmitter		SELLVDS		
Pin No	Data	=L(GND)	=H(3.3V) or Open	
51	TA0	R0(LSB)	R2	
52	TA1	R1	R3	
54	TA2	R2	R4	
55	TA3	R3	R5	
56	TA4	R4	R6	
3	TA5	R5	R7(MSB)	
4	TA6	G0(LSB)	G2	
6	TB0	G1	G3	
7	TB1	G2	G4	
11	TB2	G3	G5	
12	TB3	G4	G6	
14	TB4	G5	G7(MSB)	
15	TB5	B0(LSB)	B2	
19	TB6	B1	B3	
20	TC0	B2	B4	
22	TC1	B3	B5	
23	TC2	B4	B6	
24	TC3	B5	B7(MSB)	
27	TC4	NA	NA	
28	TC5	NA	NA	
30	TC6	DE(*)	DE(*)	
50	TD0	R6	R0(LSB)	
2	TD1	R7(MSB)	R1	
8	TD2	G6	G0(LSB)	
10	TD3	G7(MSB)	G1	
16	TD4	B6	B0(LSB)	
18	TD5	B7(MSB)	B1	
25	TD6	NA	NA	

NA: Not Available DE: Display Enable

(*) Since the display position is prescribed by the rise of DE (Display Enable) signal, please do not fix DE signal during operation at "High".

SELLVDS= High (3.3V) or Open

DE: Display Enable NA: Not Available (Fixed Low)

[Note 2]Display reversal function

[Note 3] O/S Setting

According as the surface temperature of the panel, enter the optimum 3 bit signal into pin No.36,37,38. Measuring the correlation between detected temperature by the sensor on PWB in users side and actual surface temperature of panel at center, convert the temperature detected by the sensor to the surface temperature of panel to enter the 3 bit temperature data.

	Surface temperature of panel							
Pin no.	0-5℃	5-10℃	10-15°C	15-20°C	20-25℃	25-30℃	30-35℃	35℃ and
								above
36	0	0	0	0	1	1	1	1
37	0	0	1	1	0	0	1	1
38	0	1	0	1	0	1	0	1

*0: Low level voltage (GND) 1: High level voltage(3.3V)

*For overlapping temperatures (such as 5° C, 10° C, 15° C, 20° C, 25° C, 30° C, 35° C) select the optimum parameter, judging from the actual picture image.

[Note 4]

Pin No.	Symbol	Function	Remark
39	Von	Inverter ON / OFF	[Note A]
33	V _{BRT}	Brightness Control	[Note B]

*GND of an inverter board is connected to GND of a module chassis and a liquid crystal panel drive part.

[Note A] Inverter ON/OFF

Input voltage	Function
3.3V	Inverter: ON
0V	Inverter: OFF

[Note B] Brightness Control

PWM Brightness Control is regulated by analog input voltage (0V to 3.3V).

Input voltage	Function
0V	Brightness Control : (Dark :20%)
3.3V	Brightness Control : (Bright: 100%)

4-2. Backlight driving

CN3, CN4, CN5,CN6,CN7,CN8 (Inverter Power input Pin layout) Using connector: B10B-PH-K-S(LF)(J.S.T. Mfg Co.,Ltd.)

Mating connector: PHR-10(J.S.T. Mfg Co.,Ltd.)

Pin No.	Symbol	Function
1	V _{INV}	24V
2	V _{INV}	24V
3	V _{INV}	24V
4	V _{INV}	24V
5	V _{INV}	24V
6	GND	GND
7	GND	GND
8	GND	GND
9	GND	GND
10	GND	GND

*GND of an inverter board is connected to GND of a module chassis and a liquid crystal panel drive part.

4-3. The back light system characteristics

The back light system is direct type with 36 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table.

The value mentioned below is at the case of one CCFT.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	TL	-	60000		Hour	[Note]

[Note] • Lamp life time is defined as the time when brightness becomes 50% of the original value

in the continuous operation under the condition of Ta=25 $^{\circ}$ C and brightness control(V_{BRT}=3.3V).

• Above value is applicable when the long side of LCD module is placed horizontally

(Landscape position).

(Lamp lifetime may vary if LCD module is in portrait position due to the change of

mercury density inside the lamp.)

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage (for Control)	VI	Ta=25 ℃	-0.3 ~ 3.6	V	[Note 1]
12V supply voltage (for Control)	VCC	Ta=25 °C	$0 \sim + 14$	V	
Input voltage (for Inverter)	Vbrt Von	Ta=25 °C	0~+6	V	
24V supply voltage (for Inverter)	$V_{\rm INV}$	Ta=25 °C	0~+27	V	
Storage temperature	Tstg	-	-25 ~ +60	°C	
Operation temperature (Ambient)	Тора	-	0~+50	°C	[Note 2]

[Note 1]SELLVDS, R/L,U/D, Frame1,O/S set, Temp1, Temp2, Temp3

[Note 2]Humidity 95%RH Max.(Ta≦40°C)

Maximum wet-bulb temperature at 39 $\,\,^\circ\!\!\mathrm{C}\,$ or less.(Ta>40 $\,\,^\circ\!\!\mathrm{C}\,)\,/\,$ No condensation.

6. Electrical Characteristics

6-1	Control	circuit	driving
0-1.	Control	uncun	unving

1. Control circu	iit driv	ving						Ta=25 ℃
Para	amete	r	Symbol	Min.	Тур.	Max.	Uniit	Remark
12V gunnly	Supp	oly voltage	Vcc	11.4	12.0	12.6	V	[Note 1]
± 12 v supply	(Current	Icc	-	1.20	1.75	А	[Note 2]
vonage			Iccs	0.3			А	[Note 7]
Permissible input ripple voltage			Vrp	-	-	100	mVP-P	Vcc = +12.0V
Differential i	nput	High	Vth	-	-	100	mV	$V_{CM} = +1.2V$
threshold vol	threshold voltage Low		Vtl	-100	-	-	mV	[Note 6]
Input Lo	ow vo	ltage	Vil	-	-	0.8	V	[Niete 2]
Input H	igh vo	ltage	Vih	2.0	-	3.3	V	
Input leak current (Low)			IIL	-	-	400	μΑ	$V_I = 0V$ [Note 4]
Input leak current (High)			Іш	-	-	400	μΑ	V ₁ = 3.3V [Note 5]
Terminal resistor			RT	-	100	-	Ω	Differential input

[Note]VCM: Common mode voltage of LVDS driver.

[Note 1]

* Data1:ACK±,AIN0±,AIN1±,AIN2±,AIN3±,BCK±,BIN0±,BIN1±,BIN2±,BIN3± ※ Data2:U/D,R/L,SELLVDS,Frame1,O/Sset,Temp1,2,3

About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

 \bigotimes

[Note 2] Maximum current situation: white (RGB GS255)

Typical current situation: 256 gray-bar pattern (Vcc = +12.0V) The explanation of RGB gray scale is seen in section 8.


```
Vcc = 12.0V

CK = 74.25MHz

Th = 14.8\mu s
```

[Note 3] U/D,R/L, SELLVDS, Frame1,O/S set, Temp1, Temp2, Temp3

[Note 4] SELLVDS

[Note 5] U/D,R/L, Frame1,O/S set, Temp1, Temp2, Temp3

[Note 6] ACK±,AIN0±,AIN1±, AIN2±, AIN3±, BCK±,BIN0±,BIN1±, BIN2±, BIN3±

[Note 7] The minimum current value is a value when inputting only voltage (Vcc=+12V)

and cutting an incoming signal (CK,ENAB,DATA).

 $\langle \mathcal{P} \rangle$

Ta=25℃

6-2. Inverter	driving	for	back	light
---------------	---------	-----	------	-------

The back light system is direct type with 36 CCFTs (Cold Cathode Fluorescent Tube).

Parameter Symbol Max. Unit Remark Min. Typ. $V_{INV} = 24V$ IINV 1 _ 19.8 21.9 А Current dissipation VBRT = 3.3V, +24VIINV 2 -17.0 18.7 А $V_{ON}=3.3V$ V Supply voltage VINV 23.0 24.0 25.0 [Note 1,3] Permissible input ripple Vrf 200 $V_{INV} = +24V$ _ mV_{p-p} voltage Input voltage (Low) Vonl 1.0 0 V Von [Note 1] -Input voltage (High) VONH 3.0 5.0 V impedance= $(3.5k\Omega)$ impedance= $(45k\Omega)$ Brightness control voltage V 0 \rightarrow 3.3 [Note 2] vs Brightness level 20 \rightarrow 100 % (Reference value)

[Note 1] 1)VINV-turn-on condition

2) VINV-turn-off condition

[Note 2] VBRT

[Note 3] Current dissipation 1 : The regulation value within 120 minutes after the turning on.

(*It doesn't include Rush current.)

Current dissipation 2 : The regulation value since then of 120 minutes after the turning on.

[Note] The inverter unit is driving at the following drive frequency.

*The lamp drive frequency: 36kHz +/- 1kHz

*The burst Brightness control drive frequency: 165Hz +/-10 Hz

The above drive frequency and the module drive frequency are cause and there is possibility that the backlight display problem occurs. When setting the drive frequency of the module, the interference with the above frequency make not occur.

 $\langle p \rangle$

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.2.

60Hz-mode

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	55	74.25	80	MHz	
	Horizontal period	тн	984	1100	1650	clock	
	Horizontal period	111	14.8	14.8	-	μs	
Data enable	Horizontal period (High)	THd	960	960	960	clock	
signal	Horizontal period(Low)	TH-THd	1.80	1.87	-	μs	
	Vertical period	TV	1096	1125	1350	line	
	Vertical period (High)	TVd	1080	1080	1080	line	

[Note] When vertical period is very long, flicker and etc. may occur.

Please turn off the module after it shows the black screen.

Please make sure that length of vertical period should become of an integral

multiple of horizontal length of period. Otherwise, the screen may not display properly.

Fig.2 Timing characteristics of input signals

www.panelook.com

 $\langle p \rangle$

7-2. Input data signal and display position on the screen

Display position of Dat (V,H)

 $\langle \! \! \rangle$

	Cala 0												Data	sign	al											
	Colors &	Gray	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	В3	B4	B5	B6	B7
	Gray scale	Scale																								
	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
or	Green	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Cole	Cyan	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
asic	Red	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Magenta	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ŧ	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rec	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le of	仓	\downarrow				``	r							1	\mathbf{b}			Ø								
Sca	Û	\downarrow				、	r							1	4			>								
Jray	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\cup	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
u	仓	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gree	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e of	仓	\downarrow				``	r							1	r											
Scale	Û	\rightarrow					r							1	L								6			
ray '	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
G	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Blu	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
le of	Û	\checkmark				``	r							1	\downarrow											
Sca	Û	\checkmark				``	r							1	L											
ìray	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
\cup	Û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0 : I	Low leve	l voltas	ge.		1	: Hi	gh le	velv	olta	ge.																

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16-million-color display can be achieved on the screen.

$\langle \mathcal{P} \rangle$

 $Ta=25^{\circ}C$, Vcc = 12.0V, VINV = 24.0V, 60Hz-mode

Parai	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Viewing angle	Horizontal	θ 21 θ 22	CP > 10	80	88	-	Deg.	[Nistal 4]
range	Vertical	θ 11 θ 12	CR≦10	80	88	-	Deg.	[Note1,4]
Contra	st ratio	CRn		1000	2000	-		[Note2,4] V _{BRT} =3.3V
Respon	ise time	τr1 τd1			6		ms	[Note3,4,5] V _{BRT} =3.3V
		X		0.257	0.287	0.317	- 📣	
Luminanc	e of white	у		0.265	0.295	0.325	-	
Luninon	as of red	Х		0.619	0.649	0.679	-	
Luminan	ice of red	у	$\theta = 0 \text{ deg.}$	0.308	0.338	0.368		[Note 4]
Luminono	a of one on	X		0.251	0.281	0.311	-	$V_{BRT}=3.3V$
Luminanc	e of green	у		0.580	0.610	0.640		
Luminance of blue		X		0.111	0.141	0.171	-	
		у		0.045	0.075	0.105	-	
Luminance of white		Y _{L1}		360	450		cd/m ²	VBRT=3.3V [Note 4]
Luminance uniformity		δ w		-	-	1.25		[Note 6]

Measurement condition : Set the value of V_{BRT} to maximum luminance of white.

*The measurement shall be executed 120 minutes after lighting at rating.

Fig.4-1 Measurement of viewing angle range.

Fig.4-2 Measurement of Contrast, Luminance, Chromaticity and Response time. (Contrast, Luminance and Chromaticity: SR-3, Response time: BM-5A).

[Note 1]Definitions of viewing angle range :

✓ 6 o'clock direction

[Note 2]Definition of contrast ratio :

The contrast ratio is defined as the following.

Luminance (brightness) with all pixels white

Contrast Ratio=

Luminance (brightness) with all pixels black

[Note 3]Definition of response time

3-1. Response time

The response time (τ d1 and τ r1) is defined as the following figure and shall be measured by switching the input signal for "five luminance ratio(0%, 25%, 50%, 75%, 100%)" and "five luminance ratio(0%, 25%, 50%, 75%, 100%)".

	0%	25%	50%	75%	100%
0%		tr:0%-25%	tr:0%-50%	tr:0%-75%	tr:0%-100%
25%	td:25%-0%		tr:25%-50%	tr:25%-75%	tr:25%-100%
50%	td:50%-0%	td:50%-25%		tr:50%-75%	tr:50%-100%
75%	td:75%-0%	td:75%-25%	td:75%-50%		tr:75%-100%
100%	td:100%-0%	td:100%-25%	td:100%-50%	td:100%-75%	

t*:x-y...response time from level of gray(x) to level of gray(y)

 $\tau \mathbf{r1} = \Sigma(\text{tr:x-y})/10$, $\tau \mathbf{d1} = \Sigma(\text{td:x-y})/10$

[Note 4]This shall be measured at center of the screen.

[Note 5] Response time is the value when O/S driving is used at typical input time value .

[Note 6]Definition of white uniformity;

White uniformity is defined as the following with five measurements. $(A \sim E)$

Maximum luminance of five points (brightness)

 $\delta w =$

Minimum luminance of five points (brightness)

10. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) This product is using the parts (inverter, CCFT etc), which generate the high voltage.
- Therefore, during operating, please don't touch these parts.
- c) Brightness control voltage is switched for "ON" and "OFF", as shown in Fig.4. Voltage difference generated by this switching, Δ VINV, may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

Fig.4 Brightness control voltage.

*Since inverter board's GND is not connected to the frame of the LCD module, please connect it with the Customer's GND of inverter power supply.

- d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- e) Since the front polarizer is easily damaged, pay attention not to scratch it.
- f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- g) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- i) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- j) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- k) Observe all other precautionary requirements in handling components.
- 1) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design.
- m) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- n) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.

- Lamps of the backlight are placed horizontally to the short side of LCD module. So make sure that the LCD module are placed horizontally (landscape position), as lifetime of backlight becomes shorter if placed at atilt.
- p) Make sure that the LCD module is operated within specified temperature and humidity.Measures against dust, water, vibration, and heat radiation, etc. are required at the cabinet or equipment side.And image retention may occur if same fixed pattern is displayed for a long time. In some cases, it may notdisappear.

Please consider the design and operating environment

11. Packing form

- a) Piling number of cartons: 2 maximum
- b) Packing quantity in one carton: 4 pcs.
- c) Carton size: 1100 (W) $\,\times\,$ 650 (D) $\,\times\,$ 100(H)
- d) Total mass of one carton filled with full modules: 38kg(typ)
- e) Packing Form are shown in Fig. 5

12. Reliability test item

No.	Test item	Condition					
1	High temperature storage test	Ta=60°C 240h					
2	Low temperature storage test	Ta=-25°C 240h					
3	High temperature and high humidity	Ta=40°C ; 95%RH 240h					
5	operation test	(No condensation)					
4	High temperature operation test	Ta=50°C 240h					
5	Low temperature operation test	Ta=0°C 240h					
	Vibration test	Frequency: 10~57Hz/Vibration width (one side): 0.075mm					
6	(non-operation)	: 58~500Hz/Acceleration: 9.8 m/s ²					
0		Sweep time: 11 minutes					
		Test period: 3 hours (1h for each direction of X, Y, Z)					
	Shoalr tast	Maximum acceleration: 490m/s ²					
7	(non operation)	Pulse width: 11ms, sinusoidal half wave					
	(non-operation)	Direction: +/-X, +/-Y, +/-Z, once for each direction.					
		At the following conditions, it is a thing without incorrect					
		operation and destruction.					
		(1)Non-operation: Contact electric discharge +/-10kV					
8	ESD	Non-contact electric discharge+/-20kV					
		(2)Operation Contact electric discharge +/-8kV					
		Non-contact electric discharge +/-15kV					
		Conditions: 150pF、330ohm					

[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

\Diamond

13. Others

1)Lot No. Label

The label that displays SHARP,product model(LQ420D3LZ19),a product number is stuck on the back of the module.

- 3) Adjusting volume have been set optimally before shipment, so do not change any adjusted value.
 - If adjusted value is changed, the specification may not be satisfied.
- 4) Disassembling the module can cause permanent damage and should be strictly avoided.
- 5) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 6) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury. Please follow local ordinances or regulations for disposal. It is displaying the label in the module back.

COLD CATHODE FLUORESCENT LAMP IN LCD PANEL CONTAINS A SMALL AMOUNT OF MERCURY, PLEASE FOLLOW LOCAL ORDINANCES OR REGULATION FOR DISPOSAL 当該液晶ディスプレイパネルは蛍光管が組み込まれていますので、地方自 冶体の条例、または、規則に従って廃棄ください。

- 7) Lead-free soldering is applied.
- 8) The chemical compound, which causes the destruction of ozone layer, is not being used.
- 9) Appearance quality and standard are referred to the outgoing incoming inspections.

\Diamond

14. Carton storage condition

Temperature	0° C to 40° C						
Humidity	95%RH or less						
Reference condition	$1 : 20^{\circ}$ C to 35°C, 85%RH or less (summer)						
	: 5° C to 15° C , 85° RH or less (winter)						
	• the total storage time $(40^{\circ}C,95\%$ RH) : 240h or less						
Sunlight	Be sure to shelter a product from the direct sunlight.						
Atmosphere	Harmful gas, such as acid and alkali which bites electronic components and/or						
	wires must not be detected.						
Notes	Be sure to put cartons on palette or base, don't put it on floor, and store them with						
	removing from wall						
	Please take care of ventilation in storehouse and around cartons, and control						
	changing temperature is within limits of natural environment						
Storage life	1 year						

LD-19231-21

Fig. 1-1 Outline Dimensions

www.panelook.com

屏库:全球液晶屏交易中心

Data Modul Headquarters Munich Landsberger-Str. 322 D-80687 Munich - Germany Tel.: +49-89-56017-0

Sales Office Duesseldorf Fritz-Vomfelde-Str. 8 D-40547 Duesseldorf - Germany Tel.: +49-211-52709-0

Sales Office Hamburg Borsteler Chaussee 51 D-22453 Hamburg - Germany Tel.: +49-40-42947377 - 0

Sales Office Stuttgart Friedrich-List-Str. 42 D-70771 Leinfelden-Echterdingen Germany Tel.: +49-711-782385-0

Data Modul France, S.A.R.L. Bat B - Hall 204 1-3 Rue des Campanules 77185 Lognes - France Tel.: +33-1-60378100

Data Modul Italia, S.r.l. Regus Center Senigallia Via Senigallia 18/2 20161 Milano - Italy Tel.: +39-02-64672-509

Data Modul Iberia, S.L. c/ Adolfo Pérez Esquivel 3 Edificio Las Americas III Oficiana 40 28230 Parque Empresarial Madrid Las Rozas - Spain Tel.: +34-916 366 458

Data Modul Ltd. / UK 3 Brindley Place Birmingham B 12JB United Kingdom Tel.: +44-121-698-8641