

## **LQXO-4 OSCILLATOR**

32 kHz to 200 kHz\* Low Power Crystal Oscillator

## **DESCRIPTION**

The LQXO-4 oscillator design consists of a CMOS-compatible hybrid circuit, packaged in a standard TO-39 metal package. Permanent, precision tuning of the oscillator allows for very tight calibration tolerance and eliminates the need for a trimming capacitor, a major source of long-term frequency drift. The specifications and characteristics of the LQXO-4 vary with frequency. The characteristics of the 32.768 kHz model are presented in this data sheet.

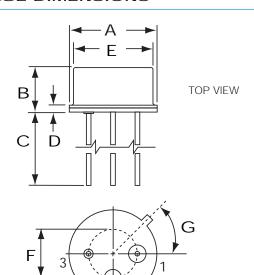
#### **FEATURES**

- Very low power consumption
- Low aging
- CMOS compatible
- Double hermetically sealed package
- Full military testing available
- 3 Volt operation available

#### **APPLICATIONS**

Industrial, Computer & Communications

- General purpose clock oscillator
- Tone generators
- Data loggers
- Telephone equipment
- Ultrasonic detectors
- Airborne hybrid computer
- Flight recorder


## PIN CONNECTIONS

- 1.  $V_{DD}$
- 2. Output
- 3. Ground



\*Consult factory for other frequencies.

## PACKAGE DIMENSIONS



|             |    | _           |
|-------------|----|-------------|
| <b>BOTT</b> | OM | <b>VIEW</b> |

| DIM | INCHES     | mm         |  |
|-----|------------|------------|--|
| А   | 0.380 MAX. | 9.65 MAX.  |  |
| В   | 0.185 MAX. | 4.70 MAX.  |  |
| С   | 0.500 Min. | 12.70 Min. |  |
| D   | 0.029      | 0.74       |  |
| E   | 0.326 MAX. | 8.28 MAX   |  |
| F   | 0.200 Ref. | 5.08 Ref.  |  |
| G   | 45°        | 45°        |  |

#### Note

- 1. All metal parts gold plated
- 2. Leads are 0.019 in.[0.48mm] MAX.

10141 - Rev C



## SPECIFICATIONS-LQXO-4 32.768 kHz

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Supply Voltage ( $V_{DD}$ ) 5V  $\pm$  10% (3.3V available) Calibration A:  $\pm$  0.01% (100ppm)

Tolerance\* B: ± 0.03% C: ± 0.1%

Frequency Stability\*\* 0°C to +50°C -0.0025% Typ. ± 25 ppm

-0.004% MAX. ± 40 ppm

 $-20^{\circ}$ C to  $+70^{\circ}$ C -0.007% Typ.  $\pm 70$  ppm

-0.01% MAX ± 100 ppm

Voltage Coefficient 1 ppm/V Typ.

3 ppm/V MAX.

Aging, first year 1 ppm/year Typ.

3 ppm/year MAX.

Shock 1,000g, 1 msec.,1/2 sine 3 ppm MAX.

Vibration 10g rms10-2000 Hz 3 ppm MAX.

Frequency change vs.

10% Output Load Change 1 ppm MAX.

Operating Temperature -10°C to +70°C Commercial

-40°C to +85°C Industrial -55°C to +125°C Military

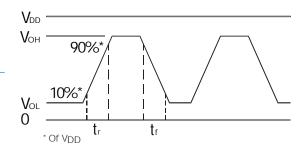
## **ABSOLUTE MAXIMUM RATINGS**

Supply Voltage  $V_{DD}$  -0.3V to 7.0V Storage Temperature -55°C to +125°C Maximum Process Temp. 260°C, 10 seconds

#### **ELECTRICAL CHARACTERISTICS**

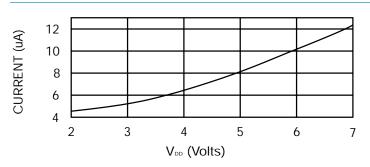
#### LQXO-4 32.768 kHz

All parameters are measured at ambient temperature with a 10M  $\!\Omega\!$  and 10pF load at 5V.

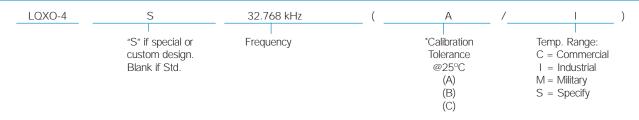

| SYMBOL            | PARAMETER           | MIN. | TYP. | MAX. | UNIT  |
|-------------------|---------------------|------|------|------|-------|
| V                 | Output Voltage Hi   | 4.8  | 4.95 |      | V     |
| V                 | Output Voltage Lo   |      | 0.05 | 0.2  | V     |
| *t <sub>r</sub>   | Rise Time (10%-90%) |      | 12   | 25   | nsec. |
| *t <sub>f</sub>   | Fall Time (10%-90%) |      | 12   | 25   | nsec. |
| SYM               | Duty Cycle          | 40   | 50   | 60   | %     |
| I <sub>DD</sub> - | Supply Current      |      |      |      |       |
| .DD               | V =5V               |      | 7    | 15   | μΑ    |
|                   | V =3V               |      | 5    | 10   | μΑ    |
|                   |                     |      |      |      |       |

<sup>\*</sup> Models with faster rise and fall time available, consult factory.

#### **PACKAGING**


LQXO-4 - Tray Pack (Standard)

## **OUTPUT WAVE FORM**




# TYPICAL CURRENT CONSUMPTION

LQXO-4-32.768 kHz



# HOW TO ORDER LQXO-4 CRYSTAL OSCILLATORS



\*Other calibration fill in ppm



<sup>\*</sup> Tighter tolerances available.

<sup>\*\*</sup> Does not include calibration tolerance. Positive variations small compared to negative variations.