Flash Memory 32M(X16) Flash Memory +8M(x16) SRAM (Model No.: LRS1383C) Spec No.: EL13X027A Issue Date: February 14, 2002 - Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company. - When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions. - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3). - Office electronics - Instrumentation and measuring equipment - Machine tools - Audiovisual equipment - Home appliance - Communication equipment other than for trunk lines - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system. - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment - Mainframe computers - Traffic control systems - Gas leak detectors and automatic cutoff devices - · Rescue and security equipment - Other safety devices and safety equipment, etc. - (3) Do not use the products covered herein for the following equipment <u>which demands extremely high performance</u> in terms of functionality, reliability, or accuracy. - Aerospace equipment - Communications equipment for trunk lines - Control equipment for the nuclear power industry - Medical equipment related to life support, etc. - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company. - Please direct all queries regarding the products covered herein to a sales representative of the company. | Contents | |--| | 1. Description | | 2. Pin Configuration | | 3. Truth Table 6 3.1 Bus Operation 6 3.2 Simultaneous Operation Modes Allowed with Four Planes 7 | | 4. Block Diagram. 8 | | 5. Command Definitions for Flash Memory 9 5.1 Command Definitions 9 5.2 Identifier Codes for Read Operation 11 5.3 Functions of Block Lock and Block Lock-Down 12 5.4 Block Locking State Transitions upon Command Write 12 5.5 Block Locking State Transitions upon F-WP Transition 13 | | 6. Status Register Definition | | 7. Memory Map for Flash Memory | | 8. Absolute Maximum Ratings | | 9. Recommended DC Operating Conditions | | 10. Pin Capacitance | | 11. DC Electrical Characteristics | | 12. AC Electrical Characteristics for Flash Memory 21 12.1 AC Test Conditions 21 12.2 Read Cycle 21 12.3 Write Cycle (F-WE / F-CE Controlled) 22 12.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance 23 12.5 Flash Memory AC Characteristics Timing Chart 24 12.6 Reset Operations 27 | | 13. AC Electrical Characteristics for SRAM 28 13.1 AC Test Conditions 28 13.2 Read Cycle 28 13.3 Write Cycle 29 13.4 SRAM AC Characteristics Timing Chart 30 | | 14. Data Retention Characteristics for SRAM | | 15. Notes | | 16. Flash Memory Data Protection | | 17. Design Considerations 37 | | 18. Related Document Information | | 19. Package and Packing Specification | #### 1. Description The LRS1383 is a combination memory organized as 2,097,152 x16 bit flash memory and 524,288 x16 bit static RAM in one package. #### Features - 2.7V to 3.3V - Power supply - Operating temperature -25°C to +85°C - Not designed or rated as radiation hardened - 72pin CSP (LCSP072-P-0811) plastic package - Flash memory has P-type bulk silicon, and SRAM has P-type bulk silicon #### Flash Memory - Access Time 85 ns (Max.) - Power supply current (The current for F-V $_{CC}$ pin and F-V $_{PP}$ pin) 25 mA Read (Max. t_{CYCLE} = 200ns, CMOS Input) Word write 60 mA (Max.) Block erase 30 mA (Max.) (Max. $F-\overline{RST} = GND \pm 0.2V$, Reset Power-Down 25 μΑ $I_{OUT}(F-RY/\overline{BY}) = 0mA)$ (Max. F- $\overline{\text{CE}}$ = F- $\overline{\text{RST}}$ = F-V_{CC} ± 0.2V) 25 μΑ Standby - Optimized Array Blocking Architecture Eight 4K-word Parameter Blocks Sixty-Three 32K-word Main Blocks **Bottom Parameter Location** - Extended Cycling Capability $(F-V_{PP} = 1.65V \text{ to } 3.3V)$ 100,000 Block Erase Cycles 1,000 Block Erase Cycles and total 80 hours (F- $V_{PP} = 11.7V$ to 12.3V) - Enhanced Automated Suspend Options Word Write Suspend to Read Block Erase Suspend to Word Write Block Erase Suspend to Read #### **SRAM** - Access Time 70 ns (Max.) - Power Supply current Operating current 50 mA $(Max. t_{RC}, t_{WC} = Min.)$ > 8 mA (Max. t_{RC} , $t_{WC} = 1 \mu s$, CMOS Input) Standby current 25 μΑ (Max.) Data retention current $25 \, \mu A$ $(Max. S-V_{CC} = 3.0V)$ #### 2. Pin Configuration INDEX (TOP View) 2 9 3 4 5 6 7 8 10 11 12 A11 A15 GND NC NC NC A DQ15 DQ7 DQ14 В F-RY/BY DQ13 DQ5 \mathbf{C} DQ6 DQ4 NC T_2 DQ12 D E DQ11 T3 DQ10 DQ2 DQ3 DQ8 S-OE NC DQ9 DQ0 DQ1 F G A18 **A**7 **A**6 **A**3 A2 A_1 $S-\overline{CE}$ 1 F-OE NC F-CE **GND** NC NCΗ NC Note) From T₁ to T₃ pins are needed to be open. Two NC pins at the corner are connected. Do not float any GND pins. | Pin | Description | Type | | | | |--|---|----------------------|--|--|--| | A ₀ to A ₁₆ , A ₁₈ | Address Inputs (Common) | Input | | | | | F-A ₁₇ ,
F-A ₁₉ , F-A ₂₀ | Address Inputs (Flash) | Input | | | | | S-A ₁₇ | Address Input (SRAM) | Input | | | | | F-CE | Chip Enable Input (Flash) | Input | | | | | $S-\overline{CE}_1$, $S-CE_2$ | Chip Enable Inputs (SRAM) | Input | | | | | F-WE | Write Enable Input (Flash) | Input | | | | | S-WE | Write Enable Input (SRAM) | Input | | | | | F-OE | Output Enable Input (Flash) | Input | | | | | S- OE | Output Enable Input (SRAM) | Input | | | | | S- LB | SRAM Byte Enable Input (DQ ₀ to DQ ₇) | Input | | | | | S- UB | SRAM Byte Enable Input (DQ ₈ to DQ ₁₅) | Input | | | | | F-RST | Reset Power Down Input (Flash) Block erase and Write: V _{IH} Read: V _{IH} Reset Power Down: V _{II} | | | | | | F-WP | Write Protect Input (Flash) When F-WP is V., locked-down blocks cannot be unlocked. Frase or | | | | | | F-RY/BY | Ready/Busy Output (Flash) During an Erase or Write operation : V _{OL} Block Erase and Write Suspend : High-Z (High impedance) | Open Drain
Output | | | | | DQ ₀ to DQ ₁₅ | Data Inputs and Outputs (Common) | Input / Output | | | | | F-V _{CC} | Power Supply (Flash) | Power | | | | | S-V _{CC} | Power Supply (SRAM) | Power | | | | | F-V _{PP} | Monitoring Power Supply Voltage (Flash) Block Erase and Write: F-V _{PP} = V _{PPH1/2} All Blocks Locked: F-V _{PP} < V _{PPLK} | Input | | | | | GND | GND (Common) | Power | | | | | NC | Non Connection | - | | | | | T ₁ to T ₃ | Test pins (Should be all open) | - | | | | #### 3. Truth Table # 3.1 Bus Operation⁽¹⁾ | 240 operation | | | | | | | | | | | | | | |---------------------|---------|---------|------|-------|------|------|---------------------|-------------------|------|------|------------------|------|-------------------------------------| | Flash | SRAM | Notes | F-CE | F-RST | F-OE | F-WE | $S-\overline{CE}_1$ | S-CE ₂ | S-OE | S-WE | S- LB | S-UB | DQ ₀ to DQ ₁₅ | | Read | | 3,5 | | | L | | | • | | | | | (7) | | Output
Disable | Standby | 5 | L | Н | Н | Н | (8 | 8) | X | X | (8 | 3) | High-Z | | Write | | 2,3,4,5 | | | | L | | | | | | | D _{IN} | | | Read | 5 | | | | | | | L | Н | | (9 | 9) | | Standby | Output | 5 | Н | Н | X | X | L | Н | Н | Н | X | X | High-Z | | Standby | Disable | 3 | 11 | 11 | 1 | Λ | | 11 | X | X | Н | Н | High-Z | | | Write | 5 | | | | | | | X | L | | (9 | 9) | | | Read | 5,6 | | | | | | | L | Н | | (9 | 9) | | Reset Power | | 5,6 | X | L | X | X | L | Н | Н | Н | X | X | High-Z | | Down | Disable | 3,0 | Α | L | Λ | Λ | L | 11 | X | X | Н | Н | Iligii-Z | | | Write | 5,6 | | | | | | | X | L | | (9 | 9) | | Standby | | 5 | Н | Н | | | | | | | | | | | Reset Power
Down | Standby | 5,6 | X | L | X | X | (8) | | X | X | 3) | 3) | High-Z | #### Notes: - 1. $L = V_{IL}$, $H = V_{IH}$, X = H or L, High-Z = High impedance. Refer to the DC Characteristics. - 2. Command writes involving block erase, (page buffer) program are reliably executed when F-V_{PP} = $V_{PPH1/2}$ and F-V_{CC} = 2.7V to 3.3V. Command writes involving full chip erase is reliably executed when $F-V_{PP}=V_{PPH1}$ and $F-V_{CC}=2.7V$ to 3.3V. Block erase, full chip erase, (page buffer) program with $F-V_{PP} < V_{PPH1/2}$ (Min.) produce spurious results and should not be attempted. - 3. Never hold $F-\overline{OE}$ low and $F-\overline{WE}$ low at the same timing. - 4. Refer Section 5. Command Definitions for Flash Memory valid $D_{\mbox{\footnotesize{IN}}}$ during a write operation. - 5. F- $\overline{\text{WP}}$ set to V_{IL} or V_{IH} . - 6. Electricity consumption of Flash Memory is lowest
when $F-\overline{RST} = GND \pm 0.2V$. #### 7. Flash Read Mode | Mode | Address | DQ ₀ to DQ ₁₅ | |-----------------------|-----------------------|-------------------------------------| | Read Array | X | D _{OUT} | | Read Identifier Codes | See 5.2 | See 5.2 | | Read Query | Refer to the Appendix | Refer to the Appendix | #### 8. SRAM Standby Mode | $S-\overline{CE}_1$ | S-CE ₂ | S- LB | S-UB | |---------------------|-------------------|------------------|------| | Н | X | X | X | | X | L | X | X | | X | X | Н | Н | # 9. S-UB, S-LB Control Mode | S- LB | S- UB | DQ ₀ to DQ ₇ | DQ ₈ to DQ ₁₅ | |------------------|------------------|------------------------------------|-------------------------------------| | L | L | D _{OUT} /D _{IN} | D _{OUT} /D _{IN} | | L | Н | D _{OUT} /D _{IN} | High-Z | | Н | L | High-Z | D _{OUT} /D _{IN} | 3.2 Simultaneous Operation Modes Allowed with Four Planes $^{(1, 2)}$ | | THEN THE MODES ALLOWED IN THE OTHER PARTITION IS: | | | | | | | | | | |------------------------|---|---------|----------------|---------------|-----------------|---------------------------|----------------|--------------------|--------------------|---------------------------| | IF ONE PARTITION IS: | Read
Array | Read ID | Read
Status | Read
Query | Word
Program | Page
Buffer
Program | Block
Erase | Full Chip
Erase | Program
Suspend | Block
Erase
Suspend | | Read Array | X | X | X | X | X | X | X | | X | X | | Read ID | X | X | X | X | X | X | X | | X | X | | Read Status | X | X | X | X | X | X | X | X | X | X | | Read Query | X | X | X | X | X | X | X | | X | X | | Word Program | X | X | X | X | | | | | | X | | Page Buffer
Program | X | X | X | X | | | | | | X | | Block Erase | X | X | X | X | | | | | | | | Full Chip Erase | | | X | | | | | | | | | Program
Suspend | X | X | X | X | | | | | | X | | Block Erase
Suspend | X | X | X | X | X | X | | | X | | - 1. "X" denotes the operation available. - Configurative Partition Dual Work Restrictions: Status register reflects partition state, not WSM (Write State Machine) state this allows a status register for each partition. Only one partition can be erased or programmed at a time no command queuing. Commands must be written to an address within the block targeted by that command. #### 5. Command Definitions for Flash Memory⁽¹¹⁾ #### 5.1 Command Definitions | | Bus | | F | irst Bus Cyc | le | Second Bus Cycle | | | |--|-----------------|---------|---------------------|------------------------|---------------------|---------------------|------------------------|---------------------| | Command | Cycles
Req'd | Notes | Oper ⁽¹⁾ | Address ⁽²⁾ | Data ⁽³⁾ | Oper ⁽¹⁾ | Address ⁽²⁾ | Data ⁽³⁾ | | Read Array | 1 | 2 | Write | PA | FFH | | | | | Read Identifier Codes | ≥ 2 | 2,3,4 | Write | PA | 90H | Read | IA | ID | | Read Query | ≥ 2 | 2,3,4 | Write | PA | 98H | Read | QA | QD | | Read Status Register | 2 | 2,3 | Write | PA | 70H | Read | PA | SRD | | Clear Status Register | 1 | 2 | Write | PA | 50H | | | | | Block Erase | 2 | 2,3,5 | Write | BA | 20H | Write | BA | D0H | | Full Chip Erase | 2 | 2,5,9 | Write | X | 30H | Write | X | D0H | | Program | 2 | 2,3,5,6 | Write | WA | 40H or
10H | Write | WA | WD | | Page Buffer Program | ≥ 4 | 2,3,5,7 | Write | WA | E8H | Write | WA | N-1 | | Block Erase and (Page Buffer)
Program Suspend | 1 | 2,8,9 | Write | PA | ВОН | | | | | Block Erase and (Page Buffer)
Program Resume | 1 | 2,8,9 | Write | PA | D0H | | | | | Set Block Lock Bit | 2 | 2 | Write | BA | 60H | Write | BA | 01H | | Clear Block Lock Bit | 2 | 2,10 | Write | BA | 60H | Write | BA | D0H | | Set Block Lock-down Bit | 2 | C_1 | Write | BA | 60H | Write | BA | 2FH | | Set Partition Configuration
Register | 2 | 2,3 | Write | PCRC | 60H | Write | PCRC | 04H | - 1. Bus operations are defined in 3.1 Bus Operation. - 2. The address which is written at the first bus cycle should be the same as the address which is written at the second bus cycle. - X=Any valid address within the device. - PA=Address within the selected partition. - IA=Identifier codes address (See 5.2 Identifier Codes for Read Operation). - QA=Query codes address. Refer to the LH28F320BF, LH28F640BF series Appendix for details. - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit. - WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. PCRC=Partition configuration register code presented on the address A_0 - A_{15} . - 3. ID=Data read from identifier codes (See 5.2 Identifier Codes for Read Operation). - QD=Data read from query database. Refer to the LH28F320BF, LH28F640BF series Appendix for details. - SRD=Data read from status register. See 6. Status Register Definition for a description of the status register bits. - WD=Data to be programmed at location WA. Data is latched on the rising edge of $F-\overline{WE}$ or $F-\overline{CE}$ (whichever goes high first). - N-1=N is the number of the words to be loaded into a page buffer. - 4. Following the Read Identifier Codes command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code (See 5.2 Identifier Codes for Read Operation). - The Read Query command is available for reading CFI (Common Flash Interface) information. - 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when F-RST is V_{IH}. - 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup. - 7. Following the third bus cycle, inputs the program sequential address and write data of "N" times. Finally, input the any valid address within the target partition to be programmed and the confirm command (D0H). Refer to the LH28F320BF, LH28F640BF series Appendix for details. - 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next. - 9. Full chip erase operation can not be suspended. - 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when $F-\overline{WP}$ is V_{IL} . When $F-\overline{WP}$ is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration. - 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used. www.DataSheet4U.com #### 5.2 Identifier Codes for Read Operation | | Code | Address $[A_{15}-A_0]^{(4)}$ | Data
[DQ ₁₅ -DQ ₀] | Notes | |----------------------------------|----------------------------------|------------------------------|--|-------| | Manufacturer Code | Manufacturer Code | 0000Н | 00B0H | | | Device Code | 32M Bottom Parameter Device Code | 0001H | 00B5H | 1 | | | Block is Unlocked | | $DQ_0 = 0$ | 2 | | Disability of Configuration Code | Block is Locked | Block | $DQ_0 = 1$ | 2 | | Block Lock Configuration Code | Block is not Locked-Down | Address
+ 2 | $DQ_1 = 0$ | 2 | | | Block is Locked-Down | | $DQ_1 = 1$ | 2 | | Device Configuration Code | Partition Configuration Register | 0006Н | PCRC | 3 | #### Notes: - 1. Bottom parameter device has its parameter blocks in the plane $0 \,$ (The lowest address). - 2. DQ_{15} - DQ_2 is reserved for future implementation. - 3. PCRC=Partition Configuration Register Code. - 4. The address A_{20} - A_{16} are shown in below table for reading the manufacturer, device, lock configuration, device configuration code. The address to read the identifier codes is dependent on the partition which is selected when writing the Read Identifier Codes command (90H). See Chapter 6. Partition Configuration Register Definition (P.15) for the partition configuration register. #### Identifier Codes for Read Operation on Partition Configuration (32M-bit device) | Partition Configuration Register | | | Address (32M-bit device) | |----------------------------------|-------|-------|--------------------------| | PCR.10 | PCR.9 | PCR.8 | $[A_{20}-A_{16}]$ | | 0 | 0 | 0 | 00H | | 0 | 0 | 1 | 00H or 08H | | 0 | 1 | 0 | 00H or 10H | | 1 | 0 | 0 | 00H or 18H | | 0 | 1 | 1 | 00H or 08H or 10H | | 1 | 1 | 0 | 00H or 10H or 18H | | 1 | 0 | 1 | 00H or 08H or 18H | | 1 | 1 | 1 | 00H or 08H or 10H or 18H | #### 5.3 Functions of Block Lock and Block Lock-Down | | | (2) | | | | |----------------------|------|--------------------------------|--------------|-------------------|---------------------------| | State | F-WP | DQ ₁ ⁽¹⁾ | $DQ_0^{(1)}$ | State Name | Erase/Program Allowed (2) | | [000] | 0 | 0 | 0 | Unlocked | Yes | | $[001]^{(3)}$ | 0 | 0 | 1 | Locked | No | | [011] | 0 | 1 | 1 | Locked-down | No | | [100] | 1 | 0 | 0 | Unlocked | Yes | | [101] ⁽³⁾ | 1 | 0 | 1 | Locked | No | | [110] ⁽⁴⁾ | 1 | 1 | 0 | Lock-down Disable | Yes | | [111] | 1 | 1 | 1 | Lock-down Disable | No | #### Notes: - DQ₀ = 1: a block is locked; DQ₀ = 0: a block is unlocked. DQ₁ = 1: a block is locked-down; DQ₁ = 0: a block is not locked-down. - 2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations. - 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (F- $\overline{\text{WP}}$ = 0) or [101] (F- $\overline{\text{WP}}$ = 1), regardless of the states before power-off or reset operation. - 4. When $F-\overline{WP}$ is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked. # 5.4 Block Locking State Transitions upon
Command Write⁽⁴⁾ | | Curren | t State | W.L | Result after | er Lock Command Written (I | Next State) | |-------|--------|-----------------|--------|--------------------------|----------------------------|------------------------------| | State | F-WP | DQ ₁ | DQ_0 | Set Lock ⁽¹⁾ | Clear Lock ⁽¹⁾ | Set Lock-down ⁽¹⁾ | | [000] | 0 | 0 | 0 | [001] | No Change | [011] ⁽²⁾ | | [001] | 0 | 0 | 1 | No Change ⁽³⁾ | [000] | [011] | | [011] | 0 | 1 | 1 | No Change | No Change | No Change | | [100] | 1 | 0 | 0 | [101] | No Change | [111] ⁽²⁾ | | [101] | 1 | 0 | 1 | No Change | [100] | [111] | | [110] | 1 | 1 | 0 | [111] | No Change | [111] ⁽²⁾ | | [111] | 1 | 1 | 1 | No Change | [110] | No Change | - 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command. - 2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0 = 0$), the corresponding block is locked-down and automatically locked at the same time. - 3. "No Change" means that the state remains unchanged after the command written. - 4. In this state transitions table, assumes that F- \overline{WP} is not changed and fixed V_{IL} or V_{IH} . # 5.5 Block Locking State Transitions upon F-WP Transition⁽⁴⁾ | D . C | | Current | State | | Result after F-WP Transition (Next State) | | | |---------------------------------|-------|---------|--------|--------|---|---|--| | Previous State | State | F-WP | DQ_1 | DQ_0 | $F-\overline{WP} = 0 \rightarrow 1^{(1)}$ | $F-\overline{WP} = 1 \rightarrow 0^{(1)}$ | | | - | [000] | 0 | 0 | 0 | [100] | - | | | - | [001] | 0 | 0 | 1 | [101] | - | | | $[110]^{(2)}$ | [011] | 0 | 1 | 1 | [110] | - | | | Other than [110] ⁽²⁾ | [011] | 0 | 1 | 1 | [111] | - | | | - | [100] | 1 | 0 | 0 | - | [000] | | | - | [101] | 1 | 0 | 1 | - | [001] | | | - | [110] | 1 | 1 | 0 | - | $[011]^{(3)}$ | | | - | [111] | 1 | 1 | 1 | - | [011] | | #### Notes: - 1. "F- $\overline{WP} = 0 \rightarrow 1$ " means that F- \overline{WP} is driven to V_{IH} and "F- $\overline{WP} = 1 \rightarrow 0$ " means that F- \overline{WP} is driven to V_{IL} . - 2. State transition from the current state [011] to the next state depends on the previous state. - 3. When $F-\overline{WP}$ is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked. - 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state. www.DataSheet4U.com #### 6. Status Register Definition #### Status Register Definition | R | R | R | R | R | R | R | R | |------|------|--------|------|------|-------|-----|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | WSMS | BESS | BEFCES | PBPS | VPPS | PBPSS | DPS | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | #### SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R) #### SR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy #### SR.6 = BLOCK ERASE SUSPEND STATUS (BESS) 1 = Block Erase Suspended 0 = Block Erase in Progress/Completed # SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES) 1 = Error in Block Erase or Full Chip Erase 0 = Successful Block Erase or Full Chip Erase #### SR.4 = (PAGE BUFFER) PROGRAM STATUS (PBPS) 1 = Error in (Page Buffer) Program 0 = Successful (Page Buffer) Program $SR.3 = F-V_{PP} STATUS (VPPS)$ $1 = F-V_{pp}$ LOW Detect, Operation Abort $0 = F - V_{PP} OK$ #### SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS) 1 = (Page Buffer) Program Suspended 0 = (Page Buffer) Program in Progress/Completed #### SR.1 = DEVICE PROTECT STATUS (DPS) 1 = Erase or Program Attempted on a Locked Block, Operation Abort 0 = Unlocked SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R) #### Notes: Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration. Check SR.7 or F-RY/ \overline{BY} to determine block erase, full chip erase, (page buffer) program completion. SR.6 - SR.1 are invalid while SR.7="0". If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, page buffer program, set/clear block lock bit, set block lock-down bit or set partition configuration register attempt, an improper command sequence was entered. SR.3 does not provide a continuous indication of F-V_{PP} level. The WSM interrogates and indicates the F-V_{PP} level only after Block Erase, Full Chip Erase, (Page Buffer) Program com- feedback when F-V_{PP}≠V_{PPH1/2} or V_{PPLK}. SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes command indicates block lock bit status. mand sequences. SR.3 is not guaranteed to report accurate SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register. | | Extended Status Register Definition | | | | | | | | | | | | |-----|-------------------------------------|----|----|----|----|---|---|--|--|--|--|--| | R | R | R | R | R | R | R | R | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | | | | | | SMS | R | R | R | R | R | R | R | | | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | XSR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R) XSR.7 = STATE MACHINE STATUS (SMS) 1 = Page Buffer Program available 0 = Page Buffer Program not available XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R) Notes: After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not. XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register. www.DataSheet4U.com | | Partition Configuration Register Definition | | | | | | | | | | | | |----|---|----|----|----|-----|-----|-----|--|--|--|--|--| | R | R | R | R | R | PC2 | PC1 | PC0 | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | | | | | | R | R | R | R | R | R | R | R | | | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | #### PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R) #### PCR.10-8 = PARTITION CONFIGURATION (PC2-0) - 000 = No partitioning. Dual Work is not allowed. - 001 = Plane 1-3 are merged into one partition. (default in a bottom parameter device) - 010 = Plane 0-1 and Plane2-3 are merged into one partition respectively. - 100 = Plane 0-2 are merged into one partition. (default in a top parameter device) - three partitions in this configuration. Dual work operation is available between any two partitions. - 110 = Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work See the table below for more details. operation is available between any two partitions. - operation is available between any two partitions. register. 111 = There are four partitions in this configuration. Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions. PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R) #### Notes: 011 = Plane 2-3 are merged into one partition. There are After power-up or device reset, PCR10-8 (PC2-0) is set to "001" in a bottom parameter device and "100" in a top parameter device. 101 = Plane 1-2 are merged into one partition. There are PCR.15-11 and PCR.7-0 are reserved for future use and should three partitions in this configuration. Dual work be masked out when polling the partition configuration #### Partition Configuration | | | _ | | | |-------------|-----------------------------|---|-------------|---| | PC2 PC1 PC0 | PARTITIONING FOR DUAL WORK | | PC2 PC1 PC0 | PARTITIONING FOR DUAL WORK | | | PARTITION0 | | | PARTITION2 PARTITION1 PARTITION0 | | 0 0 0 | PLANE3 PLANE2 PLANE0 PLANE0 | | 0 1 1 | PLANE3 PLANE2 PLANE1 PLANE0 | | | PARTITION1 PARTITION0 | | | PARTITION2 PARTITION1 PARTITION0 | | 0 0 1 | PLANE3 PLANE1 PLANE1 | | 1 1 0 | PLANE3 PLANE2 PLANE1 PLANE0 | | | PARTITION1 PARTITION0 | | | PARTITION2 PARTITION1 PARTITION0 | | 0 1 0 | PLANE3 PLANE2 PLANE1 PLANE1 | | 1 0 1 | PLANE3 PLANE2 PLANE1 PLANE0 | | | PARTITION1 PARTITION0 | | | PARTITION3 PARTITION2 PARTITION1 PARTITION0 | | 1 0 0 | PLANE3 PLANE1 PLANE0 | | 1 1 1 | PLANE3 PLANE1 PLANE1 | #### 7. Memory Map for Flash Memory #### **Bottom Parameter** # BLOCK NUMBER ADDRESS RANGE | | 70 | 32K-WORD | 1F8000h - 1FFFFFh | |-----------------------|----|----------|-------------------| | | 69 | 32K-WORD | 1F0000h - 1F7FFFh | | | 68 | 32K-WORD | 1E8000h - 1EFFFFh | | | 67 | 32K-WORD | 1E0000h - 1E7FFFh | | NE) | 66 | 32K-WORD | 1D8000h - 1DFFFFh | | [FA] | 65 | 32K-WORD | 1D0000h - 1D7FFFh | | M P | 64 | 32K-WORD | 1C8000h - 1CFFFFh | | PLANE3 (UNIFORM PLANE | 63 | 32K-WORD | 1C0000h - 1C7FFFh | | N H | 62 | 32K-WORD | 1B8000h - 1BFFFFh | | (0) | 61 | 32K-WORD | 1B0000h - 1B7FFFh | | NE | 60 | 32K-WORD | 1A8000h - 1AFFFFh | | LA | 59 | 32K-WORD | 1A0000h - 1A7FFFh | | Ь | 58 | 32K-WORD | 198000h - 19FFFFh | | | 57 | 32K-WORD | 190000h - 197FFFh | | | 56 | 32K-WORD | 188000h - 18FFFFh | | | 55 | 32K-WORD | 180000h - 187FFFh | | | 54 | 32K-WORD | 178000h - 17FFFFh | |------------------------|----|----------|-------------------| | | 53 | 32K-WORD | 170000h - 177FFFh | | | 52 | 32K-WORD | 168000h - 16FFFFh | | | 51 | 32K-WORD | 160000h - 167FFFh | | NE) | 50 | 32K-WORD | 158000h - 15FFFFh | | [FA] | 49 | 32K-WORD | 150000h - 157FFFh | | MP | 48 | 32K-WORD | 148000h - 14FFFFh | | PLANE2 (UNIFORM PLANE) | 47
| 32K-WORD | 140000h - 147FFFh | | N
F | 46 | 32K-WORD | 138000h - 13FFFFh | | \Box | 45 | 32K-WORD | 130000h - 137FFFh | | NEZ | 44 | 32K-WORD | 128000h - 12FFFFh | | LA | 43 | 32K-WORD | 120000h - 127FFFh | | | 42 | 32K-WORD | 118000h - 11FFFFh | | | 41 | 32K-WORD | 110000h - 117FFFh | | | 40 | 32K-WORD | 108000h - 10FFFFh | | | 39 | 32K-WORD | 100000h - 107FFFh | #### BLOCK NUMBER ADDRESS RANGE | | 38 | 32K-WORD | 0F8000h - 0FFFFFh | |-----------------------|----|----------|-------------------| | | 37 | 32K-WORD | 0F0000h - 0F7FFFh | | | 36 | 32K-WORD | 0E8000h - 0EFFFFh | | | 35 | 32K-WORD | 0E0000h - 0E7FFFh | | (E) | 34 | 32K-WORD | 0D8000h - 0DFFFFh | | [FA] | 33 | 32K-WORD | 0D0000h - 0D7FFFh | | M P | 32 | 32K-WORD | 0C8000h - 0CFFFFh | | PLANE1 (UNIFORM PLANE | 31 | 32K-WORD | 0C0000h - 0C7FFFh | | H H | 30 | 32K-WORD | 0B8000h - 0BFFFFh | | (C) | 29 | 32K-WORD | 0B0000h - 0B7FFFh | | NEI
Ei | 28 | 32K-WORD | 0A8000h - 0AFFFFh | | LA | 27 | 32K-WORD | 0A0000h - 0A7FFFh | | Ь | 26 | 32K-WORD | 098000h - 09FFFFh | | | 25 | 32K-WORD | 090000h - 097FFFh | | | 24 | 32K-WORD | 088000h - 08FFFFh | | | 23 | 32K-WORD | 080000h - 087FFFh | | | 22 | 32K-WORD | 078000h - 07FFFFh | |--------------------------|----|----------|-------------------| | | 21 | 32K-WORD | 070000h - 077FFFh | | | 20 | 32K-WORD | 068000h - 06FFFFh | | | 19 | 32K-WORD | 060000h - 067FFFh | | | 18 | 32K-WORD | 058000h - 05FFFFh | | | 17 | 32K-WORD | 050000h - 057FFFh | | | 16 | 32K-WORD | 048000h - 04FFFFh | | NE | 15 | 32K-WORD | 040000h - 047FFFh | | PLANEO (PARAMETER PLANE) | 14 | 32K-WORD | 038000h - 03FFFFh | | ER I | 13 | 32K-WORD | 030000h - 037FFFh | | ETI | 12 | 32K-WORD | 028000h - 02FFFFh | | ΑM | 11 | 32K-WORD | 020000h - 027FFFh | | AR | 10 | 32K-WORD | 018000h - 01FFFFh | | 0 (F | 9 | 32K-WORD | 010000h - 017FFFh | | NE | 8 | 32K-WORD | 008000h - 00FFFFh | | PLA | 7 | 4K-WORD | 007000h - 007FFFh | | | 6 | 4K-WORD | 006000h - 006FFFh | | | 5 | 4K-WORD | 005000h - 005FFFh | | | 4 | 4K-WORD | 004000h - 004FFFh | | | 3 | 4K-WORD | 003000h - 003FFFh | | | 2 | 4K-WORD | 002000h - 002FFFh | | | 1 | 4K-WORD | 001000h - 001FFFh | | | 0 | 4K-WORD | 000000h - 000FFFh | | | | | | #### 8. Absolute Maximum Ratings | Symbol | Parameter | Notes | Ratings | Unit | |-------------------|---------------------------|---------|------------------------------|------| | V _{CC} | Supply voltage | 1,2 | -0.2 to +3.9 | V | | V _{IN} | Input voltage | 1,2,3,4 | -0.2 to V _{CC} +0.3 | V | | T _A | Operating temperature | | -25 to +85 | °C | | T_{STG} | Storage temperature | | -55 to +125 | °C | | F-V _{PP} | F-V _{PP} voltage | 1,3,5 | -0.2 to +12.6 | V | #### Notes: - 1. The maximum applicable voltage on any pins with respect to GND. - 2. Except F-V_{PP}. - 3. -2.0V undershoot and V_{CC} +2.0V overshoot are allowed when the pulse width is less than 20 nsec. - 4. V_{IN} should not be over V_{CC} +0.3V. - 5. Applying 12V ±0.3V to F-V_{PP} during erase/write can only be done for a maximum of 1000 cycles on each block. F-V_{PP} may be connected to 12V ±0.3V for total of 80 hours maximum. +12.6V overshoot is allowed when the pulse width is less than 20 nsec. #### 9. Recommended DC Operating Conditions $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C)$ | Symbol | Parameter | Notes | Min. | Typ. | Max. | Unit | |-------------------|---------------------------|-------|------|------|----------|------| | V_{CC} | Supply Voltage | 2 | 2.7 | 3.0 | 3.3 | V | | V_{PP} | F-V _{PP} Voltage | .ac | 1.65 | 3.0 | 3.3 | V | | V _{IH} | Input Voltage | 1 | 2.2 | | Vcc +0.2 | V | | V_{IL} | Input Voltage | | -0.2 | | 0.6 | V | #### Notes: - 1. V_{CC} is the lower of F-V_{CC} or S-V_{CC}. - 2. V_{CC} includes both F- V_{CC} and S- V_{CC} . # 10. Pin Capacitance⁽¹⁾ $(T_A = 25^{\circ}C, f = 1MHz)$ | Symbol | Parameter | Notes | Min. | Тур. | Max. | Unit | Condition | |------------------|-------------------|-------|------|------|------|------|----------------| | C_{IN} | Input capacitance | | | | 15 | pF | $V_{IN} = 0V$ | | C _{I/O} | I/O capacitance | | | | 25 | pF | $V_{I/O} = 0V$ | #### Note: 1. Sampled but not 100% tested. # 11. DC Electrical Characteristics⁽¹⁾ #### DC Electrical Characteristics $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.3V)$ | Symbol | Parameter | Notes | Min. | Тур. | Max. | Unit | Test Conditions | |--|---|---------|------|------|------|------|---| | I_{LI} | Input Leakage Current | | | | ±2 | μΑ | $V_{IN} = V_{CC}$ or GND | | I_{LO} | Output Leakage Current | | | | ±2 | μΑ | $V_{OUT} = V_{CC}$ or GND | | I _{CCS} | F-V _{CC} Standby Current | | | 4 | 20 | μΑ | $F-V_{CC} = F-V_{CC} \text{ Max.,}$ $F-\overline{CE} = F-\overline{RST} = F-V_{CC} \pm 0.2V,$ $F-\overline{WP} = F-V_{CC} \text{ or GND}$ | | I _{CCAS} | F-V _{CC} Automatic Power Savings
Current | 2,5 | | 4 | 20 | μΑ | $F-V_{CC} = F-V_{CC} \text{ Max.,}$ $F-\overline{CE} = GND \pm 0.2V,$ $F-\overline{WP} = F-V_{CC} \text{ or GND}$ | | I_{CCD} | F-V _{CC} Reset Power-Down Current | 2 | | 4 | 20 | μΑ | $F-\overline{RST} = GND \pm 0.2V$ $I_{OUT} (F-RY/\overline{BY}) = 0mA$ | | I _{CCR} | Average F-V _{CC} Read Current Normal Mode | 2,8 | | 15 | 25 | mA | $F-V_{CC} = F-V_{CC} Max.,$
$F-\overline{CE} = V_{IL}, F-\overline{OE} = V_{IH}, f = 5MHz$ | | ¹ CCR | Average F-V _{CC} Read Current Page Mode 8 Word Read | 2,8 | | 5 | 10 | mA | $I_{OUT} = 0$ mA | | I_{CCW} | F-V _{CC} (Page Buffer) Program Current | 2,6,8 | 21 | 20 | 60 | mA | $F-V_{PP} = V_{PPH1}$ | | 1CCW | 1 - VCC (1 age Duller) 1 Togram Current | 2,6,8 | | 10 | 20 | mA | $F-V_{PP} = V_{PPH2}$ | | Lagr | F-V _{CC} Block Erase, Full Chip | 2,6,8 | | 10 | 30 | mA | $F-V_{PP} = V_{PPH1}$ | | I _{CCE} | Erase Current | 2,6,8 | | 10 | 30 | mA | $F-V_{PP} = V_{PPH2}$ | | I _{CCWS}
I _{CCES} | F-V _{CC} (Page Buffer) Program or
Block Erase Suspend Current | 2,3,8 | | 10 | 200 | μΑ | $F-\overline{CE} = V_{IH}$ | | I _{PPS}
I _{PPR} | F-V _{PP} Standby or Read Current | 2,7,8 | | 2 | 5 | μΑ | $F-V_{PP} \le F-V_{CC}$ | | Ţ | F-V _{PP} (Page Buffer) Program Current | 2,6,7,8 | | 2 | 5 | μΑ | $F-V_{PP} = V_{PPH1}$ | | I_{PPW} | 1-Vpp (Lage Bullet) Hogram Current | 2,6,7,8 | | 10 | 30 | mA | $F-V_{PP} = V_{PPH2}$ | | I_{PPE} | F-V _{PP} Block Erase, Full Chip | 2,6,7,8 | | 2 | 5 | μΑ | $F-V_{PP} = V_{PPH1}$ | | 1PPE | Erase Current | 2,6,7,8 | | 5 | 15 | mA | $F-V_{PP} = V_{PPH2}$ | | Innyia | F-V _{PP} (Page Buffer) Program | 2,7,8 | | 2 | 5 | μΑ | $F-V_{PP} = V_{PPH1}$ | | I _{PPWS} | Suspend Current | 2,7,8 | | 10 | 200 | μΑ | $F-V_{PP} = V_{PPH2}$ | | I _{PPES} | F-V _{PP} Block Erase Suspend Current | 2,7,8 | | 2 | 5 | μΑ | $F-V_{PP} = V_{PPH1}$ | | PPES | 7 - PP Dioen Diago ouspend Cultent | 2,7,8 | | 10 | 200 | μΑ | $F-V_{PP} = V_{PPH2}$ | #### DC Electrical Characteristics (Continue) $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.3V)$ | Symbol | Parameter | Notes | Min. | Тур. | Max. | Unit | Conditions | |-------------------|---|-------|------|------|-------------|------|---| | I_{SB} | S-V _{CC} Standby Current | | | 2 | 25 | μΑ | $S-\overline{CE}_1$, $S-CE_2 \ge S-V_{CC} - 0.2V$ or $S-CE_2 \le 0.2V$ | | I _{SB1} | S-V _{CC} Standby Current | | | | 3 | mA | $S-\overline{CE}_1 = V_{IH}, S-CE_2 = V_{IL}$ | | I _{CC1} | S-V _{CC} Operation Current | | | | 50 | mA | $\begin{split} &S \text{-}\overline{\text{CE}}_1 = \text{V}_{\text{IL}}, \\ &S \text{-}\text{CE}_2 = \text{V}_{\text{IH}}, \\ &V_{\text{IN}} = \text{V}_{\text{IL}} \text{ or V}_{\text{IH}} \end{split} \qquad \begin{aligned} &t_{\text{CYCLE}} = \text{Min.} \\ &I_{\text{I/O}} = 0 \text{mA} \end{aligned}$ | | I _{CC2} | S-V _{CC} Operation Current | | | | 8 | mA | $\begin{split} &S-\overline{CE}_1 \leq 0.2V, \\ &S-CE_2 \geq S-V_{CC}-0.2V, \\ &V_{IN} \geq S-V_{CC}-0.2V \\ ∨ \leq 0.2V \end{split} \begin{aligned} &t_{CYCLE} = 1 \mu s \\ &I_{I/O} = 0 mA \end{aligned}$ | | $V_{ m IL}$ | Input Low Voltage | 6 | -0.2 | | 0.6 | V | | | V_{IH} | Input High Voltage | 6 | 2.2 | | VCC
+0.2 | V | | | V _{OL} | Output Low Voltage | 6 | | | 0.4 | V | $I_{OL} = 0.5 \text{mA}$ | | V _{OH} | Output High Voltage | 6 | 2.4 | | | V | $I_{OH} = -0.5 \text{mA}$ | | V _{PPLK} | F-V _{PP} Lockout during Normal
Operations | 4,6,7 | | | 0.4 | V | | | V _{PPH1} | F-V _{PP} during Block Erase, Full Chip
Erase,(PageBuffer) Program | 7 | 1.65 | 3 | 3.3 | V | | | V _{PPH2} | F-V _{PP} during Block Erase,
(PageBuffer) Program | 13 | 11.7 | 12 | 12.3 | v | com | | V_{LKO} | F-V _{CC} Lockout Voltage | | 1.5 | | | V | | - 1. V_{CC} includes both F-V_{CC} and S-V_{CC}. - 2. All currents are in RMS unless otherwise noted. Typical values are the reference values at $V_{CC} = 3.0V$ and $T_A = +25^{\circ}C$ unless V_{CC} is specified. - 3. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program while in block erase suspend mode, the device's current draw is the sum of I_{CCWS} or I_{CCES} and I_{CCR} or I_{CCW} , respectively. - 4. Block erase, full chip erase, (page buffer) program are inhibited when $F-V_{PP} \le V_{PPLK}$, and not guaranteed in the range between V_{PPLK} (max.) and V_{PPH1} (min.), between V_{PPH1} (max.) and V_{PPH2} (min.) and above V_{PPH2} (max.). - 5. The Automatic Power Savings (APS)
feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed. - 6. Sampled, not 100% tested. - 7. F-V_{PP} is not used for power supply pin. With F-V_{PP} \leq V_{PPLK}, block erase, full chip erase, (page buffer) program cannot be executed and should not be attempted. - Applying $12V \pm 0.3V$ to F-V_{PP} provides fast erasing or fast programming mode. In this mode, F-V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus. - Applying 12V ± 0.3 V to F-V_{PP} during erase/program can only be done for a maximum of 1000 cycles on each block. F-V_{PP} may be connected to 12V ± 0.3 V for a total of 80 hours maximum. - 8. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane. #### 12. AC Electrical Characteristics for Flash Memory #### 12.1 AC Test Conditions | Input pulse level | 0 V to 2.7 V | |------------------------------------|---------------------| | Input rise and fall time | 5 ns | | Input and Output timing Ref. level | 1.35 V | | Output load | $1TTL + C_L (50pF)$ | #### 12.2 Read Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, F-V_{CC} = 2.7V \text{ to } 3.3V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |---------------------------------------|---|-------|------|------|------| | t _{AVAV} | Read Cycle Time | | 85 | | ns | | t _{AVQV} | Address to Output Delay | | | 85 | ns | | $t_{\rm ELQV}$ | F-CE to Output Delay | 2 | | 85 | ns | | t _{APA} | Page Address Access Time | | | 30 | ns | | t _{GLQV} | F-OE to Output Delay | 2 | | 20 | ns | | t _{PHQV} | F-RST High to Output Delay | | | 150 | ns | | t _{EHQZ} , t _{GHQZ} | F-\overline{CE} or F-\overline{OE} to Output in High - Z, Whichever Occurs First | 1 | | 20 | ns | | t _{ELQX} | F-\overline{CE} to Output in Low - Z | 1 | 0 | | ns | | t_{GLQX} | F-OE to Output in Low - Z | J.C(| 0 | | ns | | t _{OH} | Output Hold from First Occurring Address, F-\overline{CE} or F-\overline{OE} change | 1 | 0 | | ns | - 1. Sampled, not 100% tested. - 2. F- $\overline{\text{OE}}$ may be delayed up to $t_{\text{ELQV}} t_{\text{GLQV}}$ after the falling edge of F- $\overline{\text{CE}}$ without impact to t_{ELQV} #### 12.3 Write Cycle (F-WE / F-CE Controlled)^(1,2) $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, F-V_{CC} = 2.7V \text{ to } 3.3V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |--|--|-------|------|-----------------------|------| | t _{AVAV} | Write Cycle Time | | 85 | | ns | | t _{PHWL} (t _{PHEL}) | F-RST High Recovery to F-WE (F-CE) Going Low | 3 | 150 | | ns | | $t_{\text{ELWL}} (t_{\text{WLEL}})$ | \overline{F} - \overline{CE} $(F$ - $\overline{WE})$ Setup to \overline{F} - \overline{WE} $(F$ - $\overline{CE})$ Going Low | 4 | 0 | | ns | | $t_{WLWH} (t_{ELEH})$ | F-WE (F-CE) Pulse Width | 4 | 60 | | ns | | $t_{DVWH} (t_{DVEH})$ | Data Setup to F-WE (F-CE) Going High | 8 | 40 | | ns | | $t_{AVWH} (t_{AVEH})$ | Address Setup to F-WE (F-CE) Going High | 8 | 50 | | ns | | $t_{WHEH} (t_{EHWH})$ | F - \overline{CE} (F - \overline{WE}) Hold from F - \overline{WE} (F - \overline{CE}) High | | 0 | | ns | | $t_{WHDX} (t_{EHDX})$ | Data Hold from F-WE (F-CE) High | | 0 | | ns | | $t_{WHAX} (t_{EHAX})$ | Address Hold from F-WE (F-CE) High | | 0 | | ns | | $t_{WHWL} (t_{EHEL})$ | F-WE (F-CE) Pulse Width High | 5 | 30 | | ns | | $t_{SHWH} (t_{SHEH})$ | F-WP High Setup to F-WE (F-CE) Going High | 3 | 0 | | ns | | $t_{VVWH} (t_{VVEH})$ | F-V _{PP} Setup to F-WE (F-CE) Going High | 3 | 200 | | ns | | $t_{WHGL} (t_{EHGL})$ | Write Recovery before Read | | 30 | | ns | | t _{QVSL} | F-WP High Hold from Valid SRD, F-RY/BY High-Z | 3, 6 | 0 | | ns | | t _{QVVL} | F-V _{PP} Hold from Valid SRD, F-RY/ BY High-Z | 3, 6 | 0 | | ns | | t _{WHR0} (t _{EHR0}) | F-WE (F-CE) High to SR.7 Going "0" | 3, 7 | | t _{AVQV} +40 | ns | | $t_{WHRL} (t_{EHRL})$ | F-WE (F-CE) High to F-RY/BY Going Low | 3 | | 100 | ns | - 1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program operations are the same as during read-only operations. See the AC Characteristics for read cycle. - 2. A write operation can be initiated and terminated with either F-CE or F-WE. - 3. Sampled, not 100% tested. - 4. Write pulse width (t_{WP}) is defined from the falling edge of F-\overline{CE} or F-\overline{WE} (whichever goes low last) to the rising edge of F-\overline{CE} or F-\overline{WE} (whichever goes high first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLWH}=t_{ELEH}=t_{ELWH}. - 5. Write pulse width high (t_{WPH}) is defined from the rising edge of F- \overline{CE} or F- \overline{WE} (whichever goes high first) to the falling edge of F- \overline{CE} or F- \overline{WE} (whichever goes low last). Hence, t_{WPH} = t_{WHWL} = t_{EHEL} = t_{WHEL} = t_{EHWL} . - 6. F-V_{PP} should be held at F-V_{PP}=V_{PPH1/2} until determination of block erase, (page buffer) program success (SR.1/3/4/5=0) and held at F-V_{PP}=V_{PPH1} until determination of full chip erase success (SR.1/3/5=0). - 7. $t_{WHR0} (t_{EHR0})$ after the Read Query or Read Identifier Codes command= t_{AVQV} +100ns. - 8. See 5.1 Command Definitions for valid address and data for block erase, full chip erase, (page buffer) program or lock bit configuration. # 12.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance⁽³⁾ $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, F-V_{CC} = 2.7V \text{ to } 3.3V)$ | Symbol | Parameter | Notes | Page Buffer
Command | | F-V _{PP} =V _{PPH1} (In System) | | | V _{PP} =V _{PF}
Manufactu | | Unit | |--|---|-------|------------------------|------|--|---------------------|------|---|---------------------|------| | | | | is Used or
not Used | Min. | Typ.(1) | Max. ⁽²⁾ | Min. | Typ.(1) | Max. ⁽²⁾ | | | t_{WPB} | 4K-Word Parameter Block | 2 | Not Used | | 0.05 | 0.3 | | 0.04 | 0.12 | s | | WPB | Program Time | 2 | Used | | 0.03 | 0.12 | | 0.02 | 0.06 | s | | two.co | 32K-Word Main Block | 2 | Not Used | | 0.38 | 2.4 | | 0.31 | 1 | s | | t _{WMB} | Program Time | 2 | Used | | 0.24 | 1 | | 0.17 | 0.5 | S | | t _{WHQV1} / | Word Program Time | 2 | Not Used | | 11 | 200 | | 9 | 185 | μs | | t _{EHQV1} | word Frogram Time | 2 | Used | | 7 | 100 | | 5 | 90 | μs | | t _{WHQV2} /
t _{EHQV2} | 4K-Word Parameter Block
Erase Time | 2 | - | | 0.3 | 4 | | 0.2 | 4 | S | | t _{WHQV3} /
t _{EHQV3} | 32K-Word Main Block
Erase Time | 2 | - | | 0.6 | 5 | | 0.5 | 5 | s | | | Full Chip Erase Time | 2 | | | 40 | 350 | | | | S | | t _{WHRH1} /
t _{EHRH1} | (Page Buffer) Program Suspend
Latency Time to Read | 4 | - | | 5 | 10 | | 5 | 10 | μs | | t _{WHRH2} /
t _{EHRH2} | Block Erase Suspend
Latency Time to Read | 41 | aSh | عوا | 5 | 20 | om | 5 | 20 | μs | | t _{ERES} | Latency Time from Block Erase
Resume Command to Block
Erase Suspend Command | 5 | - | 500 | | | 500 | | | μs | - 1. Typical values measured at F-V $_{CC}$ = 3.0V, F-V $_{PP}$ = 3.0V or 12V, and T_{A} = +25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization. - 2. Excludes external system-level overhead. - 3. Sampled, but not 100% tested. - 4. A latency time is required from writing suspend command (F-WE or F-CE going high) until SR.7 going "1" or F-RY/BY going High-Z. - 5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished. #### 12.5 Flash Memory AC Characteristics Timing Chart AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes or Query Code #### 12.6 Reset Operations | $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, F-V_{CC} = 2.7V \text{ to } 3.3$ | V |) | |---|---|---| |---|---|---| | Symbol | Parameter | | Min. | Max. | Unit | |-------------------|---|---------|------|------|------| | t _{PLPH} | F-RST Low to Reset during Read (F-RST should be low during power-up.) | | 100 | | ns | | t _{PLRH} | F-RST Low to Reset during Erase or Program | 1, 3, 4 | | 22 | μs | | t _{VPH} | F-V _{CC} 2.7V to F-RST High | 1, 3, 5 | 100 | | ns | | t _{VHQV} | F-V _{CC} 2.7V to Output Delay | 3 | | 1 | ms | #### Notes: - 1. A reset time, t_{PHQV}, is required from the later of SR.7 (F-RY/\overline{BY}) going "1" (High-Z) or F-\overline{RST} going high until outputs are valid. See the AC Characteristics read cycle for t_{PHQV}. - 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed. - 3. Sampled, not 100% tested. - 4. If F-RST asserted while a block erase, full chip erase or (page buffer) program operation is not executing, the reset will complete within 100ns. - 5. When the device power-up, holding F- \overline{RST} low minimum 100ns is required after F- V_{CC} has been in predefined range and also has been in stable there. #### AC Waveform for Reset Operation #### 13. AC Electrical Characteristics for SRAM #### 13.1 AC Test
Conditions | Input pulse level | 0.4 V to 2.2 V | |------------------------------------|---| | Input rise and fall time | 5 ns | | Input and Output timing Ref. level | 1.5 V | | Output load | $1\text{TTL} + C_L (30\text{pF})^{(1)}$ | #### Note: 1. Including scope and socket capacitance. #### 13.2 Read Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, \text{ S-V}_{CC} = 2.7 \text{V to } 3.3 \text{V})$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |--------------------|---|-------|------|-------|------| | t _{RC} | Read Cycle Time | 1,000 | 70 | THUA. | ns | | t _{AA} | Address Access Time | | | 70 | ns | | t _{ACE1} | Chip Enable Access Time $(S-\overline{CE}_1)$ | | | 70 | ns | | t _{ACE2} | Chip Enable Access Time (S-CE ₂) | | | 70 | ns | | t _{BE} | Byte Enable Access Time | | | 70 | ns | | t _{OE} | Output Enable to Output Valid | | | 40 | ns | | t _{OH} | Output Hold from Address Change | | 10 | | ns | | t _{LZ1} | S-CE ₁ Low to Output Active | 1-1 | 10 | | ns | | t_{LZ2} | S-CE ₂ High to Output Active | 1 | 10 | | ns | | t _{OLZ} | S-OE Low to Output Active | 1 | 5 | | ns | | $t_{\rm BLZ}$ | S-UB or S-LB Low to Output Active | 1 | 5 | | ns | | t _{HZ1} | S-CE ₁ High to Output in High-Z | 1 | 0 | 25 | ns | | t _{HZ2} | S-CE ₂ Low to Output in High-Z | 1 | 0 | 25 | ns | | t _{OHZ} | S-OE High to Output in High-Z | 1 | 0 | 25 | ns | | t_{BHZ} | S-UB or S-LB High to Output in High-Z | 1 | 0 | 25 | ns | #### Note: 1. Active output to High-Z and High-Z to output active tests specified for a ±200mV transition from steady state levels into the test load. #### 13.3 Write Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, S-V_{CC} = 2.7V \text{ to } 3.3V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|-------------------------------|-------|------|------|------| | t _{WC} | Write Cycle Time | | 70 | | ns | | t _{CW} | Chip Enable to End of Write | | 60 | | ns | | t_{AW} | Address Valid to End of Write | | 60 | | ns | | t_{BW} | Byte Select Time | | 60 | | ns | | t _{AS} | Address Setup Time | | 0 | | ns | | t_{WP} | Write Pulse Width | | 50 | | ns | | t _{WR} | Write Recovery Time | | 0 | | ns | | t_{DW} | Input Data Setup Time | | 30 | | ns | | t _{DH} | Input Data Hold Time | | 0 | | ns | | t _{OW} | S-WE High to Output Active | 1 | 5 | | ns | | t_{WZ} | S-WE Low to Output in High-Z | 1 | 0 | 25 | ns | #### Note: 1. Active output to High-Z and High-Z to output active tests specified for a ±200mV transition from steady state levels into the test load. www.DataSheet4U.com #### 13.4 SRAM AC Characteristics Timing Chart # Read Cycle Timing Chart #### Write Cycle Timing Chart (S-WE Controlled) - 1. A write occurs during the overlap of a low S- $\overline{\text{CE}}_{1}$, a high S-CE₂ and a low S- $\overline{\text{WE}}$. - A write begins at the latest transition among S- $\overline{\text{CE}}_1$ going low, S-CE₂ going high and S- $\overline{\text{WE}}$ going low. A write ends at the earliest transition among S- $\overline{\text{CE}}_1$ going high, S-CE₂ going low and S- $\overline{\text{WE}}$ going high. twp is measured from the beginning of write to the end of write. - 2. tcw is measured from the later of S-CE 1 going low or S-CE 2 going high to the end of write. - 3. t_{BW} is measured from the time of going low $S-\overline{UB}$ or low $S-\overline{LB}$ to the end of write. - 4. tas is measured from the address valid to beginning of write. - 5. twr is measured from the end of write to the address change. twr applies in case a write ends at $S-\overline{CE}_1$ going high, $S-CE_2$ going low or $S-\overline{WE}$ going high. - 6. During this period DQ pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied. - 7. If S-CE₁ goes low or S-CE₂ goes high simultaneously with S-WE going low or after S-WE going low, the outputs remain in high impedance state. - 8. If S-\overline{CE}_1 goes high or S-CE_2 goes low simultaneously with S-\overline{WE} going high or before S-\overline{WE} going high, the outputs remain in high impedance state. #### Write Cycle Timing Chart (S-\overline{CE} Controlled) - 1. A write occurs during the overlap of a low S-CE₁, a high S-CE₂ and a low S-WE. A write begins at the latest transition among S-CE₁ going low, S-CE₂ going high and S-WE going low. A write ends at the earliest transition among S-CE₁ going high, S-CE₂ going low and S-WE going high. twp is measured from the beginning of write to the end of write. - 2. tcw is measured from the later of S- $\overline{\text{CE}}_1$ going low or S-CE2 going high to the end of write. - 3. t_{BW} is measured from the time of going low S- $\overline{\text{UB}}$ or low S- $\overline{\text{LB}}$ to the end of write. - 4. tas is measured from the address valid to beginning of write. - 5. twr is measured from the end of write to the address change. t wr applies in case a write ends at S-CE 1 going high, S-CE 2 going low or S-WE going high. # Write Cycle Timing Chart (S-\overline{UB}, S-\overline{LB} Controlled) - 1. A write occurs during the overlap of a low S- $\overline{\text{CE}}_{1}$, a high S-CE2 and a low S- $\overline{\text{WE}}$. A write begins at the latest transition among S- $\overline{\text{CE}}_{1}$ going low, S-CE2 going high and S- $\overline{\text{WE}}$ going low. A write ends at the earliest transition among S- $\overline{\text{CE}}_{1}$ going high, S-CE2 going low and S- $\overline{\text{WE}}$ going high. twp is measured from the beginning of write to the end of write. - 2. tcw is measured from the later of S-CE 1 going low or S-CE 2 going high to the end of write. - 3. t_{BW} is measured from the time of going low S-UB or low S-LB to the end of write. - 4. tas is measured from the address valid to beginning of write. - 5. twR is measured from the end of write to the address change. t wR applies in case a write ends at S-\overline{CE} 1 going high, S-CE 2 going low or S-\overline{WE} going high. - 6. S-UB and S-LB need to make the time of start of a cycle, and an end "high" level for reservation of t As and twr. #### 14. Data Retention Characteristics for SRAM $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C)$ | Symbol | Parameter | Note | Min. | Typ.(1) | Max. | Unit | Conditions | |-------------------|-------------------------------|------|-----------------|---------|------|------|---| | V _{CCDR} | Data Retention Supply voltage | 2 | 1.5 | | 3.3 | V | $S-CE_2 \le 0.2V$ or $S-\overline{CE}_1 \ge S-V_{CC} - 0.2V$ | | I _{CCDR} | Data Retention Supply current | 2 | | 2 | 25 | μΑ | $S-V_{CC} = 3.0V,$
$S-CE_2 \le 0.2V \text{ or}$
$S-\overline{CE}_1 \ge S-V_{CC} - 0.2V$ | | t _{CDR} | Chip enable setup time | | 0 | | | ns | | | t _R | Chip enable hold time | | t _{RC} | | | ns | | #### Notes - 1. Reference value at $T_A = 25$ °C, $S-V_{CC} = 3.0V$. - 2. $S-\overline{CE}_1 \ge S-V_{CC}-0.2V$, $S-CE_2 \ge S-V_{CC}-0.2V$ ($S-\overline{CE}_1$ controlled) or $S-CE_2 \le 0.2V$ ($S-CE_2$ controlled). # Data Retention timing chart (S-\overline{CE}1 Controlled)^{(1)} #### Note: 1. To control the data retention mode at S- $\overline{\text{CE}}_1$, fix the input level of S-CE2 between "V CCDR and V CCDR-0.2V" or "0V and 0.2V" during the data retention mode. #### Data Retention timing chart (S-CE2 Controlled) #### 15. Notes This product is a stacked CSP package that a 32M (x16) bit Flash Memory and a 8M (x16) bit SRAM are assembled into. - Supply Power Maximum difference (between F-V $_{CC}$ and S-V $_{CC}$) of the voltage is less than 0.3V. - Power Supply and Chip Enable of Flash Memory and SRAM (F-\overline{CE}, S-\overline{CE}_1, S-CE_2) $S-\overline{CE}_1$ should not be "low" and $S-CE_2$ should not be "high" when $F-\overline{CE}$ is "low" simultaneously. If the two memories are active together, possibly they may not operate normally by interference noises or data collision on DQ bus. Both $F-V_{CC}$ and $S-V_{CC}$ are needed to be applied by the recommended supply voltage at the same time expect SRAM data retention mode. - Power Up Sequence When turning on Flash memory power supply, keep F- \overline{RST} "low". After F-V_{CC} reaches over 2.7V, keep F- \overline{RST} "low" for more than 100 nsec. - Device Decoupling The power supply is needed to be designed carefully because one of the SRAM and the Flash Memory is in standby mode when the other is active. A careful decoupling of power supplies is necessary between SRAM and Flash Memory. Note peak current caused by transition of control signals ($F-\overline{CE}$, $S-\overline{CE}_1$, $S-\overline{CE}_2$). LRS1383C 36 #### 16. Flash Memory Data Protection Noises having a level exceeding the limit specified in the specification may be generated under specific operating conditions on some systems. Such noises, when induced onto F-WE signal or power supply, may be interpreted as false commands and causes undesired memory updating. To protect the data stored in the flash memory against unwanted writing, systems operating with the flash memory should have the following write protect designs, as appropriate: - The below describes data protection method. - 1. Protection of data in each block - Any locked block by setting its block lock bit is protected against the data alternation. When F-WP is low, any locked-down block by setting its block lock-down bit is protected from lock status changes. By using this function, areas can be defined, for example, program area (locked blocks), and data area (unlocked blocks). - For detailed block locking scheme, see Chapter 5.Command Definitions for Flash Memory. - 2. Protection of data with F-V_{PP} control - When the level of F-V_{PP} is lower than V_{PPLK} (F-V_{PP} lockout voltage), write functions to all blocks are disabled. All blocks are locked and
the data in the blocks are completely protected. - 3. Protection of data with F-RST - Especially during power transitions such as power-up and power-down, the flash memory enters reset mode by bringing F-RST to low, which inhibits write operation to all blocks. - For detailed description on F-RST control, see Chapter 12.6 AC Electrical Characteristics for Flash Memory, Reset Operations. | ■ Pro | tection against noises on F-WE signa | JataS r | neet | 4U c | om | | | |-------|--------------------------------------|---------------------|-------------|---------------|------------------|---------|------------| | | To prevent the recognition of false | e commands as write | commands, s | ystem designe | r should conside | r the m | nethod for | | | reducing noises on F-WE signal. | LRS1383C 37 #### 17. Design Considerations ## 1. Power Supply Decoupling To avoid a bad effect to the system by flash memory power switching characteristics, each device should have a $0.1 \mu F$ ceramic capacitor connected between its F-V_{CC} and GND and between its F-V_{PP} and GND. Low inductance capacitors should be placed as close as possible to package leads. ## 2. F-V_{PP} Trace on Printed Circuit Boards Updating the memory contents of flash memories that reside in the target system requires that the printed circuit board designer pay attention to the F-V_{PP} Power Supply trace. Use similar trace widths and layout considerations given to the F-V_{CC} power bus. #### 3. The Inhibition of Overwrite Operation Please do not execute reprograming "0" for the bit which has already been programed "0". Overwrite operation may generate unerasable bit. In case of reprograming "0" to the data which has been programed "1". - Program "0" for the bit in which you want to change data from "1" to "0". - Program "1" for the bit which has already been programed "0". For example, changing data from "1011110110111101" to "1010110110111100" requires "11101111111111110" programing. #### 4. Power Supply Block erase, full chip erase, word write with an invalid $F-V_{PP}$ (See Chapter 11. DC Electrical Characteristics) produce spurious results and should not be attempted. Device operations at invalid $F-V_{CC}$ voltage (See Chapter 11. DC Electrical Characteristics) produce spurious results and should not be attempted. ## 18. Related Document Information⁽¹⁾ | Document No. | Document Name | |---|---------------| | FUM00701 LH28F320BF, LH28F640BF Series Appendix | | ## Note: 1. International customers should contact their local SHARP or distribution sales offices. ## 19 Package and packing specification ## 1.Storage Conditions. - 1.1.Storage conditions required before opening the dry packing. - Normal temperature : 5~40°C - · Normal humidity: 80% R.H. max. - 1-2. Storage conditions required after opening the dry packing. In order to prevent moisture absorption after opening, ensure the following storage conditions apply: - (1) Storage conditions for one-time soldering. (Convection reflow^{*1}, IR/Convection reflow.^{*1}) - · Temperature : 5~25°C - · Humidity: 60% R.H. max. - · Period: 96 hours max. after opening. - (2) Storage conditions for two-time soldering. (Convection reflow*1, IR/Convection reflow.*1) - a. Storage conditions following opening and prior to performing the 1st reflow. - · Temperature : 5~25℃。 - · Humidity: 60% R.H. max. - · Period: 96 hours max. after opening. - b. Storage conditions following completion of the 1st reflow and prior to performing the 2nd reflow. - Temperature : $5\sim25$ °C. - · Humidity: 60% R.H. max. - · Period: 96 hours max. after completion of the 1st reflow. #### 1-3. Temporary storage after opening. To re-store the devices before soldering, do so only once and use a dry box or place desiccant (with a blue humidity indicator) with the devices and perform dry packing again using heat-sealing. The storage period, temperature and humidity must be as follows: (1) Storage temperature and humidity. ※1: External atmosphere temperature and humidity of the dry packing. - (2) Storage period. - X1+X2: Refer to Section 1-2(1) and (2)a, depending on the mounting method. - Y : Two weeks max. 20020201 ^{*1:}Air or nitrogen environment. # SHARP #### 2. Baking Condition. - (1) Situations requiring baking before mounting. - Storage conditions exceed the limits specified in Section 1-2 or 1-3. - Humidity indicator in the desiccant was already red (pink) when opened. (Also for re-opening.) - (2) Recommended baking conditions. - · Baking temperature and period: $120+10/-0^{\circ}$ C for $1\sim3$ hours. - The above baking conditions apply since the trays are heat-resistant. - (3) Storage after baking. - After baking, store the devices in the environment specified in Section 1-2 and mount immediately. #### 3. Surface mount conditions. The following soldering condition are recommended to ensure device quality. #### 3-1. Soldering. - (1) Convection reflow or IR/Convection. (one-time soldering or two-time soldering in air or nitrogen environment) - · Temperature and period: Peak temperature of 240°C max., above 230°C for 15 sec. max. Above 200°C for $30\sim50$ sec. Preheat temperature of $140{\sim}160^{\circ}\!\text{C}$ for $90{\pm}30$ sec. Temperature increase rate of $1\sim 3^{\circ}\text{C/sec}$. - · Measuring point: IC package surface. - · Temperature profile: - 4. Condition for removal of residual flax. - (1) Ultrasonic washing power: 25 watts / liter max. - (2) Washing time: Total 1 minute max. - (3) Solvent temperature : 15~40°C SHARP 5. Package outline specification. Due to the different manufacturing process, there are tow types of package outline. (see *1) No changes are planned on package structure, substrate, and quality or reliability level remains unchanges. Refer to the attached drawing. #### 6. Markings. 6-1. Marking details. (The information on the package should be given as follows.) (1) Product name : LRS1383 (2) Company name : S (3) Date code ## 6-2. Marking layout. The layout is shown in the attached drawing. (However, this layout does not specify the size of the marking character and marking position.) *1 Package outline | Item | Chamfered type | Rectangle type | | | |---|---|--|--|--| | Manufacturing
Process | Devices are encapsulated separately, the cut into individual units by tool. | Multiple devices are encapsulated together, then cut into individual units by saw. | | | | Drawing No. | AA2078 | AA2149 | | | | Package outline | | | | | | Package index mark | Ejector pin mark. | Ink mark. | | | | The word of "BATCH" is printed on the packing label | Not printed | Printed | | | www.E SHARP 7.Packing Specifications (Dry packing for surface mount packages.) 7-1. Packing materials. | Material name | Material specifications | Purpose | | |--------------------|--|----------------------------|--| | Inner carton | Cardboard (2310 devices / inner carton | Packing the devices. | | | | max.) | (10 trays / inner carton) | | | Tray | Conductive plastic (231 devices / tray) | Securing the devices. | | | Upper cover tray | Conductive plastic (1 tray / inner carton) | Securing the devices. | | | Laminated aluminum | Aluminum polyethylene | Keeping the devices dry. | | | bag | | | | | Desiccant | Silica gel | Keeping the devices dry. | | | Label | Paper | Indicates part number, | | | | | quantity, and packed date. | | | PP band | Polypropylene (3 pcs. / inner carton) | Securing the devices. | | | Outer carton | Cardboard (9240 devices / outer carton | Outer packing. | | | | max.) | | | (Devices must be placed on the tray in the same direction.) 7-2.Outline dimension of tray. Refer to the attached drawing. 7-3. Outline dimension of carton. Refer to the attached drawing. - 8. Precautions for use. - (1) Opening must be done on an anti-ESD treated workbench. All workers must also have undergone anti-ESD treatment. - (2) The trays have undergone either conductive or anti-ESD treatment. If another tray is used, make sure it has also undergone conductive or anti-ESD treatment. - (3) The devices should be mounted the devices within one year of the date of delivery. #### A-1 RECOMMENDED OPERATING CONDITIONS ## A-1.1 At Device Power-Up AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly. *1 To prevent the unwanted writes, system designers should consider the design, which applies F-V CCW (F-V_{PP}) to 0V during read operations and V CCWHI/2 (V_{PPHI/2}) during write or erase operations. See the application note AP-007-SW-E for details. Figure A-1. AC Timing at Device Power-Up For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "AC Electrical Characteristics for Flash Memory" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page. ## A-1.1.1 Rise and Fall Time | Symbol | Parameter | Notes | Min. | Max. | Unit | |------------------|-----------------------------|-------|------|-------|------| | t_{VR} | F-V _{CC} Rise Time | 1 | 0.5 | 30000 | μs/V | | t _R | Input Signal Rise Time | | | 1 | μs/V | | t_{F} | Input Signal Fall Time | 1, 2 | | 1 | μs/V | ## NOTES: - 1. Sampled, not 100% tested. - 2. This specification is applied for not only the device power-up but also the normal operations. www.DataSheet4U.com ## A-1.2 Glitch Noises Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control
signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a). Figure A-2. Waveform for Glitch Noises See the "DC Electrical Characteristics" described in specifications for V_{IH} (Min.) and V_{IL} (Max.). ## A-2 RELATED DOCUMENT INFORMATION⁽¹⁾ | Document No. Document Name | | |--|---| | AP-001-SD-E | Flash Memory Family Software Drivers | | AP-006-PT-E Data Protection Method of SHARP Flash Memory | | | AP-007-SW-E | RP#, V _{PP} Electric Potential Switching Circuit | #### NOTE: 1. International customers should contact their local SHARP or distribution sales office. www.DataSheet4U.com #### SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage. #### **NORTH AMERICA** www.sharpsma.com SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 #### **TAIWAN** SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328 #### **EUROPE** SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com ## **SINGAPORE** SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855 #### **JAPAN** SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com #### **KOREA** SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819 ## CHINA SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 **Head Office:** No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp #### HONG KONG SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk Shenzhen Representative Office: Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735