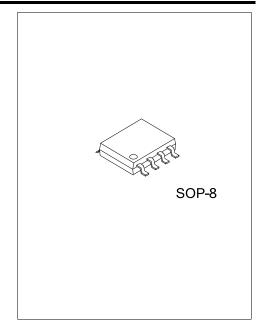
UNISONIC TECHNOLOGIES CO., LTD

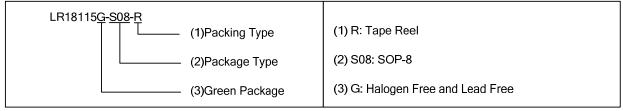

LR18115

LINEAR INTEGRATED CIRCUIT

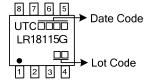
1.6X LINEAR FAN DRIVER WITH V_{OUT} FULLY ON CONTROL

■ DESCRIPTION

The UTC **LR18115** is a low output resistance 1.6X positive voltage linear fan driver with very low dropout voltage at up to 500mA. The UTC **LR18115** consists of an error amplifier, output stage, voltage divider, over temperature protection, current limiting scheme and Fully Control logic. V_{OUT} voltage follows the 1.6 times of V_{SET} voltage until it reaches V_{IN} voltage. The V_{SET} voltage must be larger than 1V to guarantee V_{OUT} 1.6 times of V_{SET} . When given low, V_{OUT} can be fully turned on by $\overline{\text{FON}}$ pin. Good regulation over variation in line, load and temperature is also provided by UTC **LR18115**.

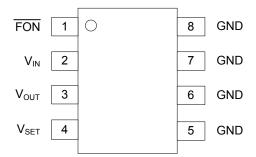


■ FEATURES


- * Vout Follows 1.6 Times of Vset
- * 0.3Ω Output Resistance @ 0.5A
- * Over Temperature Protection
- * Current Limiting Protection
- * FON Pin to Turn V_{OUT} Fully On

ORDERING INFORMATION

Ordering Number	Package	Packing
LR18115G-S08-R	SOP-8	Tape Reel



■ MARKING

www.unisonic.com.tw 1 of 5

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	NAME	DESCRIPTION
1	FON	FON Input. Pulling the regulator fully on when this pin below 0.4V. Internally pulled high.
2	V_{IN}	Supply Input.
3	V_{OUT}	This pin is output voltage of regulator. Its voltage is 1.6 times of V _{SET} .
4	V_{SET}	This pin sets output voltage. Its voltage must be larger than 1V to guarantee V_{OUT} 1.6 times of V_{SET} .
5~8	GND	Common Ground. Use all four pins on SOP-8 device for heat sinking.

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Input Voltage	V_{IN}	-0.3 ~ +7	V
FON Input Voltage	V _{FON}	0 ~ 7	V
Power Dissipation	P_{D}	Internally Limited	
Junction Temperature	T_J	+150	°C
Operation Temperature	T_OPR	-40~+85	°C
Storage Temperature	T _{STG}	-65~+150	°C

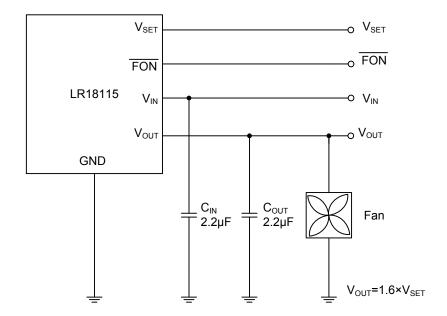
Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES CHARACTERISTICS

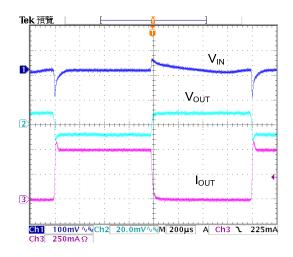
PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ_{JA}	156	°C/W
Junction to Case	θ_{JC}	39	°C/W

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Supply Voltage	V _{CC}	4.5		6	V
Operating Temperature	T _A	-40		85	°C


■ ELECTRICAL CHARACTERISTICS

 $(V_{SET}=2V, V_{IN}=5V, I_{OUT}=0.5A, C_{IN}=2.2\mu F, C_{OUT}=2.2\mu F, T_A=T_J=25^{\circ}C, unless otherwise specified) (Note)$


PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNIT
V _{IN}							
Supply Voltage	V_{CC}			4.5		6	V
Quiescent Current	IQ	FON =0V , V _{OUT} =5V				3	mA
V _{OUT}							
Output Voltage/V _{SET} Voltage	$\frac{V_{\text{OUT}}}{V_{\text{SET}}}$	V _{IN} =6V,V _{SET} =1V~3.3V		1.552	1.6	1.648	V/V
Line Regulation	ΔVout Vout	V _{IN} =4.5V to 6V			0.2	0.5	%
Load Regulation	ΔVout Vout	10mA≤I _{OUT} ≤0.5A			0.2	0.8	%
Output Resistance	R _{OUT}	I _{OUT} =0.5A, V _{SET} =3.4V			0.2	0.3	Ω
Current Limit	I _{LIMLT}	V _{OUT} =0V			1		Α
V _{SET}							
Minimum V _{SET} Voltage	V _{SET(MIN)}				1		V
V _{SET} pin Current	I _{SET}				80	200	nA
FON							
FON Voltage	\/		High	1.6			V
FON Voltage	V _{FON}		Low			0.4	V
FON pin Bias Current	I _{FON}	FON =0V			1.5	10	μΑ
OVER TEMPERATURE PROTECTION	N						
Over Temperature Shutdown	OTS				150		ç
Over Temperature Hysteresis	OTH				25		°C

Note: Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

■ TYPICAL APPLICATION CIRCUIT

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.