LRS1B06 Stacked Chip DataShe 128M (×16) Boot Block Flash and 32M (x16) SCRAM and 8M (x16) SRAM (Model No.: LRS1B06) Spec No.: EL147068 Issue Date: January 27, 2003 DataSheet4U.com www.DataSheet4U.com | То; | SPEC No. EL147068 ISSUE: Jan. 27. 2003 | |---|---| | SPEC | CIFICATIONS | | | Flash Memory +64M (x16) Flash Memory 16) Smartcombo RAM +8M (x16) SRAM LRS1B06 | | Model No. | (LRS1B06) | | *This specifications contain *Refer to LH28F320BF, LI | ns <u>97</u> pages including the cover and appendix.
H28F640BF, LH28F128BF Series Appendix (FUM00701). | | CUSTOMERS ACCEPTANCE | | | DATE: | | | BY: | PRESENTED BY: Hotta YHOTTA Dept. General Manager | | | Product Development Dept. I Flash Memory Division | Integrated Circuits Group SHARP CORPORATION - Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company. - When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions. - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3). - Office electronics - Instrumentation and measuring equipment - Machine tools - Audiovisual equipment - Home appliance - Communication equipment other than for trunk lines - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system. - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment - Mainframe computers - Traffic control systems - Gas leak detectors and automatic cutoff devices - Rescue and security equipment - Other safety devices and safety equipment, etc. - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy. - Aerospace equipment - Communications equipment for trunk lines - Control equipment for the nuclear power industry - Medical equipment related to life support, etc. - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company. - Please direct all queries regarding the products covered herein to a sales representative of the company. www.DataSheet4U.com DataSheet4U.com DataShe et4U.com | | Contents | | |----------|--|---------| | 1. Desci | ption | | | 2. Pin C | nfiguration4 | | | 3. Block | Diagram6 | | | 4. Absol | tte Maximum Ratings | | | 5. Reco | mended DC Operating Conditions | | | 6. Flash | Memory 1 | | | 6.1 | Truth Table | | | | 6.1.1 Bus Operation | | | | 6.1.2 Simultaneous Operation Modes Allowed with Four Planes | | | 6.2 | Command Definitions for Flash Memory | | | | 6.2.1 Command Definitions | | | | 6.2.2 Identifier Codes for Read Operation | | | | 6.2.3 Functions of Block Lock and Block Lock-Down | | | | 6.2.4 Block Locking State Transitions upon Command Write | | | | 6.2.5 Block Locking State Transitions upon WP Transition | | | 6.3 | Register Definition | | | 6.4 | Memory Map for Flash Memory | | | 6.5 | DC Electrical Characteristics for Flash Memory | | | 6.6 | AC Electrical Characteristics for Elash Memory | | | | 6.6.1 AC Test ConditionsDataSheet4U.com | DataShe | | | 6.6.2 Read Cycle | | | | 6.6.3 Write Cycle (F- $\overline{\text{WE}}$ / F ₁ - $\overline{\text{CE}}$ Controlled) | | | | 6.6.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance | | | | 6.6.5 Flash Memory AC Characteristics Timing Chart | | | | 6.6.6 Reset Operations | | | | | | | 7. Flash | Memory 2 | | | 7.1 | Truth Table | | | | 7.1.1 Bus Operation | | | | 7.1.2 Simultaneous Operation Modes Allowed with Four Planes | | | 7.2 | Command Definitions for Flash Memory | | | | 7.2.1 Command Definitions | | | | 7.2.2 Identifier Codes for Read Operation | | | | 7.2.3 Functions of Block Lock and Block Lock-Down | | | | 7.2.4 Block Locking State Transitions upon Command Write | | | | 7.2.5 Block Locking State Transitions upon $\overline{\text{WP}}$ Transition | | | 7.3 | Register Definition | | | 7.4 | Memory Map for Flash Memory | | | 7.5 | DC Electrical Characteristics for Flash Memory | | | 7.6 | AC Electrical Characteristics for Flash Memory | | | | 7.6.1 AC Test Conditions | | | | 7.6.2 Read Cycle | | | | 7.6.3 Write Cycle (F- $\overline{\text{WE}}$ / F ₂ - $\overline{\text{CE}}$ Controlled) | | | | 7.6.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance | | | | 7.6.5 Flash Memory AC Characteristics Timing Chart | | | £411.00m | 7.6.6 Reset Operations | 4U.com | | t4U.com | 7.0.0 Reset Operations | | et4U.com DataShee LRS1B06 2 | | tcombo RAM | | | |-----------|--|------|--------| | 8.1 | Truth Table | | | | 0.0 | 8.1.1 Bus Operation | | | | 8.2 | DC Electrical Characteristics for Smartcombo RAM | | | | 8.3 | AC Electrical Characteristics for Smartcombo RAM | | | | | 8.3.1 AC Test Conditions. | | | | | 8.3.2 Read Cycle | | | | | 8.3.3 Write Cycle | | | | | 8.3.4 Initialization | | | | | 8.3.5 Sleep Mode Entry / Exit | 55 | | | 8.4 | Initialization | 56 | | | 8.5 | Page Read Operation | 58 | | | | 8.5.1 Features of Page Read Operation | 58 | | | 8.6 | Mode Register Settings | 59 | | | | 8.6.1 Mode Register Setting Method | 59 | | | | 8.6.2 Cautions for Setting Mode Register | 59 | | | 8.7 | Smartcombo RAM AC Characteristics Timing Chart | 60 | | | | | | | | 9. SRAN | M M | 74 | | | 9.1 | Truth Table | 74 | | | | 9.1.1 Bus Operation | 74 | | | 9.2 | DC Electrical Characteristics for SRAM | 75 | | | 9.3 | AC Electrical Characteristics for SRAM | 76 | | | | 9.3.1 AC Test Conditions | 76 | | | | 9.3.2 Read Cycle | 76 | | | | 9.3.3 Write Cycle DataSheet4U.com | 77 D | ataShe | | 9.4 | SRAM AC Characteristics Timing Chart | 78 | | | 9.5 | Data Retention Characteristics for SRAM | | | | | | | | | 10. Note | PS | 83 | | | | | | | | 11. Flasl | h Memory Data Protection | 84 | | | | | | | | 12. Desi | gn Considerations | 85 | | | 10 D : | | 0.7 | | | 13. Rela | ted Document Information | 85 | | | 14 D. 1 | and Dading Consideration | 06 | | | 14. Pack | age and Packing Specification | 80 | | DataSheet4U.com et4U.com ## 1. Description The LRS1B06 is a combination memory organized as 4,194,304 x16 bit flash memory, 4,194,304 x16 bit flash memory, 2,097,152 x16 bit Smartcombo RAM and 524,288 x16 bit static RAM in one package. ## Features - -Power supply -Operating temperature • • 2.7V to 3.1V -25°C to +85°C - -Not designed or rated as radiation hardened - -72 pin CSP(LCSP072-P-0811) plastic package - -Flash memory has P-type bulk silicon, and Smartcombo RAM has P-type bulk silicon, and SRAM has P-type bulk silicon - -Flash memory and Smartcombo RAM share one power supply pin (F/SC-V_{CC}) - -For specifications of Flash memory, Smartcombo RAM and SRAM, refer to specification of each chip ## Standby current of Flash memory and Smartcombo RAM -Power supply current $\bullet \bullet \bullet \bullet \bullet 150 \,\mu\text{A}$ (Max.) # Flash Memory 1 (F₁: 64M (x16) bit Flash Memory) - -Access Time (Address) • • 65 ns (Max.) - -Power supply current (The current for F/SC-V_{CC} pin and V_{PP} pin) Block erase • • • • 30 mA (Max.) # Flash Memory 2 (F₂: 64M (x16) bit Flash Memory) -Access Time (Address) • • • • 65 ns (Max.) -Power supply current (The current for F/SC-V_{CC} pin and V_{PP} pin) Block erase • • • • 30 mA (Max.) ## Smartcombo RAM (32M (x16) bit Smartcombo RAM) -Access Time (Address) •••• 65 ns (Max.) -Cycle time • • • • 65 ns (Min.) -Power Supply current Operating current • • • • • 50 mA (Max. t_{RC} , $t_{WC} = Min.$) ## SRAM (8M (x16) bit SRAM) -Access Time (Address) • • • • 65 ns (Max.) -Power Supply current Operating current •••• 45 mA (Max. t_{RC} , t_{WC} = Min.) Standby current $\bullet \bullet \bullet \bullet \qquad 25 \ \mu A \qquad (Max.)$ DataSheet4U.com et4U.com #### 2. Pin Configuration INDEX (TOP View) 2 3 5 7 8 9 4 6 10 11 12 NC NC A12 **GND** NC NC A20 **A**11 A15 A14 **A**13 DQ15 DQ14 DQ7 В **A**8 DQ6 DQ4 F-WE DQ13 \mathbf{C} (RY/BY F-A21 DQ5 F/SC RST DQ12 D GND T_1 T2 CE2 -Vcc F/SC -VCC DQ11 $\overline{\mathrm{WP}}$ E VPP A19 DQ10 DQ2 DQ3 $\overline{\text{UB}}$ S-OE $\overline{\text{LB}}$ F T3 DQ9 DQ8 DQ0DQ1 SC-CE G F-A17 **A**3 A_2 A_1 A18 F-OE S-CE1 GND Η Note) From T1 to T3 pins are needed to be open. Two NC pins at the corner are connected. Do not float any GND pins. DataSheet4U.com et4U.com | Pin | Description | Type | | |---------------------------------------|--|----------------------|----| | A_0 to A_{16} , A_{18} | Address Inputs (Common) | Input | | | A_{19} to A_{20} | Address Inputs
(Flash, Smartcombo RAM) | Input | | | F-A ₁₇ , F-A ₂₁ | Address Inputs (Flash) | Input | | | S-A ₁₇ | Address Input (SRAM, Smartcombo RAM) | Input | | | F ₁ - CE | Chip Enable Input (Flash - F ₁ Selected) | Input | | | F ₂ - CE | Chip Enable Input (Flash - F ₂ Selected) | Input | | | $SC-\overline{CE}_1$ | Chip Enable Input (Smartcombo RAM) | Input | | | S- CE ₁ | Chip Enable Input (SRAM) | Input | | | CE ₂ | Chip Enable Input (SRAM), Sleep State Input (Smartcombo RAM) * See Chapter B-1 | Input | | | F-WE | Write Enable Input (Flash) | Input | | | S-WE | Write Enable Input (SRAM, Smartcombo RAM) | Input | | | F- OE | Output Enable Input (Flash) | Input | | | S-OE | Output Enable Input (SRAM, Smartcombo RAM) | Input | | | $\overline{\text{LB}}$ | SRAM, Smartcombo RAM Byte Enable Input (DQ ₀ to DQ ₇) | Input | | | UB | SRAM, Smartcombo RAM Byte Enable Input (DQ ₈ to DQ ₁₅) | Input | | | RST | Reset Power Down Input (Flash) Block erase and Write: VIH Reset Power Down: VIL | Input | Da | | $\overline{ ext{WP}}$ | Write Protect Input (Flash) $ \begin{array}{c} When \ \overline{WP} \ is \ V_{IL}, locked-down \ blocks \ cannot \ be \ unlocked. \ Erase \ or \\ program \ operation \ can \ be \ executed \ to \ the \ blocks \ which \ are \ not \ locked \ and \ locked-down. \ When \ \overline{WP} \ is \ V_{IH}, lock-down \ is \ disabled. \end{array} $ | Input | | | RY/BY | Ready/Busy Output (Flash) During an Erase or Write operation: V _{OL} Block Erase and Write Suspend: High-Z (High impedance) | Open Drain
Output | | | DQ ₀ to DQ ₁₅ | Data Inputs and Outputs (Common) | Input / Output | | | F/SC-V _{CC} | Power Supply (Flash, Smartcombo RAM) | Power | | | S-V _{CC} | Power Supply (SRAM) | Power | | | V_{PP} | Monitoring Power Supply Voltage (Flash) Block Erase and Write: $V_{PP} = V_{PPH}$ All Blocks Locked: $V_{PP} < V_{PPLK}$ | Input | | | GND | GND (Common) | Power | | | NC | Non Connection | | | | T_1 to T_3 | Test pins (Should be all open) | - | | et4U.com www.DataSheet4U.com Note: Only one among F 1- \overline{CE} , F2- \overline{CE} , SC- \overline{CE} 1 and S- \overline{CE} 1 can be "low". Two or more should not be "low". DataSheet4U.com # 4. Absolute Maximum Ratings | Symbol | Parameter | Notes | Ratings | Unit | |-----------------|-------------------------|-------|------------------------------|------| | V_{CC} | Supply Voltage | 1 | -0.2 to +3.9 | V | | V _{IN} | Input Voltage | 1,2,3 | -0.5 to V _{CC} +0.3 | V | | T _A | Operating Temperature | | -25 to +85 | °C | | T_{STG} | Storage Temperature | | -55 to +125 | °C | | V _{PP} | V _{PP} Voltage | 1,2 | -0.2 to +3.6 | V | LRS1B06 ## Notes: - 1. The maximum applicable voltage on any pins with respect to GND. - 2. -1.0V undershoot is allowed when the pulse width is less than 5 nsec. - 3. V_{IN} should not be over $V_{CC} + 0.3V$. # 5. Recommended DC Operating Conditions $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C)$ taShe | Symbol | Parameter | Notes | Min. | Typ. | Max. | Unit | |--|---|-----------|------------------------|------|-------------------------|------| | V _{CC} | Supply Voltage | 3 | 2.7 | | 3.1 | V | | V_{PP} | V _{PP} Voltage (Write Operation) | | 1.65 | | 3.1 | V | | V _{PP} Voltage (Read Operation) | | | 0 | | 3.1 | V | | V_{IH} | Input Voltage | | Vcc -0.4 (2) | | Vcc +0.3 ⁽¹⁾ | V | | V _{IL} | Input Voltage | DataSheet | 4U.co . 0.3 | | 0.4 | V Da | ## Notes: - 1. V_{CC} is the lower of F/SC- V_{CC} or S- V_{CC} . - 2. V_{CC} is the higher of F/SC- V_{CC} or S- V_{CC} . - 3. V_{CC} includes both F/SC-V_{CC} and S-V_{CC}. et4U.com www.DataSheet4U.com DataSheet4U.com - 6. Flash Memory 1 - 6.1 Truth Table - 6.1.1 Bus Operation (1) | Flash | Notes | F ₁ - CE | RST | F- OE | F-WE | DQ ₀ to DQ ₁₅ | | |------------------|---------|--------------------------------|-----|------------------|------|-------------------------------------|--| | Read | 3,5 | | | L | Н | (7) | | | Output Disable | 5 | L | Н | 11 | п | High - Z | | | Write | 2,3,4,5 | | | Н | L | D_{IN} | | | Standby | 5 | Н | Н | X | X | High 7 | | | Reset Power Down | 5,6 | X | L | Λ | Λ | High - Z | | # Notes: et4U.com - 1. $L = V_{IL}$, $H = V_{IH}$, X = H or L, High-Z = High impedance. Refer to the DC Characteristics. - 2. Command writes involving block erase, full chip erase, (page buffer) program are reliably executed when $V_{PP} = V_{PPH}$ and $V_{CC} = 2.7V$ to 3.1V. Block erase, full chip erase, (page buffer) program with $V_{PP} < V_{PPH}$ (Min.) produce spurious results and should not be attempted. - 3. Never hold F-OE low and F-WE low at the same timing. - 4. Refer to Section 6.2 Command Definitions for Flash Memory valid D_{IN} during a write operation. - 5. \overline{WP} set to V_{IL} or V_{IH} . - 6. Electricity consumption of Flash Memory is lowest when $\overline{RST} = GND \pm 0.2V$. 7. Flash Read Mode | | Liata Sheeta Licom | | | | | |-----------------------|-----------------------|-----------------------|--|--|--| | Mode | Address | DQ_0 to DQ_{15} | | | | | Read Array | X | D _{OUT} | | | | | Read Identifier Codes | See 6.2.2 | See 6.2.2 | | | | | Read Query | Refer to the Appendix | Refer to the Appendix | | | | DataSheet4U.com www.DataSheet4U.com $6.1.2\,$ Simultaneous Operation Modes Allowed with Four Planes $^{(1,2)}$ | | THEN THE MODES ALLOWED IN THE OTHER PARTITION IS: | | | | | | | | | | |-------------------------|---|---------|----------------|---------------|-----------------|---------------------------|----------------|--------------------|--------------------|---------------------------| | IF ONE
PARTITION IS: | Read
Array | Read ID | Read
Status | Read
Query | Word
Program | Page
Buffer
Program | Block
Erase | Full Chip
Erase | Program
Suspend | Block
Erase
Suspend | | Read Array | X | X | X | X | X | X | X | | X | X | | Read ID | X | X | X | X | X | X | X | | X | X | | Read Status | X | X | X | X | X | X | X | X | X | X | | Read Query | X | X | X | X | X | X | X | | X | X | | Word Program | X | X | X | X | | | | | | X | | Page Buffer
Program | X | X | X | X | | | | | | X | | Block Erase | X | X | X | X | | | | | | | | Full Chip Erase | | | X | | | | | | | | | Program
Suspend | X | X | X | X | | | | | | X | | Block Erase
Suspend | X | X | X | X | X | X | | | X | | # Notes: - 1. "X" denotes the operation available. - 2. Configurative Partition Dual Work Restrictions: Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. DataShe Only one partition can be erased or programmed at a time 7 no command queuing. Commands must be written to an address within the block targeted by that command. et4U.com www.DataSheet4U.com DataSheet4U.com LRS1B06 10 # 6.2 Command Definitions for Flash Memory (11) ## 6.2.1 Command Definitions | Bus | | | F | First Bus Cycle | | | Second Bus Cycle | | | | |--|-----------------|-------|------------------------|--------------------|---------------|----------|------------------|----------|--|--| | Command | Cycles
Req'd | Notes | Oper (1) | Address (2) | Data | Oper (1) | Address (2) | Data (3) | | | | Read Array | 1 | | Write | PA | FFH | | | | | | | Read Identifier Codes | ≥ 2 | 4 | Write | PA | 90H | Read | IA | ID | | | | Read Query | ≥ 2 | 4 | Write | PA | 98H | Read | QA | QD | | | | Read Status Register | 2 | | Write | PA | 70H | Read | PA | SRD | | | | Clear Status Register | 1 | | Write | PA | 50H | | | | | | | Block Erase | 2 | 5 | Write | BA | 20H | Write | BA | D0H | | | | Full Chip Erase | 2 | 5, 9 | Write | X | 30H | Write | X | D0H | | | | Program | 2 | 5, 6 | Write | WA | 40H or
10H | Write | WA | WD | | | | Page Buffer Program | ≥ 4 | 5, 7 | Write | WA | E8H | Write | WA | N-1 | | | | Block Erase and (Page Buffer)
Program Suspend | 1 | 8, 9 | Write | PA | ВОН | | | | | | | Block Erase and (Page Buffer)
Program Resume | 1 | 8, 9 | Write | PA | D0H | | | | | | | Set Block Lock Bit | 2 | | Write | BA | 60H | Write | BA | 01H | | | | Clear Block Lock Bit | 2 | 10 | Write | BA | 60H | Write | BA | D0H | | | | Set Block Lock-down Bit | 2 | | Write | BA | 60H | Write | BA | 2FH | | | | Set Partition Configuration
Register | 2 | Dat | aS Write 4U | ^{CO} PCRC | 60H | Write | PCRC | 04H | | | ## Notes: et4U.com - 1. Bus operations are defined in 6.1.1 Bus Operation. - 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle. - X=Any valid address within the device. - PA=Address within the selected partition. - IA=Identifier codes address (See 6.2.2 Identifier Codes for Read Operation). - QA=Query codes address. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details. - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit. - WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. - PCRC=Partition configuration register code presented on the address A₀-A₁₅. - 3. ID=Data read from identifier codes (See 6.2.2 Identifier Codes for Read Operation). - QD=Data read from query database. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details. - SRD=Data read from status register. See 6.3 Register Definition for a description of the status register bits. - WD=Data to be programmed at location WA. Data is latched on the rising edge of $F-\overline{WE}$ or $F_1-\overline{CE}$ (whichever goes high first) during command write cycles. - N-1=N is the number of the words to be loaded into a page buffer. - 4. Following the Read Identifier Codes command,
read operations access manufacturer code, device code, block lock configuration code, partition configuration register code (See 6.2.2 Identifier Codes for Read Operation). - The Read Query command is available for reading CFI (Common Flash Interface) information. - 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when \overline{RST} is V_{IH} . - 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup. - 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any LH28F640BF, LH28F128BF series Appendix for details. taShe LRS1B06 11 - 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next. - 9. Full chip erase operation can not be suspended. - 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when \overline{WP} is V_{IL} . When \overline{WP} is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration. - 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used. et4U.com DataSheet4U.com www.DataSheet4U.com DataShe ## 6.2.2 Identifier Codes for Read Operation | | Code | Address
[A ₁₅ -A ₀] | Data [DQ ₁₅ -DQ ₀] | Notes | |-------------------------------|-------------------------------------|---|---|-------| | Manufacturer Code | Manufacturer Code | 0000Н | 00B0H | 4 | | Device Code | 64M (x16) Top Parameter Device Code | 0001H | 00B0H | 1, 4 | | | Block is Unlocked | | $DQ_0 = 0$ | 2 | | Diode Look Configuration Code | Block is Locked | Block
Address | $DQ_0 = 1$ | 2 | | Block Lock Configuration Code | Block is not Locked-Down | + 2 | $DQ_1 = 0$ | 2 | | | Block is Locked-Down | | $DQ_1 = 1$ | 2 | | Device Configuration Code | Partition Configuration Register | 0006Н | PCRC | 3, 4 | ## Notes: et4U.com - 1. Top parameter device has its parameter blocks in the plane 3 (The highest address). - 2. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes command (90H) has been written. - DQ₁₅-DQ₂ is reserved for future implementation. - 3. PCRC = Partition Configuration Register Code. - 4. The address A₂₁-A₁₆ are shown in below table for reading the manufacturer, device, device configuration code. The address to read the identifier codes is dependent on the partition which is selected when writing the Read Identifier Codes command (90H). See Section 6.3 Partition Configuration Register Definition (P.17) for the partition configuration register. Identifier Codes for Read Operation on Partition Configuration (64M (x16)-bit device) | Parti | ition Configuration Reg | gister DataSheet4U | Address (64M (x16)-bit device) | |--------|-------------------------|--------------------|-------------------------------------| | PCR.10 | PCR.9 | PCR.8 | [A ₂₁ -A ₁₆] | | 0 | 0 | 0 | 00H | | 0 | 0 | 1 | 00H or 10H | | 0 | 1 | 0 | 00H or 20H | | 1 | 0 | 0 | 00H or 30H | | 0 | 1 | 1 | 00H or 10H or 20H | | 1 | 1 | 0 | 00H or 20H or 30H | | 1 | 0 | 1 | 00H or 10H or 30H | | 1 | 1 | 1 | 00H or 10H or 20H or 30H | DataSheet4U.com www.DataSh #### 6.2.3 Functions of Block Lock and Block Lock-Down | | | (2) | | | | |----------------------|-----------------------|--------------------------------|--------------------------------|-------------------|---------------------------| | State | $\overline{ ext{WP}}$ | DQ ₁ ⁽¹⁾ | DQ ₀ ⁽¹⁾ | State Name | Erase/Program Allowed (2) | | [000] | 0 | 0 | 0 | Unlocked | Yes | | [001] ⁽³⁾ | 0 | 0 | 1 | Locked | No | | [011] | 0 | 1 | 1 | Locked-down | No | | [100] | 1 | 0 | 0 | Unlocked | Yes | | [101] ⁽³⁾ | 1 | 0 | 1 | Locked | No | | [110] ⁽⁴⁾ | 1 | 1 | 0 | Lock-down Disable | Yes | | [111] | 1 | 1 | 1 | Lock-down Disable | No | #### Notes: et4U.com - 1. $DQ_0 = 1$: a block is locked; $DQ_0 = 0$: a block is unlocked. $DQ_1 = 1$: a block is locked-down; $DQ_1 = 0$: a block is not locked-down. - 2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations. - 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] ($\overline{\text{WP}} = 0$) or [101] ($\overline{\text{WP}} = 1$), regardless of the states before power-off or reset operation. - 4. When \overline{WP} is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked. # 6.2.4 Block Locking State Transitions upon Command Write (4) | | Curron | et Stoto | | DataSheet4U.com | r Lock Command Written (| Novt Stata) | |-------|--------------------------|-----------------|--------|-----------------|--------------------------|----------------------| | | Curren | t State | T | Result afte | r Lock Command Written (| inext State) | | State | $\overline{\mathrm{WP}}$ | DQ ₁ | DQ_0 | Set Lock (1) | Clear Lock (1) | Set Lock-down (1) | | [000] | 0 | 0 | 0 | [001] | No Change | [011] (2) | | [001] | 0 | 0 | 1 | No Change (3) | [000] | [011] | | [011] | 0 | 1 | 1 | No Change | No Change | No Change | | [100] | 1 | 0 | 0 | [101] | No Change | [111] ⁽²⁾ | | [101] | 1 | 0 | 1 | No Change | [100] | [111] | | [110] | 1 | 1 | 0 | [111] | No Change | [111] ⁽²⁾ | | [111] | 1 | 1 | 1 | No Change | [110] | No Change | ## Notes: - 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command. - 2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0 = 0$), the corresponding block is locked-down and automatically locked at the same time. - 3. "No Change" means that the state remains unchanged after the command written. - 4. In this state transitions table, assumes that \overline{WP} is not changed and fixed V_{IL} or V_{IH} . DataSheet4U.com www.DataSheet4U.com DataSheet4U.com ataShe 13 # 6.2.5 Block Locking State Transitions upon WP Transition (4) | Dec. in a State | Current State | | | | Result after WP Transition (Next State) | | |----------------------|---------------|-----------------------|--------|--------|--|---| | Previous State | State | $\overline{ ext{WP}}$ | DQ_1 | DQ_0 | $\overline{\text{WP}} = 0 \rightarrow 1^{(1)}$ | $\overline{WP} = 1 \rightarrow 0^{(1)}$ | | - | [000] | 0 | 0 | 0 | [100] | - | | - | [001] | 0 | 0 | 1 | [101] | - | | [110] (2) | [011] | 0 | 1 | 1 | [110] | - | | Other than [110] (2) | [011] | | 1 | 1 | [111] | - | | - | [100] | 1 | 0 | 0 | - | [000] | | - | [101] | 1 | 0 | 1 | - | [001] | | - | [110] | 1 | 1 | 0 | - | [011] (3) | | - | [111] | 1 | 1 | 1 | - | [011] | ## Notes: - 1. " $\overline{WP} = 0 \rightarrow 1$ " means that \overline{WP} is driven to V_{IH} and " $\overline{WP} = 1 \rightarrow 0$ " means that \overline{WP} is driven to V_{IL} . - 2. State transition from the current state [011] to the next state depends on the previous state. - 3. When \overline{WP} is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked. - 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state. et4U.com DataSheet4U.com www.DataSheet4U.com 15 DataShe ## 6.3 Register Definition ## Status Register Definition | R | R | R | R | R | R | R | R | |------|------|--------|------|------|-------|-----|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | WSMS | BESS | BEFCES | PBPS | VPPS | PBPSS | DPS | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | # SR.15 - SR.8 = RESERVED FOR FUTUREENHANCEMENTS (R) SR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Readv 0 = Busy SR.6 = BLOCK ERASE SUSPEND STATUS (BESS) 1 = Block Erase Suspended 0 = Block Erase in Progress/Completed SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES) 1 = Error in Block Erase or Full Chip Erase 0 = Successful Block Erase or Full Chip Erase SR.4 = (PAGE BUFFER) PROGRAM STATUS (PBPS) 1 = Error in (Page Buffer) Program 0 = Successful (Page Buffer) Program $SR.3 = V_{PP} STATUS (VPPS)$ $1 = V_{pp}$ LOW Detect, Operation Abort $0 = V_{PP} OK$ et4U.com SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS) 1 = (Page Buffer) Program Suspended 0 = (Page Buffer) Program in Progress/Completed SR.1 = DEVICE PROTECT STATUS (DPS) 1 = Erase or Program Attempted on a Locked Block, Operation Abort 0 = Unlocked SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R) Notes: Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration. Check SR.7 or RY/\overline{BY} to determine block erase, full chip erase, (page buffer) program completion. SR.6 - SR.1 are invalid while SR.7="0". If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit or set partition configuration register attempt, an improper command sequence was entered. DataSheet4U.com SR.3 does not provide a continuous indication of V_{PP} level. The WSM interrogates and indicates the V_{PP} level only after Block Erase, Full Chip Erase, (Page Buffer) Program command sequences. SR.3 is not guaranteed to report accurate feedback when $V_{PP} \neq V_{PPH}$ or V_{PPLK} . SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program
command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes command indicates block lock bit status. SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register. www.DataSheet4U.com | Extended Status Register Definition | | | | | | | | |-------------------------------------|----|----|----|----|----|---|---| | R | R | R | R | R | R | R | R | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | SMS | R | R | R | R | R | R | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | XSR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R) XSR.7 = STATE MACHINE STATUS (SMS) 1 = Page Buffer Program available 0 = Page Buffer Program not available XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R) Notes: After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not. XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register. et4U.com DataSheet4U.com www.DataSheet4U.com DataSheet4U.com taShe | Partition Configuration Register Definition | | | | | | | | |---|----|----|----|----|-----|-----|-----| | R | R | R | R | R | PC2 | PC1 | PC0 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | R | R | R | R | R | R | R | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | # PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R) ## PCR.10-8 = PARTITION CONFIGURATION (PC2-0) 000 = No partitioning. Dual Work is not allowed. 001 = Plane1-3 are merged into one partition. (default in a bottom parameter device) 010 = Plane 0-1 and Plane 2-3 are merged into one partition respectively. 100 = Plane 0-2 are merged into one partition. (default in a top parameter device) 011 = Plane 2-3 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions. 110 = Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work oper- See the table below for more details. ation is available between any two partitions. ation is available between any two partitions. 111 = There are four partitions in this configuration. Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions. PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R) ## Notes: After power-up or device reset, PCR 10-8 (PC2-0) is set to "001" in a bottom parameter device and "100" in a top narameter device. 101 = Plane 1-2 are merged into one partition. There are PCR.15-11 and PCR.7-0 are reserved for future use and should three partitions in this configuration. Dual work oper- be masked out when checking the partition configuration register. > DataSheet4U.com **Partition Configuration** PARTITIONING FOR DUAL WORK PC2 PC1 PC0 PARTITIONING FOR DUAL WORK PC2 PC1 PC0 PARTITION0 PARTITION2 PARTITION1 PARTITION0 PLANE3 PLANE2 PLANE1 PLANE2 PLANE0 PLANE! 0 0 0 0 1 1 PARTITION2 PARTITION1 PARTITION0 PARTITION1 PARTITION0 PLANE2 PLANE1 PLANE0 PLANE3 PLANE1 0 0 1 1 1 0 PARTITION0 PARTITION1 PARTITION2 PARTITION1 PARTITION0 PLANE3 PLANE1 PLANE2 PLANE1 PLANE3 0 1 0 1 0 1 PARTITION0 PARTITION1 PARTITION3 PARTITION2 PARTITION1 PARTITION0 PLANE3 PLANE2 PLANE2 PLANE1 **LANE0** PLANE3 0 0 1 1 DataSheet4U.com et4U.com # 6.4 Memory Map for Flash Memory |--| # Top Parameter | | BLO | CK NUMBER | ADDRESS RAI | |-------------------------|-----|-----------|-------------------| | | 134 | 4K-WORD | 3FF000H - 3FFFFFH | | | 133 | 4K-WORD | 3FE000H - 3FEFFFH | | | 132 | 4K-WORD | 3FD000H - 3FDFFFH | | | 131 | 4K-WORD | 3FC000H - 3FCFFFH | | | 130 | 4K-WORD | 3FB000H - 3FBFFFH | | | 129 | 4K-WORD | 3FA000H - 3FAFFFH | | | 128 | 4K-WORD | 3F9000H - 3F9FFFH | | | 127 | 4K-WORD | 3F8000H - 3F8FFFH | | | 126 | 32K-WORD | 3F0000H - 3F7FFFH | | | 125 | 32K-WORD | 3E8000H - 3EFFFFH | | | 124 | 32K-WORD | 3E0000H - 3E7FFFH | | 周 | 123 | 32K-WORD | 3D8000H - 3DFFFFH | | 12 | 122 | 32K-WORD | 3D0000H - 3D7FFFH | | | 121 | 32K-WORD | 3C8000H - 3CFFFFH | | PLANE3 (PARAMETER PLANE | 120 | 32K-WORD | 3C0000H - 3C7FFFH | | | 119 | 32K-WORD | 3B8000H - 3BFFFFH | | lΞ | 118 | 32K-WORD | 3B0000H - 3B7FFFH | | 山 | 117 | 32K-WORD | 3A8000H - 3AFFFFH | | $ \Sigma $ | 116 | 32K-WORD | 3A0000H - 3A7FFFH | | | 115 | 32K-WORD | 398000H - 39FFFFH | | 18 | 114 | 32K-WORD | 390000H - 397FFFH | | | 113 | 32K-WORD | 388000H - 38FFFFH | | | 112 | 32K-WORD | 380000H - 387FFFH | | 133 | 111 | 32K-WORD | 378000H - 37FFFFH | | ΙZ | 110 | 32K-WORD | 370000H - 377FFFH | | 1 | 109 | 32K-WORD | 368000H - 36FFFFH | | ١Ž | 108 | 32K-WORD | 360000H - 367FFFH | | 1" | 107 | 32K-WORD | 358000H - 35FFFFH | | | 106 | 32K-WORD | 350000H - 357FFFH | | | 105 | 32K-WORD | 348000H - 34FFFFH | | | 104 | 32K-WORD | 340000H - 347FFFH | | | 103 | 32K-WORD | 338000H - 33FFFFH | | | 102 | 32K-WORD | 330000H - 337FFFH | | | 101 | 32K-WORD | 328000H - 32FFFFH | | | 100 | 32K-WORD | 320000H - 327FFFH | | | 99 | 32K-WORD | 318000H - 31FFFFH | | | 98 | 32K-WORD | 310000H - 317FFFH | | | 97 | 32K-WORD | 308000H - 30FFFFH | | | 96 | 32K-WORD | 300000H - 307FFFH | | | | | | | BLOCK NUMBER | ADDRESS | RANG | |--------------|---------|------| | | | | | | DLC | CK NUMBER | ADDRESS KAI | |-----------------------|-----|-----------|-------------------| | | 63 | 32K-WORD | 1F8000H - 1FFFFFH | | | 62 | 32K-WORD | 1F0000H - 1F7FFFH | | | 61 | 32K-WORD | 1E8000H - 1EFFFFH | | | 60 | 32K-WORD | 1E0000H - 1E7FFFH | | | 59 | 32K-WORD | 1D8000H - 1DFFFFH | | | 58 | 32K-WORD | 1D0000H - 1D7FFFH | | | 57 | 32K-WORD | 1C8000H - 1CFFFFH | | | 56 | 32K-WORD | 1C0000H - 1C7FFFH | | | 55 | 32K-WORD | 1B8000H - 1BFFFFH | | 田, | 54 | 32K-WORD | 1B0000H - 1B7FFFH | | PLANE1 (UNIFORM PLANE | 53 | 32K-WORD | 1A8000H - 1AFFFFH | | < | 52 | 32K-WORD | 1A0000H - 1A7FFFH | | ΙΞ | 51 | 32K-WORD | 198000H - 19FFFFH | | 7 | 50 | 32K-WORD | 190000H - 197FFFH | | [2 | 49 | 32K-WORD | 188000H - 18FFFFH | | ΙÖ | 48 | 32K-WORD | 180000H - 187FFFH | | 出 | 47 | 32K-WORD | 178000H - 17FFFFH | | z | 46 | 32K-WORD | 170000H - 177FFFH | | 12. | 45 | 32K-WORD | 168000H - 16FFFFH | | _ | 44 | 32K-WORD | 160000H - 167FFFH | | 田 | 43 | 32K-WORD | 158000H - 15FFFFH | | 13 | 42 | 32K-WORD | 150000H - 157FFFH | | < | 41 | 32K-WORD | 148000H - 14FFFFH | | \mathbf{E} | 40 | 32K-WORD | 140000H - 147FFFH | | | 39 | 32K-WORD | 138000H - 13FFFFH | | | 38 | 32K-WORD | 130000H - 137FFFH | | | 37 | 32K-WORD | 128000H - 12FFFFH | | | 36 | 32K-WORD | 120000H - 127FFFH | | | 35 | 32K-WORD | 118000H - 11FFFFH | | | 34 | 32K-WORD | 110000H - 117FFFH | | | 33 | 32K-WORD | 108000H - 10FFFFH | | | | | | | | 95 | 32K-WORD | 2F8000H - 2FFFFFH | |------------------------|----|----------|-------------------| | | 94 | 32K-WORD | 2F0000H - 2F7FFFH | | | 93 | 32K-WORD | 2E8000H - 2EFFFFH | | | 92 | 32K-WORD | 2E0000H - 2E7FFFH | | | 91 | 32K-WORD | 2D8000H - 2DFFFFH | | | 90 | 32K-WORD | 2D0000H - 2D7FFFH | | | 89 | 32K-WORD | 2C8000H - 2CFFFFH | | | 88 | 32K-WORD | 2C0000H - 2C7FFFH | | | 87 | 32K-WORD | 2B8000H - 2BFFFFH | | l fin l | 86 | 32K-WORD | 2B0000H - 2B7FFFH | | PLANE2 (UNIFORM PLANE) | 85 | 32K-WORD | 2A8000H - 2AFFFFH | | \mathbb{A} | 84 | 32K-WORD | 2A0000H - 2A7FFFH | | ١Ž | 83 | 32K-WORD | 298000H - 29FFFFH | | Ţ | 82 | 32K-WORD | 290000H - 297FFFH | | | 81 | 32K-WORD | 288000H - 28FFFFH | | l≝. | 80 | 32K-WORD | 280000H - 287FFFH | | \mathbb{F} | 79 | 32K-WORD | 278000H - 27FFFFH | | ヒラコ | 78 | 32K-WORD | 270000H - 277FFFH | | 15. | 77 | 32K-WORD | 268000H - 26FFFFH | | $ \cdot $ | 76 | 32K-WORD | 260000H - 267FFFH | | E2 . | 75 | 32K-WORD | 258000H - 25FFFFH | | Z | 74 | 32K-WORD | 250000H - 257FFFH | | A | 73 | 32K-WORD | 248000H - 24FFFFH | | 딦 | 72 | 32K-WORD | 240000H - 247FFFH | | _ | 71 | 32K-WORD | 238000H - 23FFFFH | | | 70 | 32K-WORD | 230000H - 237FFFH | | | 69 | 32K-WORD | 228000H - 22FFFFH | | | 68 | 32K-WORD | 220000H - 227FFFH | | | 67 | 32K-WORD | 218000H - 21FFFFH | | | 66 | 32K-WORD | 210000H - 217FFFH | | | 65 | 32K-WORD | 208000H - 20FFFFH | | | 64 | 32K-WORD | 200000H - 207FFFH | | | 31 | 32K-WORD | 0F8000H - 0FFFFFH | |------------------------|----|----------|-------------------| | İ | 30 | 32K-WORD | 0F0000H - 0F7FFFH | | | 29 | 32K-WORD | 0E8000H - 0EFFFFH | | | 28 | 32K-WORD | 0E0000H - 0E7FFFH | | | 27 | 32K-WORD | 0D8000H - 0DFFFFH | | | 26 | 32K-WORD | 0D0000H - 0D7FFFH | | | 25 | 32K-WORD | 0C8000H - 0CFFFFH | | | 24 | 32K-WORD | 0C0000H - 0C7FFFH | | | 23 | 32K-WORD | 0B8000H - 0BFFFFH | | E | 22 | 32K-WORD | 0B0000H - 0B7FFFH | | Ξ | 21 | 32K-WORD | 0A8000H - 0AFFFFH | | PLANE0 (UNIFORM PLANE) | 20 | 32K-WORD | 0A0000H - 0A7FFFH | | Ľ | 19 | 32K-WORD | 098000H - 09FFFFH | | ΙE | 18 | 32K-WORD | 090000H - 097FFFH | | \geq | 17 | 32K-WORD | 088000H - 08FFFFH | |)R | 16 | 32K-WORD | 080000H - 087FFFH | | F(| 15 | 32K-WORD | 078000H - 07FFFFH | | Ħ | 14 | 32K-WORD | 070000H - 077FFFH | | 5 | 13 | 32K-WORD | 068000H - 06FFFFH | |) | 12 | 32K-WORD | 060000H - 067FFFH | | 30 | 11 | 32K-WORD | 058000H - 05FFFFH | | Ξ | 10 | 32K-WORD | 050000H - 057FFFH | | A | 9 | 32K-WORD | 048000H - 04FFFFH | | ĭ | 8 | 32K-WORD | 040000H - 047FFFH | | Н | 7 | 32K-WORD | 038000H - 03FFFFH | | | 6 | 32K-WORD | 030000H - 037FFFH | | | 5 | 32K-WORD | 028000H - 02FFFFH | | | 4 | 32K-WORD | 020000H - 027FFFH | | Ī | 3 | 32K-WORD | 018000H - 01FFFFH | | | 2 | 32K-WORD | 010000H - 017FFFH | | | 1 | 32K-WORD | 008000H - 00FFFFH | | | 0 | 32K-WORD | 000000H - 007FFFH | www.DataSheet4U.com DataSheet4 et4U.com # 6.5 DC Electrical Characteristics for Flash Memory # DC Electrical Characteristics $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Crumbal | Don | nomatas. | Notes | Min. | True | Morr | Linit | Test Conditions | |
--------------------------------------|---|---|---------|---------|-------|------|-------|---|--------| | Symbol | | | Notes 5 | Min. | Typ. | Max. | Unit | Test Conditions | | | C _{IN} | Input Capacitance | | | | | 7 | pF | $V_{IN} = 0V, f = 1MHz, T_A = 25^{\circ}C$ | | | C _{IO} | I/O Capacitance | I/O Capacitance | | | | 10 | pF | $V_{I/O} = 0V, f = 1MHz, T_A = 25^{\circ}C$ | | | I_{LI} | Input Leakage Cu | Input Leakage Current | | | | ±1 | μΑ | $V_{IN} = V_{CC}$ or GND | | | I_{LO} | Output Leakage C | Current | | | | ±1 | μΑ | $V_{OUT} = V_{CC}$ or GND | | | I _{CCS} | V _{CC} Standby Curr | V _{CC} Standby Current | | | 4 | 20 | μА | $\begin{aligned} &V_{CC} = V_{CC} \text{ Max.,} \\ &F_{1}\text{-}\overline{CE} = \overline{RST} = V_{CC} \pm 0.2V, \\ &\overline{WP} = V_{CC} \text{ or GND} \end{aligned}$ | | | I _{CCAS} | I _{CCAS} V _{CC} Automatic Power Savings Current | | 1, 4 | | 4 | 20 | μΑ | $V_{CC} = V_{CC} \text{ Max.,}$ $F_{1}\text{-}\overline{CE} = \text{GND} \pm 0.2 \text{V,}$ $\overline{WP} = V_{CC} \text{ or GND}$ | | | I _{CCD} | V _{CC} Reset Power-Down Current | | 1 | | 4 | 20 | μΑ | $\overline{RST} = GND \pm 0.2V$ $I_{OUT} (RY/\overline{BY}) = 0mA$ | | | Ţ | Average V _{CC}
Read Current
Normal Mode | | 1, 7 | | 15 | 25 | mA | $V_{CC} = V_{CC} Max.,$
$F_1 \overline{-CE} = V_{IL}, F \overline{-OE} = V_{IH}, f = 5MHz$ | | | I _{CCR} | Average V _{CC} Read Current Page Mode | 8 Word Read | DataSh | neet4U. | com T | 10 | mA | | itaShe | | I _{CCW} | V _{CC} (Page Buffer |) Program Current | 1, 5, 7 | | 20 | 60 | mA | $V_{PP} = V_{PPH}$ | | | I _{CCE} | V _{CC} Block Erase, I | Full Chip Erase Current | 1, 5, 7 | | 10 | 30 | mA | $V_{PP} = V_{PPH}$ | | | I _{CCWS} I _{CCES} | V _{CC} (Page Buffer
Block Erase Susp | | 1, 2, 7 | | 10 | 200 | μΑ | F_1 - $\overline{CE} = V_{IH}$ | | | I _{PPS}
I _{PPR} | V _{PP} Standby or Re | V _{PP} Standby or Read Current | | | 2 | 5 | μΑ | $V_{PP} \le V_{CC}$ | | | I _{PPW} | V _{PP} (Page Buffer) | V _{PP} (Page Buffer) Program Current | | | 2 | 5 | μΑ | $V_{PP} = V_{PPH}$ | | | I _{PPE} | V _{PP} Block Erase, Full Chip
Erase Current | | 1,5,6,7 | | 2 | 5 | μА | $V_{PP} = V_{PPH}$ | | | I _{PPWS} | V _{PP} (Page Buffer) Program
Suspend Current | | 1, 6, 7 | | 2 | 5 | μΑ | $V_{PP} = V_{PPH}$ | | | I _{PPES} | V _{PP} Block Erase S | Suspend Current | 1, 6, 7 | | 2 | 5 | μΑ | $V_{PP} = V_{PPH}$ | | | | 1 | | | | | | | | 1 | et4U.com DataSheet4U.com ## DC Electrical Characteristics (Continue) $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Тур. | Max. | Unit | Test Conditions | |-------------------|--|-------|-------------|------|-------------|------|---------------------------| | V _{IL} | Input Low Voltage | 5 | -0.3 | | 0.4 | V | | | V _{IH} | Input High Voltage | 5 | VCC
-0.4 | | VCC
+0.3 | V | | | V_{OL} | Output Low Voltage | 5, 8 | | | 0.2Vcc | V | $I_{OL} = 0.5 \text{mA}$ | | V _{OH} | Output High Voltage | 5 | 2.2 | | | V | $I_{OH} = -0.5 \text{mA}$ | | V _{PPLK} | V _{PP} Lockout during Normal Operations | 3,5,6 | | | 0.4 | V | | | V _{PPH} | V _{PP} during Block Erase, Full Chip Erase,
(Page Buffer) Program Operations | 6 | 1.65 | 3 | 3.1 | V | | | V_{LKO} | V _{CC} Lockout Voltage | | 1.5 | | | V | | #### Notes: - 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at $V_{CC} = 3.0V$ and $T_A = +25$ °C unless V_{CC} is specified. - 2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}. - 3. Block erase, full chip erase, (page buffer) program are inhibited when $V_{PP} \le V_{PPLK}$, and not guaranteed outside the specified voltage. - 4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed. - 5. Sampled, not 100% tested. - 6. V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, full chip erase, (page buffer) program cannot be executed and should not be attempted. - 7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane. - 8. Includes RY/BY et4U.com www.DataSheet4U.com 21 LRS1B06 # 6.6 AC Electrical Characteristics for Flash Memory # 6.6.1 AC Test Conditions | Input Pulse Level | 0 V to 2.7 V | |------------------------------------|-----------------------------| | Input Rise and Fall Time | 5 ns | | Input and Output Timing Ref. level | 1.35 V | | Output Load | 1TTL +C _L (50pF) | # 6.6.2 Read Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |---------------------------------------|---|-------|------|------|------| | t _{AVAV} | Read Cycle Time | | 65 | | ns | | t _{AVQV} | Address to Output Delay | | | 65 | ns | | t _{ELQV} | F_1 - $\overline{\text{CE}}$ to Output Delay | 2 | | 65 | ns | | t _{APA} | Page Address Access Time | | | 25 | ns | | t _{GLQV} | F-OE to Output Delay | 2 | | 20 | ns | | t _{PHQV} | RST High to Output Delay | | | 150 | ns | | $t_{\rm EHQZ},t_{\rm GHQZ}$ | F_1 - $\overline{\text{CE}}$ or F- $\overline{\text{OE}}$ to Output in High-Z, Whichever Occurs First | 1 | | 20 | ns | | t _{ELQX} | F_1 - $\overline{\text{CE}}$ to Output in Low-Z | 1 | 0 | | ns | | t _{GLQX} | F-OE to Output in Low-Z | 1 | 0 | | ns D | | t _{OH} | Output Hold from First Occurring Address, F ₁ -CE or F-OE Change | 1 | 0 | | ns | | t _{AVEL} , t _{AVGL} | Address Setup to F_1 - \overline{CE} and F - \overline{OE} Going Low for Reading Status Register | 3,5 | 10 | | ns | | t _{ELAX} , t _{GLAX} | Address Hold from F ₁ - $\overline{\text{CE}}$ and F- $\overline{\text{OE}}$ Going Low for Reading Status Register | 4,5 | 30 | | ns | | $t_{\rm EHEL},t_{\rm GHGL}$ | F_1 - $\overline{\text{CE}}$ and F - $\overline{\text{OE}}$ Pulse Width High for Reading Status Register | 5 | 15 | | ns | ## Notes: et4U.com - 1. Sampled, not 100% tested. - 2. F- \overline{OE} may be delayed up to $t_{ELQV} t_{GLQV}$ after the falling edge of F_1 - \overline{CE} without impact to t_{ELQV} . - 3. Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of F_1 - \overline{CE} or F- \overline{OE} (whichever goes low last). - Address hold time (t_{ELAX} , t_{GLAX}) is defined from the falling edge of F_1 - \overline{CE} or F- \overline{OE} (whichever goes low last). - 5. Specifications t_{AVEL}, t_{AVGL}, t_{ELAX}, t_{GLAX} and t_{EHEL}, t_{GHGL} for read operations apply to only status register read operations. DataSheet4U.com www.DataSheet4U.com taShe # 6.6.3 Write Cycle (F- $\overline{\text{WE}}$ / F₁- $\overline{\text{CE}}$ Controlled) ^(1,2) $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |--|---|-------|------|-----------------------|------| | t _{AVAV} | Write Cycle Time | | 65 | | ns | | $t_{PHWL} (t_{PHEL})$ | $\overline{\text{RST}}$ High Recovery to F- $\overline{\text{WE}}$ (F ₁ - $\overline{\text{CE}}$) Going Low | 3 | 150 | | ns | | t _{ELWL} (t _{WLEL}) | F_1 - \overline{CE} (F- \overline{WE}) Setup to F- \overline{WE} (F_1 - \overline{CE}) Going Low | | 0 | | ns | | t _{WLWH} (t _{ELEH}) | $F-\overline{WE}$ ($F_1-\overline{CE}$) Pulse Width | 4 | 50 | | ns | | $t_{\mathrm{DVWH}} (t_{\mathrm{DVEH}})$ | Data Setup to F- $\overline{\text{WE}}$ (F ₁ - $\overline{\text{CE}}$) Going High | 8 | 40 | | ns | | $t_{AVWH} (t_{AVEH})$ | Address Setup to F- $\overline{\text{WE}}$ (F ₁ - $\overline{\text{CE}}$) Going High | 8 | 50 | | ns | | $t_{WHEH} (t_{EHWH})$ | F_1 - \overline{CE} (F- \overline{WE}) Hold from F- \overline{WE} (F ₁ - \overline{CE}) High | | 0 | | ns | | $t_{\mathrm{WHDX}} \left(t_{\mathrm{EHDX}} \right)$ | Data Hold from F- $\overline{\text{WE}}$ (F ₁ - $\overline{\text{CE}}$) High | | 0 | | ns | | $t_{WHAX} (t_{EHAX})$ | Address Hold from F-WE (F ₁ -CE) High | | 0 | | ns | | $t_{WHWL} (t_{EHEL})$ | $F-\overline{WE}$ ($F_1-\overline{CE}$) Pulse Width High | 5 | 15 | | ns | | t _{SHWH} (t _{SHEH}) | $\overline{\text{WP}}$ High Setup to F- $\overline{\text{WE}}$ (F ₁ - $\overline{\text{CE}}$) Going High | 3 | 0 | | ns | | $t_{VVWH} (t_{VVEH})$ | V_{PP} Setup to F- \overline{WE} (F ₁ - \overline{CE}) Going High | 3 | 200 | | ns | | $t_{WHGL}\left(t_{EHGL}\right)$ | Write Recovery before Read | | 30 | | ns | | t _{QVSL} | WP High Hold from Valid SRD, RY/BY High-Z | 3, 6 | 0 | | ns | | t_{QVVL} | V_{PP} Hold from Valid SRD, RY/ \overline{BY} High-Z | 3, 6 | 0 | | ns | | $t_{\mathrm{WHR0}} \left(t_{\mathrm{EHR0}} \right)$ | F-WE (F ₁ -CE) High to SR.7 Going "0" at a Sheet 4U.com | 3, 7 | | t _{AVQV} +50 | ns | | t _{WHRL} (t _{EHRL}) | $F-\overline{WE}$ ($F_1-\overline{CE}$) High to RY/ \overline{BY} Going Low | 3 | | 100 | ns | et4U.com #### Notes: - 1. The
timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program operations are the same as during read-only operations. See the AC Characteristics for read cycle. - 2. A write operation can be initiated and terminated with either F_1 - \overline{CE} or F- \overline{WE} . - 3. Sampled, not 100% tested. - 4. Write pulse width (t_{WP}) is defined from the falling edge of F_1 - \overline{CE} or F- \overline{WE} (whichever goes low last) to the rising edge of F_1 - \overline{CE} or F- \overline{WE} (whichever goes high first). Hence, t_{WP} = t_{WLWH} = t_{ELEH} = t_{WLEH} = t_{ELWH} . - 5. Write pulse width high (t_{WPH}) is defined from the rising edge of F_1 - \overline{CE} or F- \overline{WE} (whichever goes high first) to the falling edge of F_1 - \overline{CE} or F- \overline{WE} (whichever goes low last). Hence, t_{WPH} = t_{WHWL} = t_{WHEL} = t_{WHEL} = t_{EHWL} . - 6. V_{PP} should be held at $V_{PP}=V_{PPH}$ until determination of block erase, full chip erase, (page buffer) program success (SR.1/3/4/5=0). - 7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes command= $t_{AVOV}+100$ ns. - 8. See 6.2.1 Command Definitions for valid address and data for block erase, full chip erase, (page buffer) program or lock bit configuration. DataSheet4U.com LRS1B06 6.6.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance (3) $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ 23 | | | | Page Buffer | | V _{PP} =V _{PPH} | | | | |--|---|-------------|-----------------------------------|------|-----------------------------------|----------|------|-------| | Symbol | Parameter | Notes | Command is
Used or not
Used | Min. | Typ. (1) | Max. (2) | Unit | | | t | 4K-Word Parameter Block Program | 2 | Not Used | | 0.05 | 0.3 | S | | | t_{WPB} | Time | 2 | Used | | 0.03 | 0.12 | S | | | t | 32K-Word Main Block Program | 2 | Not Used | | 0.38 | 2.4 | S | | | $t_{ m WMB}$ | Time | 2 | Used | | 0.24 | 1 | S | | | t _{WHQV1} / | Ward Drogram Time | 2 | Not Used | | 11 | 200 | μs | | | t _{EHQV1} | word Program Time | | Used | | 7 | 100 | μs | | | t _{WHQV2} /
t _{EHQV2} | 4K-Word Parameter Block Erase
Time | 2 | - | | 0.3 | 4 | S | | | t _{WHQV3} /
t _{EHQV3} | 32K-Word Main Block Erase Time | 2 | - | | 0.6 | 5 | S | | | | Full Chip Erase Time | 2 | | | 80 | 700 | S | | | t _{WHRH1} /
t _{EHRH1} | (Page Buffer) Program Suspend Latency
Time to Read | 4 | - | | 5 | 10 | μs | | | t _{WHRH2} /
t _{EHRH2} | Block Erase Suspend Latency Time to Read | 4 | - | | 5 | 20 | μs | | | t _{ERES} | Latency Time from Block Erase
Resume Command to Block
Erase Suspend Command | DataSh
5 | eet4U.com | 500 | | | μs | ataSI | et4U.com ## Notes: - 1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization. - 2. Excludes external system-level overhead. - 3. Sampled, but not 100% tested. - 4. A latency time is required from writing suspend command (F- \overline{WE} or F₁- \overline{CE} going high) until SR.7 going "1" or RY/ \overline{BY} going High-Z. - 5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished. DataSheet4U.com # 6.6.5 Flash Memory AC Characteristics Timing Chart # AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes or Query Code DataSheet4U.com www.DataSheet4U.com - 1. VCC power-up and standby. - 2. Write each first cycle command. - 3. Write each second cycle command or valid address and data. - 4. Automated erase or program delay. 5. Read status register data. 6. For read operation, F-OE and F 1-CE must be driven active, and F-WE de-asserted. # 6.6.6 Reset Operations | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|---|---------|------|------|------| | t _{PLPH} | RST Low to Reset during Read (RST should be low during power-up.) | 1, 2, 3 | 100 | | ns | | t _{PLRH} | RST Low to Reset during Erase or Program | 1, 3, 4 | | 22 | μs | | t _{VPH} | $V_{CC} = 2.7V$ to \overline{RST} High | 1, 3, 5 | 100 | | ns | | t _{VHQV} | $V_{CC} = 2.7V$ to Output Delay | 3 | | 1 | ms | ## Notes: - 1. A reset time, t_{PHOV} , is required from the later of SR.7 (RY/ \overline{BY}) going "1" (High-Z) or \overline{RST} going high until outputs are valid. See the AC Characteristics - read cycle for t_{PHOV}. - t_{PI PH} is <100ns the device may still reset but this is not guaranteed. - 3. Sampled, not 100% tested. - 4. If RST asserted while a block erase, full chip erase or (page buffer) program operation is not executing, the reset will complete within 100ns. - When the device power-up, holding \overline{RST} low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there. # AC Waveform for Reset Operation # 7. Flash Memory 2 # 7.1 Truth Table # 7.1.1 Bus Operation (1) | Flash | Notes | F ₂ - CE | RST | F-OE | F-WE | DQ ₀ to DQ ₁₅ | |------------------|---------|--------------------------------|-----|------|------|-------------------------------------| | Read | 3,5 | | | L | Н | (7) | | Output Disable | 5 | L | Н | 11 | п | High - Z | | Write | 2,3,4,5 | | | Н | L | $\mathrm{D_{IN}}$ | | Standby | 5 | Н | Н | v | v | High 7 | | Reset Power Down | 5,6 | X | L | X | X | High - Z | # Notes: - 1. $L = V_{IL}$, $H = V_{IH}$, X = H or L, High-Z = High impedance. Refer to the DC Characteristics. - 2. Command writes involving block erase, full chip erase, (page buffer) program are reliably executed when $V_{PP} = V_{PPH}$ and $V_{CC} = 2.7V$ to 3.1V. Block erase, full chip erase, (page buffer) program with $V_{PP} < V_{PPH}$ (Min.) produce spurious results and should not be attempted. - 3. Never hold F-OE low and F-WE low at the same timing. - 4. Refer to Section 7.2 Command Definitions for Flash Memory valid D_{IN} during a write operation. - 5. \overline{WP} set to V_{IL} or V_{IH} . - 6. Electricity consumption of Flash Memory is lowest when $\overline{RST} = GND \pm 0.2V$. 7. Flash Read Mode | 7. I lubii iteaa iiloac | DataShe | ⊇t4H com | |-------------------------|-----------------------|---------------------------------------| | Mode | Address | DQ_0 to DQ_{15} | | Read Array | X | D_{OUT} | | Read Identifier Codes | See 7.2.2 | See 7.2.2 | | Read Query | Refer to the Appendix | Refer to the Appendix | et4U.com www.DataSheet4U.com 7.1.2 Simultaneous Operation Modes Allowed with Four Planes (1,2) | | THEN THE MODES ALLOWED IN THE OTHER PARTITION IS: | | | | | | | | | | |-------------------------|---|---------|----------------|---------------|-----------------|---------------------------|----------------|--------------------|--------------------|---------------------------| | IF ONE
PARTITION IS: | Read
Array | Read ID | Read
Status | Read
Query | Word
Program | Page
Buffer
Program | Block
Erase | Full Chip
Erase | Program
Suspend | Block
Erase
Suspend | | Read Array | X | X | X | X | X | X | X | | X | X | | Read ID | X | X | X | X | X | X | X | | X | X | | Read Status | X | X | X | X | X | X | X | X | X | X | | Read Query | X | X | X | X | X | X | X | | X | X | | Word Program | X | X | X | X | | | | | | X | | Page Buffer
Program | X | X | X | X | | | | | | X | | Block Erase | X | X | X | X | | | | | | | | Full Chip Erase | | | X | | | | | | | | | Program
Suspend | X | X | X | X | | | | | | X | | Block Erase
Suspend | X | X | X | X | X | X | | | X | | # Notes: - 1. "X" denotes the operation available. - 2. Configurative Partition Dual Work Restrictions: Status register reflects partition state, not WSM (Write State Machine) state this allows a status register for each partition. Only one partition can be erased or programmed at a time a no command queuing. Commands must be written to an address within the block targeted by that command. et4U.com www.DataSheet4U.com LRS1B06 31 # 7.2 Command Definitions for Flash Memory (11) #### 7.2.1 Command Definitions | | Bus | | | irst Bus Cycl | le | Second Bus Cycle | | | | |--|-----------------|-------|-------------------------|--------------------|---------------|------------------|-------------|----------|--| | Command | Cycles
Req'd | Notes | Oper (1) | Address (2) | Data | Oper (1) | Address (2) | Data (3) | | | Read Array | 1 | | Write | PA | FFH | | | | | | Read Identifier Codes | ≥ 2 | 4 | Write | PA | 90H | Read | IA | ID | | | Read Query | ≥ 2 | 4 | Write | PA | 98H | Read | QA | QD | | | Read Status Register | 2 | | Write | PA | 70H | Read | PA | SRD | | | Clear Status Register | 1 | | Write | PA | 50H | | | | | | Block Erase | 2 | 5 | Write | BA | 20H | Write | BA | D0H | | | Full Chip Erase | 2 | 5, 9 | Write | X | 30H | Write | X | D0H | | | Program | 2 | 5, 6 | Write | WA | 40H or
10H | Write | WA | WD | | | Page Buffer Program | ≥ 4 | 5, 7 | Write | WA | E8H | Write | WA | N-1 | | | Block Erase and (Page Buffer)
Program Suspend | 1 | 8, 9 | Write | PA | ВОН | | | | | | Block Erase and (Page Buffer)
Program Resume | 1 | 8, 9 | Write | PA | D0H | | | | | | Set Block Lock Bit | 2 | | Write | BA | 60H | Write | BA | 01H | | | Clear Block Lock Bit | 2 | 10 | Write | BA | 60H | Write | BA | D0H | | | Set Block Lock-down Bit | 2 | | Write | BA | 60H | Write | BA | 2FH | | | Set Partition Configuration
Register | 2 | Dai | laS Write 4U | ^{CO}
PCRC | 60H | Write | PCRC | 04H | | ## Notes: et4U.com - 1. Bus operations are defined in 7.1.1 Bus Operation. - 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle. X=Any valid address within the device. PA=Address within the selected partition. IA=Identifier codes address (See 7.2.2 Identifier Codes for Read Operation). QA=Query codes address. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details. BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit. WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. PCRC=Partition configuration register code presented on the address A₀-A₁₅. - 3. ID=Data read from identifier codes (See 7.2.2 Identifier Codes for Read Operation). - QD=Data read from query database. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details. - SRD=Data read from status register. See 7.3 Register Definition for a description of the status register bits. - WD=Data to be programmed at location WA. Data is latched on the rising edge of $F-\overline{WE}$ or $F_2-\overline{CE}$ (whichever goes high first) during command write cycles. - N-1=N is the number of the words to be loaded into a page buffer. - 4. Following the Read Identifier Codes command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code (See 7.2.2 Identifier Codes for Read Operation). - The Read Query command is available for reading CFI (Common Flash Interface) information. - 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when \overline{RST} is V_{IH} . - 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup. - 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any DataSheet4U.covalid address within the target block to be programmed and the confirm command (D0H). Refer to the LH28F326BF4U.com LH28F640BF, LH28F128BF series Appendix for details. taShe | 8. | If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the | |----|--| | | suspended program operation should be resumed first, and then the suspended erase operation should be resumed next. | LRS1B06 - 9. Full chip erase operation can not be suspended. - 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when \overline{WP} is V_{IL} . When \overline{WP} is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration. - 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used. et4U.com DataSheet4U.com www.DataSheet4U.com ## 7.2.2 Identifier Codes for Read Operation | | Code | Address
[A ₁₅ -A ₀] | Data
[DQ ₁₅ -DQ ₀] | Notes | |--------------------------------|-------------------------------------|---|--|-------| | Manufacturer Code | Manufacturer Code 0000H | | 00B0H | 4 | | Device Code | 64M (x16) Top Parameter Device Code | 0001H | 00B0H | 1, 4 | | | Block is Unlocked | | $DQ_0 = 0$ | 2 | | Block Lock Configuration Code | Block is Locked | Block
Address | $DQ_0 = 1$ | 2 | | Block Lock Collingulation Code | Block is not Locked-Down | + 2 | $DQ_1 = 0$ | 2 | | | Block is Locked-Down | | $DQ_1 = 1$ | 2 | | Device Configuration Code | Partition Configuration Register | 0006Н | PCRC | 3, 4 | ## Notes: et4U.com - 1. Top parameter device has its parameter blocks in the plane 3 (The highest address). - 2. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes command (90H) has been written. - DQ₁₅-DQ₂ is reserved for future implementation. - 3. PCRC = Partition Configuration Register Code. - 4. The address A₂₁-A₁₆ are shown in below table for reading the manufacturer, device, device configuration code. The address to read the identifier codes is dependent on the partition which is selected when writing the Read Identifier Codes command (90H). See Section 7.3 Partition Configuration Register Definition (P.38) for the partition configuration register. Identifier Codes for Read Operation on Partition Configuration (64M (x16)-bit device) | Parti | tion Configuration Reg | DataSheet4U. | Address (64M (x16)-bit device) | |--------|------------------------|--------------|-------------------------------------| | PCR.10 | PCR.9 | PCR.8 | [A ₂₁ -A ₁₆] | | 0 | 0 | 0 | 00H | | 0 | 0 | 1 | 00H or 10H | | 0 | 1 | 0 | 00H or 20H | | 1 | 0 | 0 | 00H or 30H | | 0 | 1 | 1 | 00H or 10H or 20H | | 1 | 1 | 0 | 00H or 20H or 30H | | 1 | 0 | 1 | 00H or 10H or 30H | | 1 | 1 | 1 | 00H or 10H or 20H or 30H | DataSheet4U.com www.DataSheet4U.com #### 7.2.3 Functions of Block Lock and Block Lock-Down | | | (2) | | | | |----------------------|--------------------|--------------------------------|--------------|-------------------|--------------------------------------| | State | $\overline{ m WP}$ | DQ ₁ ⁽¹⁾ | $DQ_0^{(1)}$ | State Name | Erase/Program Allowed ⁽²⁾ | | [000] | 0 | 0 | 0 | Unlocked | Yes | | $[001]^{(3)}$ | 0 | 0 | 1 | Locked | No | | [011] | 0 | 1 | 1 | Locked-down | No | | [100] | 1 | 0 | 0 | Unlocked | Yes | | $[101]^{(3)}$ | 1 | 0 | 1 | Locked | No | | [110] ⁽⁴⁾ | 1 | 1 | 0 | Lock-down Disable | Yes | | [111] | 1 | 1 | 1 | Lock-down Disable | No | #### Notes: - 1. $DQ_0 = 1$: a block is locked; $DQ_0 = 0$: a block is unlocked. $DQ_1 = 1$: a block is locked-down; $DQ_1 = 0$: a block is not locked-down. - 2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations. - 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] ($\overline{WP} = 0$) or [101] ($\overline{WP} = 1$), regardless of the states before power-off or reset operation. - 4. When \overline{WP} is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked. ## 7.2.4 Block Locking State Transitions upon Command Write (4) | | Curren | t State | | DataSheet4U.com
Result after | r Lock Command Written (| Next State) | |-------|--------|-----------------|--------|---------------------------------|--------------------------|----------------------| | State | WP | DQ ₁ | DQ_0 | Set Lock (1) | Clear Lock (1) | Set Lock-down (1) | | [000] | 0 | 0 | 0 | [001] | No Change | [011] (2) | | [001] | 0 | 0 | 1 | No Change (3) | [000] | [011] | | [011] | 0 | 1 | 1 | No Change | No Change | No Change | | [100] | 1 | 0 | 0 | [101] | No Change | [111] ⁽²⁾ | | [101] | 1 | 0 | 1 | No Change | [100] | [111] | | [110] | 1 | 1 | 0 | [111] | No Change | [111] ⁽²⁾ | | [111] | 1 | 1 | 1 | No Change | [110] | No Change | #### Notes: - 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command. - 2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0 = 0$), the corresponding block is locked-down and automatically locked at the same time. - 3. "No Change" means that the state remains unchanged after the command written. - 4. In this state transitions table, assumes that \overline{WP} is not changed and fixed V_{IL} or V_{IH} . DataSheet4U.com www.DataSheet4U.com ## 7.2.5 Block Locking State Transitions upon WP Transition (4) | Day in State | Current State | | | | Result after WP Transition (Next State) | | |----------------------|---------------|----|-----------------|--------|---|--| | Previous State | State | WP | DQ ₁ | DQ_0 | $\overline{WP} = 0 \rightarrow 1^{(1)}$ | $\overline{\text{WP}} = 1 \rightarrow 0^{(1)}$ | | - | [000] | 0 | 0 | 0 | [100] | - | | - | [001] | 0 | 0 | 1 | [101] | - | | [110] ⁽²⁾ | [011] | 0 | 1 | 1 | [110] | - | | Other than [110] (2) | [011] | U | 1 | 1 | [111] | - | | - | [100] | 1 | 0 | 0 | - | [000] | | - | [101] | 1 | 0 | 1 | - | [001] | | - | [110] | 1 | 1 | 0 | - | [011] (3) | | - | [111] | 1 | 1 | 1 | - | [011] | ### Notes: - 1. " $\overline{WP} = 0 \rightarrow 1$ " means that \overline{WP} is driven to V_{IH} and " $\overline{WP} = 1 \rightarrow 0$ " means that \overline{WP} is driven to V_{IL} . - 2. State transition from the current state [011] to the next state depends on the previous state. - 3. When \overline{WP} is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked. - 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state. et4U.com DataSheet4U.com www.DataSheet4U.com DataSheet4U.com or 4 partitions configuration. LRS1B06 36 #### 7.3 Register Definition #### Status Register Definition | R | R | R | R | R | R | R | R | |------|------|--------|------|------|-------|-----|---| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | WSMS | BESS | BEFCES | PBPS | VPPS | PBPSS | DPS | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | ## SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R) Status Register indicates the status of the partition, not WSM Notes: SR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Readv 0 = Busy SR.6 = BLOCK ERASE SUSPEND STATUS (BESS) 1 = Block Erase Suspended 0 = Block Erase in Progress/Completed Check SR.7 or RY/\overline{BY} to determine block erase, full chip erase, (page buffer) program completion. SR.6 - SR.1
are invalid while SR.7= "0". (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES) 1 = Error in Block Erase or Full Chip Erase 0 = Successful Block Erase or Full Chip Erase If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit or set partition configuration register attempt, an improper command sequence was entered. SR.4 = (PAGE BUFFER) PROGRAM STATUS (PBPS) 1 = Error in (Page Buffer) Program 0 = Successful (Page Buffer) Program DataSheet4U.com $SR.3 = V_{PP} STATUS (VPPS)$ $1 = V_{pp}$ LOW Detect, Operation Abort $0 = V_{PP} OK$ et4U.com SR.3 does not provide a continuous indication of V_{pp} level. The WSM interrogates and indicates the V_{PP} level only after Block Erase, Full Chip Erase, (Page Buffer) Program command sequences. SR.3 is not guaranteed to report accurate feedback when V_{PP}≠V_{PPH} or V_{PPLK}. SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS) 1 = (Page Buffer) Program Suspended 0 = (Page Buffer) Program in Progress/Completed SR.1 = DEVICE PROTECT STATUS (DPS) 1 = Erase or Program Attempted on a Locked Block, Operation Abort 0 = Unlocked SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes command indicates block lock bit status. SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R) SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register. DataSheet4U.com www.DataSheet4U.com DataShe | Extended Status Register Definition | | | | | | | | |-------------------------------------|----|----|----|----|----|---|---| | R | R | R | R | R | R | R | R | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | SMS | R | R | R | R | R | R | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | XSR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R) XSR.7 = STATE MACHINE STATUS (SMS) 1 = Page Buffer Program available 0 = Page Buffer Program not available XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R) Notes: After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not. XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register. et4U.com DataSheet4U.com www.DataSheet4U.com taShe | Partition Configuration Register Definition | | | | | | | | |---|----|----|----|----|-----|-----|-----| | R | R | R | R | R | PC2 | PC1 | PC0 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | R | R | R | R | R | R | R | R | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | ## PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R) PCR.10-8 = PARTITION CONFIGURATION (PC2-0) 000 = No partitioning. Dual Work is not allowed. 001 = Plane1-3 are merged into one partition. (default in a bottom parameter device) 010 = Plane 0-1 and Plane 2-3 are merged into one partition respectively. 100 = Plane 0-2 are merged into one partition. (default in a top parameter device) 011 = Plane 2-3 are merged into one partition. There are Notes: three partitions in this configuration. Dual work operation is available between any two partitions. 110 = Plane 0-1 are merged into one partition. There are parameter device. three partitions in this configuration. Dual work operation is available between any two partitions. 101 = Plane 1-2 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions. 111 = There are four partitions in this configuration. Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions. PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R) After power-up or device reset, PCR 10-8 (PC2-0) is set to '001" in a bottom parameter device and "100" in a top See the table below for more details. PCR.15-11 and PCR.7-0 are reserved for future use and should be masked out when checking the partition configuration register. DataSheet4U.com **Partition Configuration** PC2 PC1 PC0 PARTITIONING FOR DUAL WORK PARTITIONING FOR DUAL WORK PC2 PC1 PC0 PARTITION0 PARTITION2 PARTITION1 PARTITION0 PLANE3 PLANE2 PLANE1 PLANE2 PLANE0 PLANE3 PLANE! 0 0 0 0 1 1 PARTITION0 PARTITION2 PARTITION1 PARTITION0 PARTITION1 PLANE2 PLANE0 PLANE3 PLANE! PLANE1 0 0 1 1 1 0 PARTITION0 PARTITION1 PARTITION2 PARTITION1 PARTITION0 PLANE3 PLANE2 PLANE1 PLANE0 PLANE3 PLANE1 0 1 0 1 0 1 PARTITION0 PARTITION1 PARTITION3 PARTITION2 PARTITION1 PARTITION0 PLANE3 PLANE2 PLANE2 PLANE3 PLANE1 **LANE0** 0 0 1 1 DataSheet4U.com et4U.com ## 7.4 Memory Map for Flash Memory # Top Parameter | BLOCK NUMBER ADDRESS R | AN0 | GE | |------------------------|-----|----| |------------------------|-----|----| | | 134 | 4K-WORD | 3FF000H - 3FFFFFH | |-------------------------|-----|----------|-------------------| | | 133 | 4K-WORD | 3FE000H - 3FEFFFH | | | 132 | 4K-WORD | 3FD000H - 3FDFFFH | | | 131 | 4K-WORD | 3FC000H - 3FCFFFH | | | 130 | 4K-WORD | 3FB000H - 3FBFFFH | | | 129 | 4K-WORD | 3FA000H - 3FAFFFE | | | 128 | 4K-WORD | 3F9000H - 3F9FFFH | | | 127 | 4K-WORD | 3F8000H - 3F8FFFH | | | 126 | 32K-WORD | 3F0000H - 3F7FFFH | | | 125 | 32K-WORD | 3E8000H - 3EFFFFH | | | 124 | 32K-WORD | 3E0000H - 3E7FFFH | | 周 | 123 | 32K-WORD | 3D8000H - 3DFFFFH | | 🗲 | 122 | 32K-WORD | 3D0000H - 3D7FFFH | |] | 121 | 32K-WORD | 3C8000H - 3CFFFFH | | [[| 120 | 32K-WORD | 3C0000H - 3C7FFFH | | | 119 | 32K-WORD | 3B8000H - 3BFFFFH | | le l | 118 | 32K-WORD | 3B0000H - 3B7FFFH | | PLANE3 (PARAMETER PLANE | 117 | 32K-WORD | 3A8000H - 3AFFFFH | | | 116 | 32K-WORD | 3A0000H - 3A7FFFH | | [] | 115 | 32K-WORD | 398000H - 39FFFFH | | | 114 | 32K-WORD | 390000H - 397FFFH | | וֻֻֻֻּ | 113 | 32K-WORD | 388000H - 38FFFFH | | | 112 | 32K-WORD | 380000H - 387FFFH | | 133 | 111 | 32K-WORD | 378000H - 37FFFFH | | ドラー | 110 | 32K-WORD | 370000H - 377FFFH | | [₹] | 109 | 32K-WORD | 368000H - 36FFFFH | | ايرا | 108 | 32K-WORD | 360000H - 367FFFH | | | 107 | 32K-WORD | 358000H - 35FFFFH | | | 106 | 32K-WORD | 350000H - 357FFFH | | | 105 | 32K-WORD | 348000H - 34FFFFH | | | 104 | 32K-WORD | 340000H - 347FFFH | | | 103 | 32K-WORD | 338000H - 33FFFFH | | | 102 | 32K-WORD | 330000H - 337FFFH | | | 101 | 32K-WORD | 328000H - 32FFFFH | | | 100 | 32K-WORD | 320000H - 327FFFH | | | 99 | 32K-WORD | 318000H - 31FFFFH | | | 98 | 32K-WORD | 310000H - 317FFFH | | | 97 | 32K-WORD | 308000H - 30FFFFH | | | 96 | 32K-WORD | 300000H - 307FFFH | | | | , | | | 63 | 32K-WORD | 1F8000H - 1FFFFFH | |----|----------|-------------------| | 62 | 32K-WORD | 1F0000H - 1F7FFFH | | 61 | 22K WORD | 1E8000H - 1EFFFFH | BLOCK NUMBER ADDRESS RANGE | | | 63 | 32K-WORD | 1F8000H - 1FFFFFH | |--|-----------------------|----------|-------------------|-------------------| | | | 62 | 32K-WORD | 1F0000H - 1F7FFFH | | | | 61 | 32K-WORD | 1E8000H - 1EFFFFH | | | | 60 | 32K-WORD | 1E0000H - 1E7FFFH | | | | 59 | 32K-WORD | 1D8000H - 1DFFFFI | | | | 58 | 32K-WORD | 1D0000H - 1D7FFFH | | | | 57 | 32K-WORD | 1C8000H - 1CFFFFH | | | | 56 | 32K-WORD | 1C0000H - 1C7FFFH | | | | 55 | 32K-WORD | 1B8000H - 1BFFFFH | | | 田, | 54 | 32K-WORD | 1B0000H - 1B7FFFH | | | Z | 53 | 32K-WORD | 1A8000H - 1AFFFFI | | | اح | 52 | 32K-WORD | 1A0000H - 1A7FFFH | | | PI | 51 | 32K-WORD | 198000H - 19FFFFH | | | 7 | 50 | 32K-WORD | 190000H - 197FFFH | | | ĺŹ ∣ | 49 | 32K-WORD | 188000H - 18FFFFH | | | ΙŌΙ | 48 | 32K-WORD | 180000H - 187FFFH | | | ΙŁ | 47 | 32K-WORD | 178000H - 17FFFFH | | | z | 46 | 32K-WORD | 170000H - 177FFFH | | | PLANE1 (UNIFORM PLANE | 45 | 32K-WORD | 168000H - 16FFFFH | | | 1 (| 44 | 32K-WORD | 160000H - 167FFFH | | | 田 | 43 | 32K-WORD | 158000H - 15FFFFH | | | 13 | 42 | 32K-WORD | 150000H - 157FFFH | | | < | 41 | 32K-WORD | 148000H - 14FFFFH | | | Ы | 40 | 32K-WORD | 140000H - 147FFFH | | | | 39 | 32K-WORD | 138000H - 13FFFFH | | | | 38 | 32K-WORD | 130000H - 137FFFH | | | | 37 | 32K-WORD | 128000H - 12FFFFH | | | | 36 | 32K-WORD | 120000H - 127FFFH | | | | 35 | 32K-WORD | 118000H - 11FFFFH | | | | 34 | 32K-WORD | 110000H - 117FFFH | | | 33 | 32K-WORD | 108000H - 10FFFFH | | | | | 32 | 32K-WORD | 100000H - 107FFFH | | | | | | - | | | 95 | 32K-WORD | 2F8000H - 2FFFFFH | |------------------------|----|----------|-------------------| | | 94 | 32K-WORD | 2F0000H - 2F7FFFH | | | 93 | 32K-WORD | 2E8000H - 2EFFFFH | | | 92 | 32K-WORD | 2E0000H - 2E7FFFH | | | 91 | 32K-WORD | 2D8000H - 2DFFFFH | | | 90 | 32K-WORD | 2D0000H - 2D7FFFH | | | 89 | 32K-WORD | 2C8000H - 2CFFFFH | | | 88 | 32K-WORD | 2C0000H - 2C7FFFH | | | 87 | 32K-WORD | 2B8000H - 2BFFFFH | | \Box | 86 | 32K-WORD | 2B0000H - 2B7FFFH | | ΙZΙ | 85 | 32K-WORD | 2A8000H - 2AFFFFH | | A | 84 | 32K-WORD | 2A0000H - 2A7FFFH | | ΙŽ | 83 | 32K-WORD | 298000H - 29FFFFH | | Ţ. | 82 | 32K-WORD | 290000H - 297FFFH | | | 81 | 32K-WORD | 288000H - 28FFFFH | | læ. | 80 | 32K-WORD | 280000H - 287FFFH | | \mathbb{F} | 79 | 32K-WORD | 278000H - 27FFFFH | | ラ | 78 | 32K-WORD | 270000H - 277FFFH | | 15 | 77 | 32K-WORD | 268000H - 26FFFFH | | | 76 | 32K-WORD | 260000H - 267FFFH | | E2 . | 75 | 32K-WORD | 258000H - 25FFFFH | | IZ. | 74 | 32K-WORD | 250000H - 257FFFH | | V | 73 | 32K-WORD | 248000H - 24FFFFH | | PLANE2 (UNIFORM PLANE) | 72 | 32K-WORD | 240000H - 247FFFH | | | 71 | 32K-WORD | 238000H - 23FFFFH | | | 70 | 32K-WORD | 230000H - 237FFFH | | | 69 | 32K-WORD | 228000H - 22FFFFH | | | 68 | 32K-WORD | 220000H - 227FFFH | | | | | ALCOCOTT ALEEDETT | 32K-WORD 32K-WORD 32K-WORD 65 32K-WORD 66 218000H - 21FFFFH 210000H -
217FFFH 208000H - 20FFFFH 200000H - 207FFFH | | 31 | 32K-WORD | 0F8000H - 0FFFFFH | |------------------------|----|----------|-------------------| | | 30 | 32K-WORD | 0F0000H - 0F7FFFH | | | 29 | 32K-WORD | 0E8000H - 0EFFFFH | | | 28 | 32K-WORD | 0E0000H - 0E7FFFH | | | 27 | 32K-WORD | 0D8000H - 0DFFFFH | | | 26 | 32K-WORD | 0D0000H - 0D7FFFH | | | 25 | 32K-WORD | 0C8000H - 0CFFFFH | | | 24 | 32K-WORD | 0C0000H - 0C7FFFH | | | 23 | 32K-WORD | 0B8000H - 0BFFFFH | | Ξ | 22 | 32K-WORD | 0B0000H - 0B7FFFH | | Ξ | 21 | 32K-WORD | 0A8000H - 0AFFFFH | | A | 20 | 32K-WORD | 0A0000H - 0A7FFFH | | ĭ | 19 | 32K-WORD | 098000H - 09FFFFH | | PLANE0 (UNIFORM PLANE) | 18 | 32K-WORD | 090000H - 097FFFH | | 3 | 17 | 32K-WORD | 088000H - 08FFFFH | |)F | 16 | 32K-WORD | 080000H - 087FFFH | | F(| 15 | 32K-WORD | 078000H - 07FFFFH | | \equiv | 14 | 32K-WORD | 070000H - 077FFFH | | 5 | 13 | 32K-WORD | 068000H - 06FFFFH | |) (| 12 | 32K-WORD | 060000H - 067FFFH | | \mathbf{E} | 11 | 32K-WORD | 058000H - 05FFFFH | | \mathbf{z} | 10 | 32K-WORD | 050000H - 057FFFH | | A | 9 | 32K-WORD | 048000H - 04FFFFH | | Γ | 8 | 32K-WORD | 040000H - 047FFFH | | _ | 7 | 32K-WORD | 038000H - 03FFFFH | | | 6 | 32K-WORD | 030000H - 037FFFH | | | 5 | 32K-WORD | 028000H - 02FFFFH | | | 4 | 32K-WORD | 020000H - 027FFFH | | | 3 | 32K-WORD | 018000H - 01FFFFH | | | 2 | 32K-WORD | 010000H - 017FFFH | | | 1 | 32K-WORD | 008000H - 00FFFFH | DataSheet4 et4U.com DataSheet4U.com 000000H - 007FFFH WWW.DataSheet4U.com ## 7.5 DC Electrical Characteristics for Flash Memory ## DC Electrical Characteristics $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Par | ameter | Notes | Min. | Тур. | Max. | Unit | Test Conditions | | |-----------------------------------|---|-------------------------|---------|--------|-------|------|------|--|-------| | C _{IN} | Input Capacitance | : | 5 | | | 7 | pF | $V_{IN} = 0V, f = 1MHz, T_A = 25^{\circ}C$ | | | C _{IO} | I/O Capacitance | I/O Capacitance | | | | 10 | pF | $V_{I/O} = 0V, f = 1MHz, T_A = 25^{\circ}C$ | | | I _{LI} | Input Leakage Cu | rrent | | | | ±1 | μΑ | $V_{IN} = V_{CC}$ or GND | | | I _{LO} | Output Leakage C | Current | | | | ±1 | μΑ | $V_{OUT} = V_{CC}$ or GND | | | I _{CCS} | V _{CC} Standby Curr | rent | 1, 8 | | 4 | 20 | μΑ | $\begin{aligned} &V_{CC} = V_{CC} \text{ Max.,} \\ &F_{2} \overline{CE} = \overline{RST} = V_{CC} \pm 0.2V, \\ &\overline{WP} = V_{CC} \text{ or GND} \end{aligned}$ | | | I _{CCAS} | V _{CC} Automatic Po | ower Savings Current | 1, 4 | | 4 | 20 | μΑ | $V_{CC} = V_{CC} \text{ Max.,}$ $F_{2}\overline{CE} = \text{GND } \pm 0.2\text{V,}$ $\overline{WP} = V_{CC} \text{ or GND}$ | | | I _{CCD} | V _{CC} Reset Power- | -Down Current | 1 | | 4 | 20 | μΑ | $\overline{RST} = GND \pm 0.2V$ $I_{OUT} (RY/\overline{BY}) = 0mA$ | | | Ţ | Average V _{CC}
Read Current
Normal Mode | | 1,7 | | 15 | 25 | mA | $V_{CC} = V_{CC} Max.,$
$F_2 \overline{CE} = V_{IL}, F \overline{OE} = V_{IH}, f = 5MHz$ | | | I _{CCR} | Average V _{CC}
Read Current
Page Mode | 8 Word Read | DataSh | eet4U. | com T | 10 | mA | | taShe | | I _{CCW} | V _{CC} (Page Buffer |) Program Current | 1, 5, 7 | | 20 | 60 | mA | $V_{PP} = V_{PPH}$ | | | I _{CCE} | V _{CC} Block Erase, F | Full Chip Erase Current | 1, 5, 7 | | 10 | 30 | mA | $V_{PP} = V_{PPH}$ | | | I _{CCWS} | V _{CC} (Page Buffer
Block Erase Suspe | | 1, 2, 7 | | 10 | 200 | μΑ | F_2 - $\overline{CE} = V_{IH}$ | | | I _{PPS} I _{PPR} | V _{PP} Standby or Read Current | | 1, 6, 7 | | 2 | 5 | μΑ | $V_{PP} \le V_{CC}$ | | | I _{PPW} | V _{PP} (Page Buffer) | Program Current | 1,5,6,7 | | 2 | 5 | μА | $V_{PP} = V_{PPH}$ | | | I _{PPE} | V _{PP} Block Erase, Full Chip
Erase Current | | 1,5,6,7 | | 2 | 5 | μΑ | $V_{PP} = V_{PPH}$ | | | I _{PPWS} | V _{PP} (Page Buffer)
Suspend Current | Program | 1, 6, 7 | | 2 | 5 | μΑ | $V_{PP} = V_{PPH}$ | | | I _{PPES} | V _{PP} Block Erase S | Suspend Current | 1, 6, 7 | | 2 | 5 | μΑ | $V_{PP} = V_{PPH}$ | | et4U.com DataSheet4U.com taShe ### DC Electrical Characteristics (Continue) $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Тур. | Max. | Unit | Test Conditions | |-------------------|---|-------|-------------|------|-------------|------|---------------------------| | V_{IL} | Input Low Voltage | 5 | -0.3 | | 0.4 | V | | | V _{IH} | Input High Voltage | 5 | VCC
-0.4 | | VCC
+0.3 | V | | | V_{OL} | Output Low Voltage | 5, 8 | | | 0.2Vcc | V | $I_{OL} = 0.5 \text{mA}$ | | V _{OH} | Output High Voltage | 5 | 2.2 | | | V | $I_{OH} = -0.5 \text{mA}$ | | V _{PPLK} | V _{PP} Lockout during Normal Operations | 3,5,6 | | | 0.4 | V | | | V _{PPH} | V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program Operations | 6 | 1.65 | 3 | 3.1 | V | | | V_{LKO} | V _{CC} Lockout Voltage | | 1.5 | | | V | | #### Notes: - 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at $V_{CC} = 3.0V$ and $T_A = +25$ °C unless V_{CC} is specified. - 2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW} . If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} . - 3. Block erase, full chip erase, (page buffer) program are inhibited when $V_{PP} \le V_{PPLK}$, and not guaranteed outside the specified voltage. - 4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed. - 5. Sampled, not 100% tested. - 6. V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, full chip erase, (page buffer) program cannot be executed and should not be attempted. - 7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane. - 8. Includes RY/BY et4U.com DataSheet4U.com taShe ## 7.6 AC Electrical Characteristics for Flash Memory ## 7.6.1 AC Test Conditions | Input Pulse Level | 0 V to 2.7 V | |------------------------------------|---------------------| | Input Rise and Fall Time | 5 ns | | Input and Output Timing Ref. level | 1.35 V | | Output Load | $1TTL + C_L (50pF)$ | ## 7.6.2 Read Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |---------------------------------------|---|-------|------|------|------| | t _{AVAV} | Read Cycle Time | | 65 | | ns | | t _{AVQV} | Address to Output Delay | | | 65 | ns | | t _{ELQV} | F_2 - \overline{CE} to Output Delay | 2 | | 65 | ns | | t _{APA} | Page Address Access Time | | | 25 | ns | | t _{GLQV} | F-OE to Output Delay | 2 | | 20 | ns | | t _{PHQV} | RST High to Output Delay | | | 150 | ns | | t _{EHQZ} , t _{GHQZ} | F ₂ -\overline{CE} or F-\overline{OE} to Output in High-Z, Whichever Occurs First | 1 | | 20 | ns | | t _{ELQX} | F_2 - \overline{CE} to Output in Low-Z | 1 | 0 | | ns | | t _{GLQX} | F-OE to Output in Low-Z DataSheet4U.com | 1 | 0 | | ns D | | t _{OH} | Output Hold from First Occurring Address, F_2 - $\overline{\text{CE}}$ or $\overline{\text{F-OE}}$ Change | 1 | 0 | | ns | | t _{AVEL} , t _{AVGL} | Address Setup to F ₂ - $\overline{\text{CE}}$ and F- $\overline{\text{OE}}$ Going Low for Reading Status Register | 3,5 | 10 | | ns | | t _{ELAX} , t _{GLAX} | Address Hold from F ₂ - $\overline{\text{CE}}$ and F- $\overline{\text{OE}}$ Going Low for Reading Status Register | 4,5 | 30 | | ns | | t _{EHEL} , t _{GHGL} | F ₂ - $\overline{\text{CE}}$ and F- $\overline{\text{OE}}$ Pulse Width High for Reading Status Register | 5 | 15 | | ns | ### Notes: et4U.com - 1. Sampled, not 100% tested. - 2. F- \overline{OE} may be delayed up to $t_{ELOV} t_{GLOV}$ after the falling edge of F_2 - \overline{CE} without impact to t_{ELOV} . - 3. Address setup time $(t_{AVEL},\,t_{AVGL})$ is defined from the falling edge of F_2 - \overline{CE} or F- \overline{OE} (whichever goes low last). - 4. Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of F_2 - \overline{CE} or F- \overline{OE} (whichever goes low last). - 5. Specifications t_{AVEL} , t_{AVGL} , t_{ELAX} , t_{GLAX} and t_{EHEL} , t_{GHGL} for read operations apply to only status register read operations. DataSheet4U.com www.DataSheet4U.com ## 7.6.3 Write Cycle (F-WE / F₂-CE Controlled) (1,2) $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |---|---|-------|------|-----------------------|------| | t _{AVAV} | Write Cycle Time | | 65 | | ns | | t _{PHWL} (t _{PHEL}) | RST High Recovery to F-WE (F ₂ -CE) Going Low | 3 | 150 | | ns | | t _{ELWL} (t _{WLEL}) | F_2 - \overline{CE} (F- \overline{WE}) Setup to F- \overline{WE} (F ₂ - \overline{CE}) Going Low | | 0 | | ns | | t _{WLWH} (t _{ELEH}) | F-WE (F ₂ -CE) Pulse Width | 4 | 50 | | ns | | t _{DVWH} (t _{DVEH}) | Data Setup to F- $\overline{\text{WE}}$ (F ₂ - $\overline{\text{CE}}$) Going High | 8 | 40 | | ns | | t _{AVWH} (t _{AVEH}) |
Address Setup to F-WE (F ₂ -CE) Going High | 8 | 50 | | ns | | t _{WHEH} (t _{EHWH}) | F_2 - \overline{CE} (F- \overline{WE}) Hold from F- \overline{WE} (F ₂ - \overline{CE}) High | | 0 | | ns | | $t_{WHDX} (t_{EHDX})$ | Data Hold from F-WE (F ₂ -CE) High | | 0 | | ns | | t _{WHAX} (t _{EHAX}) | Address Hold from F-WE (F ₂ -CE) High | | 0 | | ns | | $t_{WHWL} (t_{EHEL})$ | F-WE (F ₂ -CE) Pulse Width High | 5 | 15 | | ns | | t _{SHWH} (t _{SHEH}) | WP High Setup to F-WE (F ₂ -CE) Going High | 3 | 0 | | ns | | t _{VVWH} (t _{VVEH}) | V_{PP} Setup to F- $\overline{\text{WE}}$ (F ₂ - $\overline{\text{CE}}$) Going High | 3 | 200 | | ns | | $t_{\mathrm{WHGL}} (t_{\mathrm{EHGL}})$ | Write Recovery before Read | | 30 | | ns | | t _{QVSL} | WP High Hold from Valid SRD, RY/BY High-Z | 3, 6 | 0 | | ns | | t _{QVVL} | V _{PP} Hold from Valid SRD, RY/BY High-Z | 3, 6 | 0 | | ns | | t _{WHR0} (t _{EHR0}) | F-WE (F2-CE) High to SR.7 Going "Q"Sheet4U.com | 3, 7 | | t _{AVQV} +50 | ns | | t _{WHRL} (t _{EHRL}) | F-WE (F ₂ -CE) High to RY/BY Going Low | 3 | | 100 | ns | et4U.com ### Notes: - 1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program operations are the same as during read-only operations. See the AC Characteristics for read cycle. - 2. A write operation can be initiated and terminated with either F_2 - \overline{CE} or F- \overline{WE} . - 3. Sampled, not 100% tested. - 4. Write pulse width (t_{WP}) is defined from the falling edge of F_2 - \overline{CE} or F- \overline{WE} (whichever goes low last) to the rising edge of F_2 - \overline{CE} or F- \overline{WE} (whichever goes high first). Hence, t_{WP} = t_{WLWH} = t_{ELEH} = t_{WLEH} = t_{ELWH} . - 5. Write pulse width high (t_{WPH}) is defined from the rising edge of F_2 - \overline{CE} or F- \overline{WE} (whichever goes high first) to the falling edge of F_2 - \overline{CE} or F- \overline{WE} (whichever goes low last). Hence, t_{WPH} = t_{WHWL} = t_{WHEL} = t_{WHEL} = t_{EHWL} . - 6. V_{PP} should be held at $V_{PP}=V_{PPH}$ until determination of block erase, full chip erase, (page buffer) program success (SR.1/3/4/5=0). - 7. $t_{WHR0} (t_{EHR0})$ after the Read Query or Read Identifier Codes command= $t_{AVOV}+100$ ns. - 8. See 7.2.1 Command Definitions for valid address and data for block erase, full chip erase, (page buffer) program or lock bit configuration. DataSheet4U.com taShe 7.6.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance (3) $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | | | | Page Buffer | | V _{PP} =V _{PPH} | | | |--|---|-------------|-----------------------------------|------|-----------------------------------|----------|------| | Symbol | Parameter | Notes | Command is
Used or not
Used | Min. | Typ. (1) | Max. (2) | Unit | | turns | 4K-Word Parameter Block Program | 2 | Not Used | | 0.05 | 0.3 | S | | t _{WPB} | Time | 2 | Used | | 0.03 | 0.12 | S | | t _{WMB} | 32K-Word Main Block Program | 2 | Not Used | | 0.38 | 2.4 | S | | WMB | Time | 2 | Used | | 0.24 | 1 | S | | t _{WHQV1} / | Word Program Time | 2 | Not Used | | 11 | 200 | μs | | t _{EHQV1} | word Frogram Time | 2 | Used | | 7 | 100 | μs | | t _{WHQV2} /
t _{EHQV2} | 4K-Word Parameter Block Erase
Time | 2 | - | | 0.3 | 4 | S | | t _{WHQV3} /
t _{EHQV3} | 32K-Word Main Block Erase Time | 2 | - | | 0.6 | 5 | S | | | Full Chip Erase Time | 2 | | | 80 | 700 | S | | t _{WHRH1} /
t _{EHRH1} | (Page Buffer) Program Suspend Latency
Time to Read | 4 | - | | 5 | 10 | μs | | t _{WHRH2} /
t _{EHRH2} | Block Erase Suspend Latency Time to Read | 4 | - | | 5 | 20 | μs | | t _{ERES} | Latency Time from Block Erase
Resume Command to Block
Erase Suspend Command | DataSh
5 | eet4U.com | 500 | | | μs | et4U.com #### Notes: www.DataSheet4U.com **SHARP** - 1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization. - 2. Excludes external system-level overhead. - 3. Sampled, but not 100% tested. - 4. A latency time is required from writing suspend command (F- \overline{WE} or F₂- \overline{CE} going high) until SR.7 going "1" or RY/ \overline{BY} going High-Z. - 5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished. DataSheet4U.com ## 7.6.5 Flash Memory AC Characteristics Timing Chart ## AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes or Query Code DataSheet4U.com DataSheet4U.com DataSheet4U.com www.DataSheet4U.com www.DataSheet4U.com #### 7.6.6 Reset Operations | $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | $(T_{\Lambda}$ | = -25°C to | +85°C. | $V_{CC} =$ | = 2.7V | to 3.1V) | |---|----------------|------------|--------|------------|--------|----------| |---|----------------|------------|--------|------------|--------|----------| | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|---|---------|------|------|------| | t _{PLPH} | RST Low to Reset during Read (RST should be low during power-up.) | 1, 2, 3 | 100 | | ns | | t _{PLRH} | RST Low to Reset during Erase or Program | 1, 3, 4 | | 22 | μs | | t _{VPH} | $V_{CC} = 2.7V$ to \overline{RST} High | 1, 3, 5 | 100 | | ns | | t _{VHQV} | $V_{CC} = 2.7V$ to Output Delay | 3 | | 1 | ms | ### Notes: et4U.com - 1. A reset time, t_{PHQV} , is required from the later of SR.7 (RY/ \overline{BY}) going "1" (High-Z) or \overline{RST} going high until outputs are valid. See the AC Characteristics read cycle for t_{PHOV} . - 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed. - 3. Sampled, not 100% tested. - 4. If $\overline{\text{RST}}$ asserted while a block erase, full chip erase or (page buffer) program operation is not executing, the reset will complete within 100ns. - 5. When the device power-up, holding \overline{RST} low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there. ### AC Waveform for Reset Operation **t**phqv RST (P) VALID Output (A) Reset during Read Array Mode ABORT SR.7="1" COMPLETE **t**phqv RST (P) **t**PLPH VALID OUTPUT $DQ_{15-0}(D/Q)$ (B) Reset during Erase or Program Mode tvhqv **GND t**PHQV RST (P) VALID Output (C) RST rising timing DataSheet4U.com - 8. Smartcombo RAM - 8.1 Truth Table - 8.1.1 Bus Operation (1) | Smartcombo RAM | Notes | $SC-\overline{CE}_1$ | CE ₂ | S-OE | S-WE | LB | UB | DQ ₀ to Q ₁₅ | |----------------|-------|----------------------|-----------------|------|------|---------------|---------------|------------------------------------| | Read | | | | L | Н | (3 | 3) | (3) | | Output Disable | | L | | Н | Н | X | X | High - Z | | Write | | | Н | Н | L | (3 | 3) | (3) | | Cton dha | | Н | | | | X | X | | | Standby | | X | | X | X | Н | Н | High - Z | | Sleep | 2 | X | L | | | X | X | | ## Notes: - 1. $L = V_{IL}$, $H = V_{IH}$, X = H or L, High-Z = High impedance. Refer to the DC Characteristics. - 2. CE₂ pin must be fixed to high level except sleep mode. - 3. LB, UB Control Mode | LB | UB | DQ_0 to DQ_7 | DQ_8 to DQ_{15} | | |----|----|------------------|---------------------|-------| | L | L | D_{OUT}/D_{IN} | D_{OUT}/D_{IN} | | | L | Н | D_{OUT}/D_{IN} | High - Z | | | Н | L | High - Z | Dour/Dineet4 | U.com | et4U.com www.DataSheet4U.com ## 8.2 DC Electrical Characteristics for Smartcombo RAM ### DC Electrical Characteristics $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Тур. | Max. | Unit | Test Conditions | |------------------|------------------------------------|-------|-------------|------|--------------------|------|--| | C _{IN} | Input Capacitance | 1 | | | 8 | pF | $V_{IN} = 0V$ | | C _{IO} | I/O Capacitance | 1 | | | 10 | pF | $V_{I/O} = 0V$ | | I_{LI} | Input Leakage Current | | | | ±1 | μΑ | $V_{IN} = V_{CC}$ or GND | | I_{LO} | Output Leakage Current | | | | ±1 | μΑ | $V_{OUT} = V_{CC}$ or GND | | I _{SB} | V _{CC} Standby Current | 2 | | | 100 | μA | $SC-\overline{CE}_1 \ge V_{CC} - 0.2V, CE_2 \ge V_{CC} - 0.2V$ | | I _{SLP} | V _{CC} Sleep Mode Current | 3 | | | 30 | μA | $SC-\overline{CE}_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V$ | | I _{CC1} | V _{CC} Operation Current | | | | 50 | mA | $t_{\text{CYCLE}} = \text{Min.}, I_{\text{I/O}} = 0\text{mA},$
$\text{SC-}\overline{\text{CE}}_1 = V_{\text{IL}}$ | | $V_{\rm IL}$ | Input Low Voltage | 1 | -0.3 | | 0.4 | V | | | V _{IH} | Input High Voltage | 1 | Vcc
-0.4 | | VCC
+0.3 | V | | | V _{OL} | Output Low Voltage | 1 | | | 0.2V _{CC} | V | $I_{OL} = 0.5 \text{mA}$ | | V _{OH} | Output High Voltage | 1 | 2.2 | | | V | $I_{OH} = -0.5 \text{mA}$ | Notes: et4U.com 1. Sampled, not 100% tested. DataSheet4U.com - 2. Memory cell data is held. (CE₂ = "ViH") - 3. Memory cell data is not held. ($CE_2 = "V_{IL}"$) DataSheet4U.com www.DataSheet4U.com ## 8.3 AC Electrical Characteristics for Smartcombo RAM ### 8.3.1 AC Test Conditions | Input Pulse Level | $0.2 \mathrm{V_{CC}}$ to $0.8 \mathrm{V_{CC}}$ | |------------------------------------|--| |
Input Rise and Fall Time | 5 ns | | Input and Output Timing Ref. Level | 1/2 V _{CC} | | Output Load | $1TTL + C_L (30pF)^{(1,2)}$ | #### Notes: - 1. Including scope and socket capacitance. - 2. AC characteristics directed with the note should be measured with the output load shown in below. et4U.com DataSheet4U.com www.DataSheet4U.com ## 8.3.2 Read Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ 53 | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|---|-------|------|--------|-------| | t _{RC} | Read Cycle Time | | 65 | | ns | | t_{AA} | Address Access Time | | | 65 | ns | | t _{ACE} | Chip Enable Access Time | | | 65 | ns | | t _{OE} | Output Enable to Output Valid | | | 45 | ns | | t _{BE} | Byte Enable Access Time | | | 65 | ns | | t _{PAA} | Page Access Time | | | 20 | ns | | t _{OH} | Output Hold from Address Change | | 5 | | ns | | t _{PRC} | Page Read Cycle Time | | 20 | | ns | | t_{CLZ} | SC-CE ₁ Low to Output Active | | 10 | | ns | | t _{OLZ} | S-OE Low to Output Active | | 5 | | ns | | t _{BLZ} | UB or LB Low to Output Active | | 5 | | ns | | t _{CHZ} | SC-\overline{CE}_1 High to Output in High-Z | | | 25 | ns | | t _{OHZ} | S-OE High to Output in High-Z | | | 25 | ns | | t _{BHZ} | UB or LB High to Output in High-Z | | | 25 | ns | | t _{ASO} | Address Setup to S-OE Low | | 0 | | ns | | t _{OHAH} | S-OE High Level to Address Hold | | -5 | | ns Da | | t _{CHAH} | SC-CE ₁ High Level to Address Hold | | 0 | | ns | | t _{BHAH} | LB, UB High Level to Address Hold | 2 | 0 | | ns | | t _{CLOL} | $SC-\overline{CE}_1$ Low Level to $S-\overline{OE}$ Low Level | 1 | 0 | 10,000 | ns | | t _{OLCH} | S- OE Low Level to SC- CE ₁ High Level | | 45 | | ns | | t _{CP} | SC-\overline{CE}_1 High Level Pulse Width | | 10 | | ns | | t _{BP} | LB, UB High Level Pulse Width | | 10 | | ns | | t _{OP} | S-OE High Level Pulse Width | 1 | 2 | 10,000 | ns | ## Notes: et4U.com 1. t_{CLOL} and t_{OP} (Max.) are applied while SC- \overline{CE}_1 is being hold at low level. 2. t_{BHAH} is specified after both \overline{LB} and \overline{UB} are High. DataSheet4U.com www.DataSheet4U.com ## 8.3.3 Write Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|---|-------|------|--------|-------| | t_{WC} | Write Cycle Time | | 65 | | ns | | t_{CW} | Chip Enable to End of Write | | 55 | | ns | | t _{AW} | Address Valid to End of Write | | 55 | | ns | | t_{BW} | Byte Select Time | | 55 | | ns | | t _{WP} | Write Pulse Width | | 50 | | ns | | t _{WR} | Write Recovery Time | | 0 | | ns | | t _{CP} | SC- $\overline{\text{CE}}_1$ High Level Pulse Width | | 10 | | ns | | t _{BP} | LB, UB High Level Pulse Width | | 10 | | ns | | t _{WHP} | S-WE High Pulse Width | | 10 | | ns | | t _{WHZ} | S-WE Low to Output in High-Z | | | 25 | ns | | t _{OW} | S-WE High to Output Active | | 15 | | ns | | t _{AS} | Address Setup Time | | 0 | | ns | | t_{DW} | Input Data Setup Time | | 30 | | ns | | t _{DH} | Input Data Hold Time | | 0 | | ns | | t _{OHAH} | S-OE High Level to Address Hold | | -5 | | ns | | t _{CHAH} | SC-CE ₁ High Level to Address Hold | | 0 | | ns Da | | t _{BHAH} | LB, UB High Level to Address Hold DataSheet4U.com | 2 | 0 | | ns | | t _{OES} | S- OE High Level to S- WE Set | 1 | 0 | 10,000 | ns | | t _{OEH} | S-WE High Level to S-OE Set | 1 | 10 | 10,000 | ns | et4U.com ## Notes: - 1. t_{OES} and t_{OEH} (Max.) are applied while SC- \overline{CE}_1 is being hold at low level. - 2. t_{BHAH} is specified after both \overline{LB} and \overline{UB} are High. DataSheet4U.com ## 8.3.4 Initialization $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|---|-------|------|------|------| | t _{VHMH} | Power Application to CE ₂ Low Level Hold | | 50 | | μs | | t _{CHMH} | $SC-\overline{CE}_1$ High Level to CE_2 High Level | | 10 | | ns | | t | Following Power Application CE_2 High Level Hold to $SC\overline{CE}_1$ Low Level | | 300 | | μs | ## 8.3.5 Sleep Mode Entry / Exit $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|---|-------|------|------|------| | + | Sleep Mode Entry $SC-\overline{CE}_1$ High Level to CE_2 Low Level | | 0 | | ns | | t _{MHCL} | Sleep Mode Exit to Normal Operation CE_2 High Level to $SC-\overline{CE}_1$ Low Level | | 300 | | μs | et4U.com DataSheet4U.com www.DataSheet4U.com DataSheet4U.com #### 8.4 Initialization Initialize the power application using the following sequence to stabilize internal circuits. - (1) Following power application, make CE_2 high level after fixing CE_2 to low level for the period of t_{VHMH} . Make SC- \overline{CE}_1 high level before making CE_2 high level. - (2) SC- $\overline{\text{CE}}_1$ and CE₂ are fixed to high level for the period of t_{MHCL} . Normal operation is possible after the completion of initialization. #### Notes: - 1. Make CE2 low level when starting the power supply. - 2. t_{VHMH} is specified from when the power supply voltage reaches the prescribed minimum value (V $\,$ cc Min.). et4U.com DataSheet4U.com et4U.com DataSheet4U.com ### 8.5 Page Read Operation ## 8.5.1 Features of Page Read Operation (2) | Features | Notes | 8 Words Mode | |--------------------------------------|-------|-----------------| | Page Length | | 8 words | | Page Read-corresponding Addresses | | A_2, A_1, A_0 | | Page Read Start Address | | Don't care | | Page Direction | | Don't care | | Interrupt during page read operation | 1 | Enabled | #### Notes: 1. An interrupt is output when $SC-\overline{CE}_1 = High \text{ or in case } A_3 \text{ or a higher address changes.}$ ### 2. Page Length: 8 words is supported as the page lengths. ## Page-Corresponding Addresses: The page read-enabled addresses are A_2 , A_1 , and A_0 . Fix addresses other than A_2 , A_1 , and A_0 during page read operation. ### Page Start Address: Since random page read is supported, any address (A_2, A_1, A_0) can be used as the page read start address. ## Page Direction: Since random page read is possible, there is not restriction on the page direction. ### Interrupt during Page Read Operation: When generating an interrupt during page read, either make $SC-\overline{CE}_1$ high level or change A_3 and higher addresses. #### When page read is not used: Since random page read is supported, even when not using page read, random access is possible as usual. et4U.com www.DataSheet4U.com 59 ### 8.6 Mode Register Settings The sleep mode can be set using the mode register. Since the initial value of the mode register at power application is undefined, be sure to set the mode register after initialization at power application. However, since sleep mode is not entered unless $CE_2 = Low$ when sleep mode is not used, it is not necessary to set the mode register. Moreover, when using page read without using sleep mode, it is not necessary to set the mode register. #### 8.6.1 Mode Register Setting Method The mode register setting mode can be entered by successively writing two specific data after two continuous reads of the highest address (1FFFFFH). The mode register setting is a continuous four-cycle operation (two read cycles and two write cycles). Commands are written to the command register. The command register is used to latch the addresses and data required for executing commands, and it does not have an exclusive memory area. For the timing chart and flow chart, refer to Mode Register Setting Timing Chart (P.71), Mode Register Setting Flow Chart (P.72). Following table shows the commands and command sequences. #### Command Sequence | Command Sequence | equence 1st Bus Cycle (Read Cycle) | | 2nd Bus
(Read C | • | 3rd Bus (Write C | • | 4th Bus Cycle
(Write Cycle) | | | |----------------------|------------------------------------|---------|--------------------|---------|------------------|---------|--------------------------------|------|--| | | Address | Data | Address | Data | Address | Data | Address | Data | | | Sleep Mode 1FFFFFH - | | 1FFFFFH | - | 1FFFFFH | 00H | 1FFFFFH | 07H | | | #### 4th Bus Cycle (Write cycle) et4U.com | DQ | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 🛭 | |-----------------------|----|----|----|----|----|----|---|---|---|---|---|---|---|----|---|-----| | Mode Register Setting | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | PL | 1 | 1 | | Page Length | 1 | 8 words | |-------------|---|---------| |-------------|---|---------| ## 8.6.2 Cautions for Setting Mode Register Since, for the mode register setting, the internal counter status is judged by toggling $SC-\overline{CE}_1$ and $S-\overline{OE}$, toggle $SC-\overline{CE}_1$ at every cycle during entry (read cycle twice, write cycle twice), and toggle $S-\overline{OE}$ like $SC-\overline{CE}_1$ at the first and second read cycles. If incorrect addresses or data are written, or if addresses or data are written in the incorrect order, the setting of the mode register are not performed correctly. When the highest address (1FFFFFH) is read consecutively three or more times, the mode register setting entries are cancelled. Once the sleep mode has been set in the mode register, these settings are retained until they are set again, while applying the power supply. However, the mode register setting will become undefined if the power is turned off, so set the mode
register again after power application. For the timing chart and flow chart, refer to Mode Register Setting Timing Chart (P.71), Mode Register Setting Flow Chart (P.72). DataSheet4U.com www.DataSheet4U.com ## 8.7 Smartcombo RAM AC Characteristics Timing Chart ## Read Cycle Timing Chart 1 (SC-CE1 Controlled) et4U.com Note: 1. In read cycle, CE2 and S-WE should be fixed to high level. DataSheet4U.com ## Read Cycle Timing Chart 2 (S-OE Controlled) et4U.com Note: 1. In read cycle, CE2 and S- $\overline{\text{WE}}$ should be fixed to high level. DataSheet4U.com ## Read Cycle Timing Chart 3 (SC-\overline{CE}1 / S-\overline{OE} Controlled) et4U.com Note: 1. In read cycle, CE2 and S-WE should be fixed to high level. DataSheet4U.com ## Read Cycle Timing Chart 4 (Address Controlled) et4U.com ### Notes: - 1. In read cycle, CE2 and S- $\overline{\text{WE}}$ should be fixed to high level. - 2. When read cycle time is less than t_{RC} (Min.), the address access time (t_{AA}) is not guaranteed. DataSheet4U.com ## Read Cycle Timing Chart 5 (\overline{LB} / \overline{UB} Controlled) et4U.com Note: 1. In read cycle, CE2 and S-WE should be fixed to high level. DataSheet4U.com ## 8 Word Page Read Cycle Timing Chart et4U.com #### Notes: - 1. In read cycle, CE2 and S-WE should be fixed to high level. - 2. \overline{LB} and \overline{UB} are Low level. DataSheet4U.com ## Write Cycle Timing Chart 1 (SC-CE1 Controlled)) et4U.com ### Notes: - 1. During address transition, at least one of SC- $\overline{\text{CE}}$ 1, S- $\overline{\text{WE}}$ or $\overline{\text{LB}}$, $\overline{\text{UB}}$ pins should be inactivated. - 2. Do not input data to the DQ pins while they are in the output state. - 3. In write cycle, CE 2 and S- \overline{OE} should be fixed to high level. - 4. Write operation is done during the overlap time of a low level SC-CE 1, S-WE, LB and/or UB. DataSheet4U.com 67 www.DataSheet4U.com ## Write Cycle Timing Chart 2 (S-WE Controlled)) et4U.com ## Notes: - 1. During address transition, at least one of SC-\overline{CE}1, S-\overline{WE} or \overline{LB}, \overline{UB} pins should be inactivated. - 2. Do not input data to the DQ pins while they are in the output state. - 3. In write cycle, CE2 and S-OE should be fixed to high level. - 4. Write operation is done during the overlap time of a low level SC- $\overline{\text{CE}}$ 1, S- $\overline{\text{WE}}$, $\overline{\text{LB}}$ and/or $\overline{\text{UB}}$. DataSheet4U.com LRS1B06 68 ## Write Cycle Timing Chart 3 (S-WE Controlled)) et4U.com ## Notes: - 1. During address transition, at least one of SC-\overline{CE}1, S-\overline{WE} or \overline{LB}, \overline{UB} pins should be inactivated. - 2. Do not input data to the DQ pins while they are in the output state. - 3. In write cycle, CE2 and S-OE should be fixed to high level. - 4. Write operation is done during the overlap time of a low level SC- $\overline{\text{CE}}$ 1, S- $\overline{\text{WE}}$, $\overline{\text{LB}}$ and/or $\overline{\text{UB}}$. DataSheet4U.com ## Write Cycle Timing Chart 4 (LB / UB Controlled)) et4U.com #### Notes: - 1. During address transition, at least one of SC- $\overline{\text{CE}}$ 1, S- $\overline{\text{WE}}$ or $\overline{\text{LB}}$, $\overline{\text{UB}}$ pins should be inactivated. - 2. Do not input data to the DQ pins while they are in the output state. - 3. In write cycle, CE 2 and S- \overline{OE} should be fixed to high level. - 4. Write operation is done during the overlap time of a low level SC-C \overline{E} 1, S- \overline{WE} , \overline{LB} and/or \overline{UB} . DataSheet4U.com 70 # Write Cycle Timing Chart 5 (\overline{LB} / \overline{UB} Independent Controlled)) Notes: - 1. During address transition, at least one of SC- $\overline{\text{CE}}$ 1, S- $\overline{\text{WE}}$ or $\overline{\text{LB}}$, $\overline{\text{UB}}$ pins should be inactivated. - 2. Do not input data to the DQ pins while they are in the output state. - 3. In write cycle, CE 2 and S- \overline{OE} should be fixed to high level. - 4. Write operation is done during the overlap time of a low level SC-CE 1, S-WE, LB and/or UB. DataSheet4U.com et4U.com www.DataSheet4U.com DataSheet4U.com et4U.com DataSheet4U.com www.DataSheet4U.com ### 9. SRAM ### 9.1 Truth Table # 9.1.1 Bus Operation (1) | SRAM | Notes | S- CE ₁ | CE ₂ | S-OE | S-WE | LB | UB | DQ ₀ to DQ ₁₅ | |----------------|-------|-------------------------------|-----------------|------|------|---------------|---------------|-------------------------------------| | Read | | | | L | Н | (2 | 2) | (2) | | Output Disable | | L | Н | Н | Н | X | X | High - Z | | Write | | | | X | L | (2) | | (2) | | | | Н | X | | | X | X | | | Standby | | X | L | X | X | X | X | High - Z | | | | X | X | | | Н | Н | | ### Notes: 1. $L = V_{IL}$, $H = V_{IH}$, X = H or L, High-Z = High impedance. Refer to the DC Characteristics. # 2. LB, UB Control Mode | LB | UB | DQ_0 to DQ_7 | DQ ₈ to DQ ₁₅ | |----|----|--|--| | L | L | $\mathrm{D}_{\mathrm{OUT}}/\mathrm{D}_{\mathrm{IN}}$ | $\mathrm{D}_{\mathrm{OUT}}/\mathrm{D}_{\mathrm{IN}}$ | | L | Н | D_{OUT}/D_{IN} | High - Z | | Н | L | High - Z | D _{OUT} /D _{IN} | DataSheet4U.com et4U.com DataShe DataSheet4U.com ### 9.2 DC Electrical Characteristics for SRAM ### DC Electrical Characteristics $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | | | | | | | . 11 | | | |------------------|-----------------------------------|-----------|---------------------|-------|-------------|------|---|--| | Symbol | Parameter | Notes | Min. | Тур. | Max. | Unit | Test Condi | tions | | C _{IN} | Input Capacitance | 1 | | | 8 | pF | $V_{IN} = 0V, f = 1MHz, T$ | Γ _A =25°C | | C _{IO} | I/O Capacitance | 1 | | | 10 | pF | $V_{I/O} = 0V$, $f = 1MHz$, | T _A =25°C | | I_{LI} | Input Leakage Current | | | | ±1 | μΑ | $V_{IN} = V_{CC}$ or GND | | | I_{LO} | Output Leakage Current | | | | ±1 | μΑ | $V_{OUT} = V_{CC}$ or GND | | | I_{SB} | V _{CC} Standby Current | | | | 25 | μA | $S-\overline{CE}_1$, $CE_2 \ge V_{CC} - 0$
$CE_2 \le 0.2V$ | .2V or | | I _{CC1} | V _{CC} Operation Current | | | | 45 | mA | $S-\overline{CE}_{1} = V_{IL},$ $CE_{2} = V_{IH},$ $V_{IN} = V_{IL} \text{ or } V_{IH}$ | $t_{CYCLE} = Min.$ $I_{I/O} = 0mA$ | | I _{CC2} | V _{CC} Operation Current | | | | 8 | mA | $\begin{split} & S \text{-} \overline{CE}_1 \leq 0.2 \text{V}, \\ & CE_2 \geq V_{CC} \text{-} 0.2 \text{V}, \\ & V_{IN} \geq V_{CC} \text{-} 0.2 \text{V} \\ & \text{or} \leq 0.2 \text{V} \end{split}$ | $t_{CYCLE} = 1 \mu s$ $I_{I/O} = 0 mA$ | | V _{IL} | Input Low Voltage | 1 | -0.3 | | 0.4 | V | | | | V _{IH} | Input High Voltage | 1 | VCC
-0.4 | | VCC
+0.3 | V | | Γ | | V _{OL} | Output Low Voltage | Data
1 | aSheet ^z | U.com | 0.2Vcc | V | $I_{OL} = 0.5 \text{mA}$ | L | | V_{OH} | Output High Voltage | 1 | 2.2 | | | V | $I_{OH} = -0.5 \text{mA}$ | | et4U.com Notes: 1. Sampled, not 100% tested. DataSheet4U.com ### 9.3 AC Electrical Characteristics for SRAM ### 9.3.1 AC Test Conditions | Input Pulse Level | 0.4 V to 2.2 V | |------------------------------------|--------------------------| | Input Rise and Fall Time | 5 ns | | Input and Output Timing Ref. Level | 1.5 V | | Output Load | $1TTL + C_L(30pF)^{(1)}$ | ### Note: 1. Including scope and socket capacitance. ### 9.3.2 Read Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | | |-------------------|--|-------|------|------|------|-------| | t _{RC} | Read Cycle Time | | 65 | | ns | | | t _{AA} | Address Access Time | | | 65 | ns | | | t _{ACE1} | Chip Enable Access Time (S- $\overline{\text{CE}}_1$) | | | 65 | ns | | | t _{ACE2} | Chip Enable Access Time (CE ₂) | | | 65 | ns | | | t _{BE} | Byte Enable Access Time | | | 65 | ns | | | t _{OE} | Output Enable to Output Valid | | | 40 | ns | | | t _{OH} | Output Hold from Address Change | | 10 | | ns | -taCh | | t_{LZ1} | S-\overline{\overline{CE}_1 Low to Output Active} DataSheet4U.com | 1 | 10 | | ns | ataSh | | t _{LZ2} | CE ₂ High to Output Active | 1 | 10 | | ns | | | t _{OLZ} | S-OE Low to Output Active | 1 | 5 | | ns | | | t _{BLZ} | UB or LB Low to Output Active | 1 | 10 | | ns | | | t _{HZ1} | \overline{S} - \overline{CE}_1 High to Output in High-Z | 1, 2 | 0 | 25 | ns | | | t _{HZ2} | CE ₂ Low to Output in High-Z | 1, 2 | 0 | 25 | ns | | | t _{OHZ} | S-OE High to Output in High-Z | 1, 2 | 0 | 25 | ns | | | t _{BHZ} | UB or LB High to Output in High-Z | 1, 2 | 0 | 25 | ns | | ### Notes: et4U.com - 1. Active output to High-Z and High-Z to output active tests specified for a ±200mV transition from steady state levels into the test load. - 2. The period from S- $\overline{\text{CE}}_1$ Rise, $\overline{\text{UB}}$ Rise, $\overline{\text{LB}}$ Rise S- $\overline{\text{OE}}$ Rise (CE₂: Falling) to output buffer off is logically 10ns. DataSheet4U.com # 9.3.3 Write Cycle $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7V \text{ to } 3.1V)$ | Symbol | Parameter | Notes | Min. | Max. | Unit | |-------------------|-------------------------------|-------|------|------|------| | t _{WC} | Write Cycle Time | | 65 | | ns | | t_{CW} | Chip Enable to End of Write | | 60 | | ns | | t _{AW} | Address Valid to End of Write | | 60 | | ns | | t_{BW} | Byte Select Time | | 60 | | ns | | t _{AS} | Address Setup Time | | 0 | | ns | | t_{WP} | Write Pulse Width | | 50 | | ns | | t_{WR} | Write Recovery Time | | 0 |
 ns | | t_{DW} | Input Data Setup Time | | 30 | | ns | | t _{DH} | Input Data Hold Time | | 0 | | ns | | t_{OW} | S-WE High to Output Active | 1 | 5 | | ns | | t_{WZ} | S-WE Low to Output in High-Z | 1 | 0 | 25 | ns | ### Note: 1. Active output to High-Z and High-Z to output active tests specified for a ±200mV transition from steady state levels into the test load. et4U.com DataSheet4U.com www.DataSheet4U.com ### 9.4 SRAM AC Characteristics Timing Chart ### Read Cycle Timing Chart www.DataSheet4U.com et4U.com DataSheet4U.com ### Write Cycle Timing Chart (S-WE Controlled) 1. A write occurs during the overlap of a low S- $\overline{\text{CE}}$ 1, a high CE2 and a low S- $\overline{\text{WE}}$. A write begins at the latest transition among S- $\overline{\text{CE}}_{\perp}$ going low, CE₂ going high and S- $\overline{\text{WE}}$ going low. A write ends at the earliest transition among S- $\overline{\text{CE}}_{\perp}$ going high, CE₂ going low and S- $\overline{\text{WE}}$ going high. twp is measured from the beginning of write to the end of write. - 2. tcw is measured from the later of S-\overline{CE}_1 going low or CE_2 going high to the end of write. - 3. t_{BW} is measured from the time of going low \overline{UB} or low \overline{LB} to the end of write. - 4. tas is measured from the address valid to beginning of write. - 5. twr is measured from the end of write to the address change. t wr applies in case a write ends at S-VE going high, CE2 going low or S-WE going high. - 6. During this period DQ pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied. - 7. If S- $\overline{\text{CE}}_1$ goes low or CE₂ goes high simultaneously with S- $\overline{\text{WE}}$ going low or after S- $\overline{\text{WE}}$ going low, the outputs remain in high impedance state. - 8. If $S-\overline{CE}_1$ goes high or CE_2 goes low simultaneously with $S-\overline{WE}$ going high or before $S-\overline{WE}$ going high, the outputs remain in high impedance state. www.DataSheet4U.com DataSheet4 et4U.com LRS1B06 80 ### Write Cycle Timing Chart (S-\overline{CE}1 Controlled) Notes: - 1. A write occurs during the overlap of a low S- $\overline{\text{CE}}_1$, a high CE2 and a low S- $\overline{\text{WE}}$. - A write begins at the latest transition among S- $\overline{\text{CE}}_{\perp}$ going low, CE₂ going high and S- $\overline{\text{WE}}$ going low. A write ends at the earliest transition among S- $\overline{\text{CE}}_{\perp}$ going high, CE₂ going low and S- $\overline{\text{WE}}$ going high. twp is measured from the beginning of write to the end of write. - 2. tcw is measured from the later of S-CE | going low or CE | going high to the end of write. - 3. t_{BW} is measured from the time of going low \overline{UB} or low \overline{LB} to the end of write. - 4. tas is measured from the address valid to beginning of write. - 5. twr is measured from the end of write to the address change. t wr applies in case a write ends at S-CE 1 going high, CE2 going low or S-WE going high. www.DataSheet4U.com DataShe DataSheet4 et4U.com ### Write Cycle Timing Chart (UB / LB Controlled) Notes: - 1. A write occurs during the overlap of a low S- $\overline{\text{CE}}_{1}$, a high CE₂ and a low S- $\overline{\text{WE}}$. - A write begins at the latest transition among S- $\overline{\text{CE}}_1$ going low, CE₂ going high and S- $\overline{\text{WE}}$ going low. - A write ends at the earliest transition among S- $\overline{\text{CE}}_{\perp}$ going high, CE₂ going low and S- $\overline{\text{WE}}$ going high. two is measured from the beginning of write to the end of write. - 2. tcw is measured from the later of S- $\overline{\text{CE}}_1$ going low or CE₂ going high to the end of write. - 3. t_{BW} is measured from the time of going low \overline{UB} or low \overline{LB} to the end of write. - 4. tas is measured from the address valid to beginning of write. - 5. twr is measured from the end of write to the address change. t wr applies in case a write ends at S-CE 1 going high, CE2 going low or S-WE going high. - 6. UB and LB need to make the time of start of a cycle, and an end "high" level for reservation of t As and twr. www.DataSheet4U.com DataSheet4 et4U.com ### 9.5 Data Retention Characteristics for SRAM $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C)$ | Symbol | Parameter | Note | Min. | Typ.(1) | Max. | Unit | Conditions | |-------------------|-------------------------------|------|-----------------|---------|------|------|--| | V _{CCDR} | Data Retention Supply voltage | 2 | 1.5 | | 3.1 | V | S- $\overline{\text{CE}}_1$, $\text{CE}_2 \ge \text{V}_{\text{CC}}$ - 0.2V or $\text{CE}_2 \le 0.2\text{V}$,
LB, UB ≥ V _{CC} - 0.2V, $\text{CE}_2 \ge \text{V}_{\text{CC}}$ - 0.2V or
S- $\overline{\text{CE}}_1 \le 0.2\text{V}$ | | I _{CCDR} | Data Retention Supply current | 2 | | 2 | 25 | | $V_{CC} = 3.0V$,
$S-CE_1$, $CE_2 \ge V_{CC} - 0.2V$ or $CE_2 \le 0.2V$,
LB , $UB \ge V_{CC} - 0.2V$, $CE_2 \ge V_{CC} - 0.2V$ or
$S-CE_1 \le 0.2V$ | | t _{CDR} | Chip enable setup time | | 0 | | | ns | | | t_{R} | Chip enable hold time | | t _{RC} | | | ns | | #### Notes: et4U.com - 1. Reference value at $T_A = 25$ °C, $V_{CC} = 3.0$ V. - 2. $S-\overline{CE}_1 \ge V_{CC} 0.2V$, $CE_2 \ge V_{CC} 0.2V$ ($S-\overline{CE}_1$ controlled) or $CE_2 \le 0.2V$ (CE_2 controlled). # Data Retention Timing Chart (S-\overline{CE}1 Controlled) (1) #### Note: 1. To control the data retention mode at S- $\overline{\text{CE}}_1$, fix the input level of CE₂ between "V_{CCDR} and V_{CCDR}-0.2V" or "0V and 0.2V" during the data retention mode. ### Data Retention Timing Chart (CE2 Controlled) DataSheet4U.com ### 10. Notes www.DataSheet4U.com This product is a stacked CSP package that a 64M (x16) bit Flash Memory, a 64M (x16) bit Flash Memory, a 32M (x16) bit Smartcombo RAM and a 8M (x16) bit SRAM are assembled into. #### -Supply Power Maximum difference (between F/SC- V_{CC} and S- V_{CC}) of the voltage is less than 0.3V. #### -Power Supply and Chip Enable of Flash Memory, Smartcombo RAM and SRAM Two or more chips among Flash memory (F_1, F_2) , Smartcombo RAM and SRAM should not be active simultaneously. If the two memories are active together, possibly they may not operate normally by interference noises or data collision on DQ bus. Both $F/SC-V_{CC}$ and $S-V_{CC}$ are needed to be applied by the recommended supply voltage at the same time except Smartcombo RAM sleep mode and/or SRAM data retention mode. ### -Power Up Sequence When turning on Flash memory power supply, keep \overline{RST} low. After F/SC-V_{CC} reaches over 2.7V, keep \overline{RST} low for more than 100 nsec. #### -Device Decoupling This is a 4 chips stacked CSP package. When one of the chips is active, others are in standby mode. Therefor, these power supplies should be designed very carefully. Exclusive power supply pins for each Memory and GND pin need careful decoupling of devices. Especially, note Flash Memory, Smartcombo RAM and SRAM peak current caused by transition of control signals. When one of the Flash Memory is in <u>busy mode</u>, (page buff<u>er</u>) program, block erase and full chip erase command should not be inputted to the other (F_1 -CE, F_2 -CE, SC-CE₁, S-CE₁, CE₂). et4U.com DataSheet4U.com www.DataSheet4U.com #### 11. Flash Memory Data Protection Noises having a level exceeding the limit specified in the specification may be generated under specific operating conditions on some systems. Such noises, when induced onto F-WE signal or power supply, may be interpreted as false commands and causes undesired memory updating. To protect the data stored in the flash memory against unwanted writing, systems operating with the flash memory should have the following write protect designs, as appropriate: - The below describes data protection method. - 1. Protection of data in each block - Any locked block by setting its block lock bit is protected against the data alternation. When WP is low, any lockeddown block by setting its block lock-down bit is protected from lock status changes. By using this function, areas can be defined, for example, program area (locked blocks), and data area (unlocked blocks). - For detailed block locking scheme, see Section 6.2, 7.2 Command Definitions for Flash Memory. - 2. Protection of data with V_{PP} control - When the level of V_{PP} is lower than V_{PPLK} (V_{PP} lockout voltage), write functions to all blocks are disabled. All blocks are locked and the data in the blocks are completely protected. - 3. Protection of data with \overline{RST} - · Especially during power transitions such as power-up and power-down, the flash memory enters reset mode by bringing RST to low, which inhibits write operation to all blocks. - For detailed description on RST control, see Section 6.6.6, 7.6.6 AC Electrical Characteristics for Flash Memory, Reset Operations. DataSheet4U.com \blacksquare Protection against noises on F- $\overline{\text{WE}}$ signal To prevent the recognition of false commands as write commands, system designer should consider the method for reducing noises on F-WE signal. www.DataSheet4U.com DataSheet4U.com #### 12. Design Considerations www.DataSheet4U.com #### 1. Power Supply Decoupling To avoid a bad effect to the system by flash memory, Smartcombo RAM and SRAM power switching characteristics, each device should have a $0.1\mu F$ ceramic capacitor connected between F/SC-V_{CC} and GND, between V_{PP} and GND and between S-V_{CC} and GND. Low inductance capacitors should be placed as close as possible to package leads. ### 2. V_{PP} Trace on Printed Circuit Boards Updating the memory contents
of flash memories that reside in the target system requires that the printed circuit board designer pay attention to the V_{PP} Power Supply trace. Use similar trace widths and layout considerations given to the $F/SC-V_{CC}$ power bus. ### 3. The Inhibition of Overwrite Operation Please do not execute reprograming "0" for the bit which has already been programed "0". Overwrite operation may generate unerasable bit. In case of reprograming "0" to the data which has been programed "1". - •Program "0" for the bit in which you want to change data from "1" to "0". - •Program "1" for the bit which has already been programed "0". For example, changing data from "1011110110111101" to "10101101101111100" requires "1110111111111110" programing. DataSheet4U.com 4. Power Supply Block erase, full chip erase, (page buffer) program with an invalid V_{PP} (See Chapter 6.5, 7.5 DC Electrical Characteristics for Flash Memory) produce spurious results and should not be attempted. Device operations at invalid F/SC-V_{CC} voltage (See Chapter 6.5, 7.5 DC Electrical Characteristics for Flash Memory, 8.2 DC Electrical Characteristics for Smartcombo RAM) produce spurious results and should not be attempted. ### 13. Related Document Information⁽¹⁾ | Document No. | Document Name | |--------------|--| | FUM00701 | LH28F320BF, LH28F640BF, LH28F128BF Series Appendix | #### Note: et4U.com 1. International customers should contact their local SHARP or distribution sales offices. DataSheet4U.com www.DataSheet4U.com ### 14 Package and packing specification ### 1. Storage Conditions. - 1-1. Storage conditions required before opening the dry packing. - Normal temperature : 5~40℃ - · Normal humidity: 80% R.H. max. - 1-2. Storage conditions required after opening the dry packing. In order to prevent moisture absorption after opening, ensure the following storage conditions apply: - (1) Storage conditions for one-time soldering. (Convection reflow*1, IR/Convection reflow.*1) - Temperature : $5\sim25^{\circ}$ C - Humidity: 60% R.H. max. - · Period: 96 hours max. after opening. - (2) Storage conditions for two-time soldering. (Convection reflow^{*1}, IR/Convection reflow.^{*1}) - a. Storage conditions following opening and prior to performing the 1st reflow. - Temperature : $5\sim25^{\circ}$ C - Humidity: 60% R.H. max. - · Period: 96 hours max. after opening. - b. Storage conditions following completion of the 1st reflow and prior to performing the 2nd reflow. - Temperature : 5~25℃ - Humidity: 60% R.H. max. - · Period: 96 hours max. after completion of the 1st reflow. ### 1-3. Temporary storage after opening. To re-store the devices before soldering, do so only once and use a dry box or place desiccant (with a blue humidity indicator) with the devices and perform dry packing again using heat-sealing. The storage period, temperature and humidity must be as follows: - (1) Storage temperature and humidity. - *1: External atmosphere temperature and humidity of the dry packing. - (2) Storage period. - X1+X2: Refer to Section 1-2(1) and (2)a, depending on the mounting method. - · Y : Two weeks max. ^{*1:}Air or nitrogen environment. ### 2. Baking Condition. - (1) Situations requiring baking before mounting. - Storage conditions exceed the limits specified in Section 1-2 or 1-3. - · Humidity indicator in the desiccant was already red (pink) when opened. - (Also for re-opening.) - (2) Recommended baking conditions. - · Baking temperature and period: $$120+10/-0^{\circ}$$ °C for $1\sim3$ hours. - · The above baking conditions apply since the trays are heat-resistant. - (3) Storage after baking. - After baking, store the devices in the environment specified in Section 1-2 and mount immediately. - 3. Surface mount conditions. The following soldering condition are recommended to ensure device quality. - 3-1. Soldering. - (1) Convection reflow or IR/Convection. (one-time soldering or two-time soldering in air or nitrogen environment) - · Temperature and period: Peak temperature of 240°C max., above 230°C for 15 sec. max. Above 200°C for $30\sim50$ sec. Preheat temperature of $140 \sim 160^{\circ}$ C for 90 ± 30 sec. Temperature increase rate of $1\sim3\%/\text{sec}$. - · Measuring point : IC package surface. - Temperature profile : - 4. Condition for removal of residual flax. - (1) Ultrasonic washing power: 25 watts / liter max. - (2) Washing time: Total 1 minute max. - (3) Solvent temperature : 15~40℃ 5. Package outline specification. Refer to the attached drawing. - 6. Markings. - 6-1. Marking details. (The information on the package should be given as follows.) - (1) Product name : LRS1B06 (2) Company name : S (3) Date code 6-2. Marking layout. The layout is shown in the attached drawing. (However, this layout does not specify the size of the marking character and marking position.) LRS1B06 90 マークイメージ図 Marking image 矩形タイプ $Rectangle\ type$ INDEX MARK YYWW XXX **LRS1B06** 7. Packing Specifications (Dry packing for surface mount packages.) 7-1. Packing materials. | Material name | Material specifications | Purpose | |--------------------|--|----------------------------| | Inner carton | Cardboard (2310 devices / inner carton | Packing the devices. | | | max.) | (10 trays / inner carton) | | Tray | Conductive plastic (231 devices / tray) | Securing the devices. | | Upper cover tray | Conductive plastic (1 tray / inner carton) | Securing the devices. | | Laminated aluminum | Aluminum polyethylene | Keeping the devices dry. | | bag | | | | Desiccant | Silica gel | Keeping the devices dry. | | Label | Paper | Indicates part number, | | | | quantity, and packed date. | | PP band | Polypropylene (3 pcs. / inner carton) | Securing the devices. | | Outer carton | Cardboard (9240 devices / outer carton | Outer packing. | | | max.) | | (Devices must be placed on the tray in the same direction.) 7-2. Outline dimension of tray. Refer to the attached drawing. 7-3. Outline dimension of carton. Refer to the attached drawing. - 8. Precautions for use. - (1) Opening must be done on an anti-ESD treated workbench. All workers must also have undergone anti-ESD treatment. - (2) The trays have undergone either conductive or anti-ESD treatment. If another tray is used, make sure it has also undergone conductive or anti-ESD treatment. - (3) The devices should be mounted the devices within one year of the date of delivery. aShe ### LRS1B06 Flash MEMORY ERRATA # 1. AC Characteristics # **PROBLEM** The table below summarizes the AC characteristics. AC Characteristics - Write Operations # $V_{CC} = 2.7 V - 3.1 V$ | Page | Symbol | Parameter | Min. | Max. | Unit | |--------|--|------------------------------|------|------|------| | 22, 43 | t _{AVAV} | Write Cycle Time | 75 | | ns | | 22, 43 | t _{WHWL} (t _{EHEL}) | F-WE (F-CE) Pulse Width High | 25 | | ns | ### **WORKAROUND** System designers should consider these specifications. # **STATUS** This is intended to be fixed in future devices. DataSheet41 et4U.com www.DataSheet4U.com #### A-1 RECOMMENDED OPERATING CONDITIONS ### A-1.1 At Device Power-Up AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly. Figure A-1. AC Timing at Device Power-Up For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "AC Electrical Characteristics for Flash Memory" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page. DataSheet4U.com www.DataSheet4U.com Rev. 1.10 ### A-1.1.1 Rise and Fall Time | Symbol | Parameter | | Min. | Max. | Unit | |-----------------|---------------------------|------|------|-------|------| | t _{VR} | V _{CC} Rise Time | | 0.5 | 30000 | μs/V | | t _R | Input Signal Rise Time | | | 1 | μs/V | | t _F | Input Signal Fall Time | 1, 2 | | 1 | μs/V | ### NOTES: - 1. Sampled, not 100% tested. - 2. This specification is applied for not only the device power-up but also the normal operations. et4U.com DataSheet4U.com www.DataSheet4U.com DataShe #### A-1.2 Glitch Noises Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a). Figure A-2. Waveform for Glitch Noises See the "DC Electrical Characteristics" described in specifications for V_{IH} (Min.) and V_{IL} (Max.). DataSheet4U.com et4U.com www.DataSheet4U.com DataShe # A-2 RELATED DOCUMENT INFORMATION⁽¹⁾ | Document No. | Document Name | |--------------|---| | AP-001-SD-E | Flash Memory Family Software Drivers | | AP-006-PT-E | Data Protection Method of SHARP Flash Memory | | AP-007-SW-E | RP#, V _{PP} Electric Potential Switching Circuit | #### NOTE: 1. International customers should contact their local SHARP or distribution sales office. et4U.com DataSheet4U.com www.DataSheet4U.com DataShe Rev. 1.10 ### A-3 STATUS REGISTER READ OPERATIONS If AC timing for reading the status register described in specifications is not satisfied, a system processor can check the status register bit SR.15 instead of SR.7 to determine when the erase or program operation has been completed. Table A-3-1. Status Register Definition (SR.15 and SR.7) ### $SR.15 = WRITE STATE MACHINE STATUS: (DQ_{15})$ - 1 = Ready in All Partitions - 0 = Busy in Any Partition ### SR.7 = WRITE STATE MACHINE STATUS FOR EACH PARTITION: (DQ₇) - 1 = Ready in the Addressed Partition - 0 = Busy in the Addressed Partition #### NOTES: SR.15 indicates the status of WSM (Write State Machine). If SR.15="0", erase or program operation is in progress in any partition. SR.7 indicates the status of the partition. If
SR.7="0", erase or program operation is in progress in the addressed partition. Even if the SR.7 is "1", the WSM may be occupied by the other partition. Figure A-3-1. Example of Checking the Status Register (In this example, the device contains four partitions.) www.DataSheet4U.com et4U.com ### B-1 POWER UP SEQUENCE OF Smartcombo RAM When turning on Smartcombo RAM power supply, the following sequence is needed. ### B-1.1 Sequence of Smartcombo RAM Power Supply - (1) Supply power. - (2) Keep S-CE₂ low longer than or equal to 50µs. (See NOTES *1) - (3) Keep S- $\overline{\text{CE}}_1$ and S-CE₂ high longer than or equal to 300 μ s. (See NOTES *2) - (4) End of Initialization. By executing above (1) to (4), the initialization of chip inside and the power occurred inside become stable. <Example of the actual connection> #### NOTES: et4U.com - *1) Connect System Reset signal to S-CE₂ and hold S-CE₂ low longer than or equal to 50µs. - *2) By adding "300 μ s Wait Routine" (S- $\overline{\text{CE}}_1$ and S-CE₂ high) in the software, delay the first access to Smartcombo RAM longer than or equal to 300 μ s. DataSheet4U.com www.DataSheet4U.com #### SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage. #### **NORTH AMERICA** www.sharpsma.com SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 #### **TAIWAN** SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328 #### **CHINA** SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 **Head Office:** No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp #### **EUROPE** SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com #### **SINGAPORE** SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855 DataSheet4U.com #### HONG KONG SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk **Shenzhen Representative Office:** Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735 #### **JAPAN** **SHARP Corporation** Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com #### **KOREA** SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819 www.DataSheet4U.com DataSheet4U.com