

UNISONIC TECHNOLOGIES CO., LTD

LR1965 **Preliminary CMOS IC**

1.5A, LOW DROPOUT REGULATOR WITH POWER GOOD

DESCRIPTION

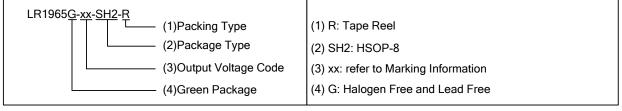

The UTC LR1965 is CMOS-based positive voltage and a very low dropout regulator IC that minimum input voltage is 2.5V and is capable of delivering the continuous output load current up to 1.5A.

It has features of low dropout (maximum 300mV at 1A), a very low quiescent current (typically 300uA at 0.1A) and very high PSRR up to 86dB at 1A load current.

The output voltage can be set from 0.5V to (VIN - VDRP) with an external resistor divider and it has ±2% accuracy through all temperature ranges include the line as well as load variations. It is allowed to use a small 4.7µF MLCC input and output capacitor to deliver the current with the stable operation.

Built-in Soft-Start function reduces the inrush current and the other features are include over current protection (OCP), short-circuit protection (SCP), and thermal shut down protection (TSD).

The UTC LR1965 is available in 8-SOP-EP package with exposed pad for optimal power dissipation and 8-TDFN (3x3mm).

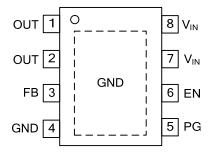


- * Input Voltage Range: 2.5V~6.0V
- * Supply Current .: Typ. 300uA
- * Current limit: Min. 1.8A
- * Adjustable Output from 0.8V
- * LR1965: Typ 0.4V Dropout @ I_{OUT}=1.5A
- * Compatible with MLCC Capacitors
- * Built-in Soft-Start Limits Inrush Current
- * Built-in Thermal Shutdown Protection
- * Built-in Over Current & Short Circuit Protection

ORDERING INFORMATION

Ordering Number	Package	Packing
LR1965G-xx-SH2-R	HSOP-8	Tape Reel

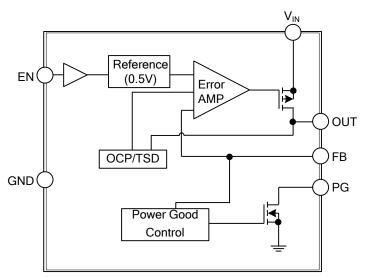
Note: xx: Output Voltage, refer to Marking Information.


HSOP-8

www.unisonic.com.tw 1 of 4

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING		
HSOP-8	AD: ADJ	Output Voltage 8 7 6 5 Date Code		


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1, 2	OUT	Voltage Regulator Output Pin
3	FB	Feedback Pin. Connect to output through a voltage-divider to set the output. Recommended that the tolerance of feedback resistors is below 1%.
4	GND	Ground Pin
5	PG	Open Drain Power-Good (PG) Output.
6	EN	Chip Enable Pin
7, 8	V _{IN}	Input Supply Voltage Pin.

■ BLOCK DIAGRAM

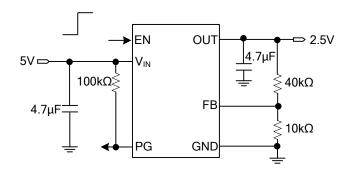
■ ABSOLUTE MAXIMUM RATING (T_A=25°C unless otherwise specified)

PARAMETER	METER SYMBOL RATINGS		UNIT
Input Voltage	V _{IN}	-0.3~7	V
Output Voltage	OUT	-0.3~V _{IN} +0.3	V
Junction to Ambient	θ_{JA}	50	°C/W
Junction to Case	$\theta_{ m JC}$	10	°C/W
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-65~150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage Range	V _{IN}	2.5~6.0	٧
Ambient Temperature Range	T _A	-40~85	°C


■ ELECTRICAL CHARACTERISTICS

All parameters are guaranteed over the operational supply voltage and temperature range. Operating conditions unless otherwise noted are: V_{IN} =5V, OUT=2.5V and T_A =25°C. Typical values are for information only.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage						
Quiescent Current	IQ	I _{OUT} =100mA		300		uA
Shutdown Current	I _{STD}	V _{IN} =6V, V _{EN} =GND		0.2	2	uA
Feedback (FB)						
Feedback Voltage Accuracy	V_{F}	I _{OUT} =10mA, T _A =25°C	784	800	816	mV
Input Bias Current	I _F	V _{FB} =0.8V, V _{IN} =6V		0.001	0.1	uA
Output (OUT)						
Output Accuracy	V_{OUT}		-2		2	%
Load Regulation	R _{LO}	I _{OUT} =1mA to 1.5A		0.1	2	%/A
Line Regulation	R _{LN}	V _{IN} =2.2~6V, V _{OUT} =1.225V, I _{OUT} =1mA	-0.2		0.2	%/V
		I _{OUT} =1.5A,V _{FB} =768mV		400		mV
Dropout Voltage	V_{DRP}	I _{OUT} =1A,V _{FB} =768mV		140	280	
		I _{OUT} =0.5A,V _{FB} =768mV			200	
Current Limit	Ic		1.8			Α
Load transient (Note 1)	L _{OT}	I _{OUT} =20mA to 1.5A,		3		%
Line Transient (Note 1)	R_{NT}	ΔV _{IN} =0.5V		3		%
Enable (EN))						
Input Threshold	V_{ENH}	EN rising, V _{IN} =OUT+1V~6V	1.2			V
Imput Threshold	V_{ENL}	EN falling, V _{IN} =OUT+1V~6V			0.4	
Input Bias Current	I _{EN}	EN=0 or 6V	-1	0	1	uA
Power Good (PG)						
Throshold Voltago	P _{V1}	FB high, V _{HYS} =10mV, V _{IN} =OUT+1V~6V	835	880	924	mV
Threshold Voltage	P _{V2}	FB low, V _{HYS} =10mV, V _{IN} =OUT+1V~6V	652	688	760	mV
Output Voltage Low	P _{CL}	FB=0.6V or 1.0V, I _{PG} =1mA		25	200	mV
Output Current High	P _{CH}	P _{WRGD} =6V		0.001	0.1	uA
Rising Delay Time	P_{RDT}	From FB*90% to PG		150		us
Falling Delay Time 1	P _{FDT1}	V _{IN} =2.5V, From FB to PG	20	70	120	us
Falling Delay Time 2	P _{FDT2}	V _{IN} =6V, From FB to PG	60	180	300	us
Thermal Shutdown (TSD) (Note 1)						
TSD Threshold	T _{SDON}	TSD On		165		°C
	T _{SDOFF}	TSD Off		145		°C

Note: Guaranteed by design but not production tested.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.