PREPARED BY: DATE		SPEC No.	LCY-407301A
	MOBILE LIQUID CRYSTAL	FILE No.	6.APR 2007
APPROVED BY: DATE	DISPLAY GROUP II	ISSUE PAGE	32 Pages
· · · · · · · · · · · · · · · · · · ·	SHARP CORPORATION		
		APPLICABLE DI	
			DEPARTMENT III OCRYSTAL DISPLAY GROUP I ATION
	SPECIFICATION	1	
(DEVICE SPECIFICATION for		
	TFT Color LCD Module		
	$(240 \times \text{RGB} \times 320 \text{ dots})$		
	LS020Q3U2	XU3	
CUSTOMER'S APPROVAL	DATE		
]	PRESENTED 7. k	moshita
DATE			to as to prove the second s
	1	Fumio Kinoshita DEPARTMENT GEN	
<u>BY</u>		ENGINEERING DEP MOBILE LIQUID CRY SHARP CORPORATI	STAL DISPLAY GROUP I

DATE PARA	14 17 18~19		light Specification characteristics rature Cycling nical strength	LS020Q3UX03 LCY-407301A CHECK AND APPROVAL
DATE REF. DATE PARA DRAW 6.Apr.2007 Page.8 Page.14 Page.15 Page.15	F.PAGE REVISED AGRAPH NO. VING No. A 3 A 14 A 17 A 18~19 A	SUMMA Changed LED backli Changed optical o Changed Temper Added Mechan	ARY light Specification characteristics rature Cycling nical strength	CHECK AND APPROVAL
DATE PARAM DRAW 6.Apr.2007 Page.8 Page.12 Page.13 Page.13	AGRAPH VING No.	SUMMA Changed LED backli Changed optical o Changed Temper Added Mechan	ARY light Specification characteristics rature Cycling nical strength	AND APPROVAL
6.Apr.2007 Page.8 Page.14 Page.15 Page.15	3 14 17 18∼19	Changed optical of Changed Temper Added Mechani	characteristics rature Cycling nical strength	
			i	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

NOTICE

• These specification sheets are the proprietary product of SHARP CORPORATION ("SHARP) and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

 \circ The application examples in these specification sheets are provided to explain the representative applications of the device and are not intended to guarantee any industrial property right or other rights or license you to use them. SHARP assumes no responsibility for any problems related to any industrial property right of a third party resulting from the use of the device.

 \circ The device listed in these specification sheets was designed and manufactured for use in Telecommunication equipment (terminals)

 \circ In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

• Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

 \circ SHARP assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets.

° Contact and consult with a SHARP sales representative for any questions about this device.

[For handling and system design]

(1) Do not scratch the surface of the polarizer film as it is easily damaged.

(2) If the cleaning of the surface of the LCD panel is necessary, wipe it swiftly with cotton or other soft cloth. Do not use organic solvent as it damages polarizer.

(3) Water droplets on polarizer must be wiped off immediately as they may cause color changes, or other defects if remained for a long time.

(4) Since this LCD panel is made of glass, dropping the module or banging it against hard objects may cause cracks or fragmentation.

(5) Certain materials such as epoxy resin (amine's hardener) or silicone adhesive agent (de-alcohol or de-oxym) emits gas to which polarizer reacts (color change). Check carefully that gas from materials used in system housing or packaging do not hart polarizer.

(6) Liquid crystal material will freeze below specified storage temperature range and it will not get back to normal quality even after temperature comes back within specified temperature range. Liquid crystal material will become isotropic above specified temperature range and may not get back to normal quality. Keep the LCD module always within specified temperature range.

(7) Do not expose LCD module to the direct sunlight or to strong ultraviolet light for long time.

(8) If the LCD driver IC (COG) is exposed to light, normal operation may be impeded. It is necessary to design so that the light is shut off when the LCD module is mounted.

(9) Do not disassemble the LCD module as it may cause permanent damage.

(10) As this LCD module contains components sensitive to electrostatic discharge, be sure to follow the instructions in below.
 ① Operators

Operators must wear anti-static wears to prevent electrostatic charge up to and discharge from human body.

② Equipment and containers Process equipment such as conveyer, soldering iron, working bench and containers may possibly generate electrostatic

charge up and discharge. Equipment must be grounded through 100Mohms resistance. Use ion blower. ③ Floor

Floor is an important part to leak static electricity which is generated from human body or equipment. There is a possibility that the static electricity is charged to them without leakage in case of insulating floor, so the countermeasure(electrostatic earth: $1 \times 10^8 \Omega$) should be made.

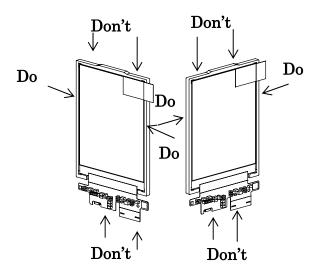
(4)Humidity

Proper humidity of working room may reduce the risk of electrostatic charge up and discharge. Humidity should be kept over 50% all the time.

(5) Transportation/storage

Storage materials must be anti-static to prevent causing electrostatic discharge.

6 Others


Protective film is attached on the surface of LCD panel to prevent scratches or other damages. When removing this protective film, remove it slowly under proper anti-ESD control such as ion blower.

(11) Hold LCD very carefully when placing LCD module into the system housing. Do not apply excessive stress or pressure to LCD module. Do not to use chloroprene rubber as it may affect on the reliability of the electrical interconnection.

(12) Do not hold or touch LCD panel to flex interconnection area as it may be damaged.

(13) As the binding material between LCD panel and flex connector mentioned in 12) contains an organic material, any type of organic solvents are not allowed to be used. Direct contact by fingers is also prohibited.

(14) When carrying the LCD module, place it on the tray to protect from mechanical damage. It is recommended to use the conductive trays to protect the CMOS components from electrostatic discharge. When holding the module, hold the Plastic Frame of LCD module so that the panel, COG and other electric parts are not damaged.

(15) Do not touch the COG's patterning area. Otherwise the circuit may be damaged.

(16) Do not touch LSI chips as it may cause a trouble in the inner lead connection.

(17) Place a protective cover on the LCD module to protect the glass panel from mechanical damages.

(18) LCD panel is susceptible to mechanical stress and even the slightest stress will cause a color change in background. So make sure the LCD panel is placed on flat plane without any continuous twisting, bending or pushing stress.

(19) Protective film is placed onto the surface of LCD panel when it is shipped from factory. Make sure to peel it off before assembling the LCD module into the system. Be very careful not to damage LCD module by electrostatic discharge when peeling off this protective film. Ion blower and ground strap are recommended.

(20) Make sure the mechanical design of the system in which the LCD module will be assembled matches specified viewing

SHARP	SPEC No.	MODEL No.	PAGE
SILARF	LCY-407301A	LS020Q3UX03	3

angle of this LCD module.

(21) This LCD module does not contain nor use any ODS (1,1,1-Trichloroethane, CCL4) in all materials used, in all production processes.

[For operating LCD module]

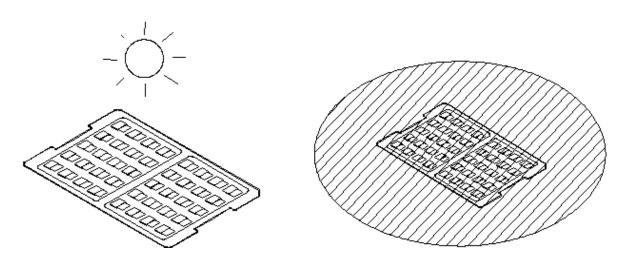
(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) At the shipment, adjust the contrast of each LCD module with electric volume. LCD contrast may vary from panel to panel depending on variation of LCD power voltage from system.

(3) As opt-electrical characteristics of LCD will be changed, dependent on the temperature, the confirmation of display quality and characteristics has to be done after temperature is set at 25 °C and it becomes stable.

[Precautions for Storage]

(1) Do not expose the LCD module to direct sunlight or strong ultraviolet light for long periods. Store in a dark place.


(2) The liquid crystal material will solidify if stored below the rated storage temperature and will become an isotropic liquid if stored above the rated storage temperature, and may not retain its original properties. Only store the module at normal temperature and humidity $(25\pm5^{\circ}C,60\pm10\%RH)$ in order to avoid exposing the front polarizer to chronic humidity. (3) Keeping Method

a. Don't keeping under the direct sunlight.

b. Keeping in the tray under the dark place.

DON'T

DO

(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) Be sure to prevent light striking the chip surface.

[Other Notice]

(1) Do not operate or store the LCD module under outside of specified environmental conditions.

(2) As electrical impedance of power supply lines (VCC2-VSS) are low when LCD module is working, place the de-coupling capacitor near by LCD module as close as possible.

(3) Reset signal must be sent after power on to initialize LSI. LSI does not function properly until initialize it by reset signal.

(4) Generally, at power on, in order not to apply DC charge directly to LCD panel, supply logic voltage first and initialize LSI logic function including polarity alternation. Then supply voltage for LCD bias. At power off, in order not to apply DC charge directly to LCD panel, execute Power OFF sequence and Discharge command.

(5) Don't touch to PWB surface, exposed IC chip, electric parts and other parts, to any electric, metallic materials.

(6) No bromide specific fire-retardant material is used in this module.

(7) Do not display still picture on the display over 2 hours as this will damage the liquid crystal.

[Precautions for Discarding Liquid Crystal Modules]

COG: After removing the LSI from the liquid crystal panel, dispose of it in a similar way to circuit boards from electronic devices.

LCD panel: Dispose of as glass waste. This LCD module contains no harmful substances. The liquid crystal panel contains no dangerous or harmful substances. The liquid crystal panel only contains an extremely small amount of liquid crystal (approx.100mg) and therefore it will not leak even if the panel should break.

-Its median lethal dose (LD50) is greater than 2,000 mg/kg and a mutagenetic (Aims test: negative) material is employed. FPC: Dispose of as similar way to circuit board from electric device.

1. Application

This data sheet is to introduce the specification of LS020Q3UX03 active matrix 262,144color LCD module. Main color LCD module is controlled by Driver IC (JBT6K85).

If any problem occurs concerning the items not stated in this specification, it must be solved sincerely by both parties after deliberation.

As to basic specification of driver IC refer to the IC specification and handbook.

2. Construction and Outline

Construction: LCD panel, Driver (COG), FPC with electric components,

(3) White LED lump, prism sheet, diffuser, light guide and reflector, plastic frame to fix them mechanically. Outline: See page 31

Connection: 35 pins; 0.3mm pitch

There shall be no scratches, stains, chips, distortions and other external drawbacks that may affect the display function.

Rejection criteria shall be noted in Inspection Standard (S-U-056-xx)

In order to realize thin module structure, double-sided adhesive tapes are used to fix LCD panels. As these tapes do not guarantee to permanently fix the panels, LCD panel may rise from the module when shipped from factory. So please make sure to design the system to hold the edges of LCD panel by the soft material such as sponge when LCD module is assembled into the cabinet.

3. Mechanical Specification

		Table 1	
F	Parameter	Specifications	Unit
Outline	dimensions (typ)	37.2 (W) \times 65.10 (H) \times 1.9 (D)	mm
Main LCD	Active area	30.60 (W) × 40.80 (H)	mm
Panel	Viewing area	31.60 (W) × 41.80 (H)	mm
	Display format	240×RGB(W)×320(H)	-
	Dot pitch	0.0425 (W) ×0.1275 (H)	mm
	Base color *1	Normally Black	-
	Mass	Approx 5.6	g

*1 Due to the characteristics of the LC material, the colors vary with environmental temperature.

SHARP	SPEC No. LCY-407301A	MODEL No. LS020Q3UX03	PAGE 6
-------	-------------------------	--------------------------	--------

4. Absolute Maximum Ratings

(4-1) Electrical absolute maximum ratings

		Table 2			Ta=25 °C
Parameter	Symbol	Min	Max	Unit	Remark
Supply voltage	VCC1-GND	-0.3	4.6	V	
	VCC2-GND	-0.3	4.6	V	
Input Voltage	V _{IN}	-0.3	VCC1+0.3	V	*1

*1 Input terminal of logic system. : Voltage value is based on GND = 0V.

Environment Conditions

		Tab	<u>le 3</u>		
Item	То	р	Ts	stg	Remark
	MIN.	MAX.	MIN.	MAX.	
Ambient temperature	-10 °C	+60°C	-20 °C	+70°C	Note 2)
Humidity	Note	e 1)	Not	e 1)	No condensation

Note1) Ta \leq 40 °C......95 % RH Max

Note2) Ta > 40 °C......Absolute humidity shall be less than Ta=40 °C /95 % RH.

As opt-electrical characteristics of LCD will be changed, dependent on the temperature, the confirmation of display quality and characteristics has to be done after temperature is set at 25 °C and it becomes stable. Be sure not to exceed the rated voltage, otherwise a malfunction may occur.

5. Electrical Specifications

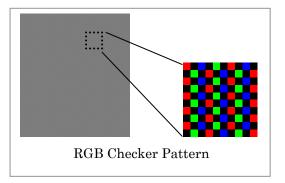
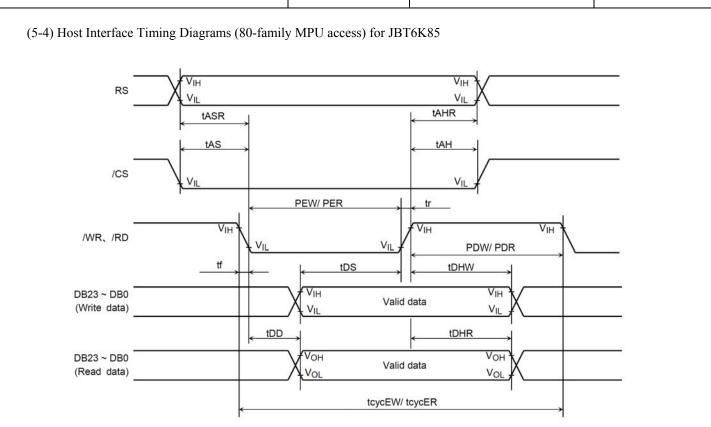

(5-1) Electrical characteristics for main LCD

		Table 4				Ta=25	°C, GND=0V
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Applicable Pin
Supply voltage	VCC1- VSS	Ta=-10 ~ 60 °C	1.65	2.60	3.60	V	(note 1)
Supply voltage	VCC2- VSS	Ta=-10∼60 °C	2.70	2.80	2.90	V	(note 1)
"H" level input voltage	V _{IH1}	Ta=-10 ∼ 60 °C	0.7 V _{CC1}	-	-	V	(note 2)
"L" level input voltage	V _{IL1}	1a-10.00 C	-	-	0.3 V _{CC1}	V	(note 2)
Input leakage current	I _{LI1}	Ta=-10 ~ 60 °C	-10	-	10	μA	(note 2)
Output leakage current	I _{LO}	V _{IN} = GND or VCC1	-10	-	10	μA	(note 3)
"H" level output voltage	V _{OH1}	Ta=-10 ~ 60 °C	0.8 V _{CC1}	-	-	V	(
"L" level output voltage	V _{OL1}	I_{OH1} =-1 mA , I_{OL1} = 1 mA	-	-	0.2 V _{CC1}	V	(note 4)
Current consumption	I _{cc2}	Ta=25 °C	-	6.3	9.0	mA	(note 5)

(note 1) The condition VCC1 \leq VCC2 must be met

- (note 2) Input mode of D0 \sim D15pins, A0, RD, WR, CS, RESET
- (note 3) Output mode of $D0 \sim D15 pins$.
- (note 4) Output mode of $D0 \sim D15$ pins.
- (note 5) Following Conditions
 - Ta=25°C, frame frequency=65Hz

Display Pattern: RGB Checker Pattern. No Host CPU access.


HAR					2	SPEC No.		MOD	EL No.		PAGE
						LCY-407	301A]	LS020Q	3UX03	8
(5-2) LED ba	ck light	Δ									
(1) At main p	banel the	back light	uses 3	Bpcs ec	lge lig	ght type whi	te LED.				
1		e		1	0 0	<u>Table</u>					
Parameter	r (Conditions		Symbo	ol	Min.	Тур	n	Max.	Unit	Remark
Forward curr		Ta=25 °C		I _{LED}	01	-	20 *		-	mA	VLED-
1 of ward curr	iont	14 25 0		1 LED			20	1	-	mzx	LED Cathode1~3
LED lamp: GI	M4BW63	374A (SHA	RP C	orpora	tion)	L	•				29°C 85°C
- ([I	Juminous	s Intensity	rank]:	E2, F	1 or F	2 [Color rar	nk]: b54 c	or b56	or b83)	⊋ ⁵⁰	
*1 per one pie		-	-			-	-			Ē 40	
*Please consid			ard C	urrent	on us	ed temperat	ure			tig 30	
						rward Curre)		D 20	
3-1. Absolute maximu						,				0 Forward Current IF (mA)	
	an raungs		(1	[a=25℃	<u>) (*3)</u>						
Parameter	Symbol	Ratir		Unit		· · ·				-30 (0 30 60 90 120
	P	130		mW				an an taon Na s			Surface Temperarure Ta(°C)
Power dissipation Continuous forward current	-	35		mA			Luminon	s intensity	rank table (*1)		•
Peak forward current(*1)		80		mA			Rank		inous Intensit	y Unit	
Derating factor	DC Pulse	-0.5		mA/°			E1 E2	1440 1580		580 720	
								1720			
Reverse voltage		-1.0		V	<u> </u>		F1	1120		80 m.cd	
Operating temperature(*3)	V _R) Topr	5 -30 to	+85	v °C			F2	1880	~ 20	050	(I _F =20mA, Ta=25
Derating temperature(*3) Storage temperature Soldering temperature (*2) (*1) Duty ratio = 1/10, (*2) For reflow solderi	$\begin{array}{c} V_{R} \\ \hline T_{stg} \\ \hline T_{sol} \\ \hline Pulse width \\ ng (Max. 10) \end{array}$	5 -30 to -40 to + 260 to + 260 to + 300 to + 3000 to + 300 to + 300 to + 300 to + 300 to + 30	+85 +100)	V °C °C			F2 G1 (*1) The	1880 2050 e quantity-	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	240	(measurement accuracy : ±10%)
Deperating temperature(*3) Storage temperature Soldering temperature (*2) (*1) Duty ratio = 1/10, (*2) For reflow solderin Refer to "7-2. Sold	$\begin{array}{c} V_{R} \\ \hline Topr \\ T_{stg} \\ \hline T_{sol} \\ \end{array}$ Pulse width ng (Max. 10: dering" for t	5 -30 to -40 to + 260 a = 0.1ms s) he condition in	+85 +100)	V °C °C °C		e when the devia	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Deperating temperature(*3) Storage temperature Soldering temperature (*2) (*1) Duty ratio = 1/10, (*2) For reflow solderin Refer to "7-2. Sold (*3) Ta and Topr mean	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10 dering" for the	5 -30 to -40 to + 260 a = 0.1ms s) he condition in	+85 +100)	V °C °C °C			F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Deperating temperature(*3) Storage temperature Soldering temperature (*2) (*1) Duty ratio = 1/10, (*2) For reflow solderin Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10 dering" for the	5 -30 to -40 to + 260 a = 0.1ms s) he condition in	+85 +100)	V °C °C °C		e when the devia (Ta=25°C) Unit	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Deperating temperature(*3) Storage temperature Soldering temperature (*2) (*1) Duty ratio = 1/10, (*2) For reflow solderin Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace	$\begin{array}{c} V_{R} \\ \hline T_{stg} \\ T_{sol} \\ \hline Pulse width \\ ng (Max.10) \\ lering" for the atmosphere \\ cteristics \\ \hline \end{array}$	5 -30 to -40 to 4 260 a = 0.1ms s) he condition in ic temperature	+85 +100) the han near sur	V °C °C °C °C d solder.	he devic	(Ta=25℃)	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Deperating temperature(*3) Storage temperature Soldering temperature (*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10) dering" for ti n atmospher cteristics Symbol	5 -30 to -40 to 4 260 a = 0.1ms s) he condition in ic temperature	+85 +100) the han near sur	V °C °C °C d solder. face of th TYP.	he devic MAX.	(Ta=25°C) Unit	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charactor Parameter Forward Voltage	$\begin{array}{c c} V_{R} \\ \hline V_{R} \\ \hline T_{stg} \\ \hline T_{sol} \\ \hline Pulse width \\ ng (Max.10) \\ lering" for the atmosphere \\ cteristics \\ \hline Symbol \\ \hline V_{F} \\ \hline I_{V} \\ \hline x \\ \end{array}$	5 -30 to -40 to 4 260 a = 0.1ms s) he condition in ic temperature Condition	+85 +100) the han near sur MIN.	V °C °C °C °C °C d solder. face of tl TYP. 3.2 (1800) 0.30	MAX. 3.7 2240	(Ta=25°C) Unit V	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter Forward Voltage minous intensity(*4) Chromaticity(*5)	V _R Topr Tsig Tsol Pulse width ng (Max.10) dering" for th atmospher cteristics Symbol V _F I _V x y	5 -30 to -40 to 4 260 a = 0.1ms s) he condition in ic temperature Condition	+85 +100) the han near sur MIN. - 1440	v °C °C °C °C °C °C °C °C °C °C °C °C °C	MAX. 3.7 2240	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Deperating temperature(*3) Storage temperature Soldering temperature (*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical character Parameter Forward Voltage minous intensity(*4)	$\begin{array}{c c} V_{R} \\ \hline V_{R} \\ \hline T_{stg} \\ \hline T_{sol} \\ \hline Pulse width \\ ng (Max.10) \\ lering" for the atmosphere \\ cteristics \\ \hline Symbol \\ \hline V_{F} \\ \hline I_{V} \\ \hline x \\ \end{array}$	5 -30 to -40 to 4 260 a = 0.1ms s) he condition in ic temperature Condition	+85 +100) the han near sur MIN. - 1440	V °C °C °C °C °C d solder. face of tl TYP. 3.2 (1800) 0.30	MAX. 3.7 2240	(Ta=25°C) Unit V	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow solderin Refer to "7-2.Sold (*3) Ta and Topr mear Electro-optical charace Parameter *orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G	$\begin{array}{c c} V_R \\ \hline V_R \\ Topr \\ T_{stg} \\ T_{sol} \\ \hline \\ Pulse width \\ ng (Max.10) \\ dering" for ti \\ n atmosphere \\ cteristics \\ \hline \\ Symbol \\ \hline \\ V_F \\ \hline \\ I_V \\ \hline \\ I_V \\ \hline \\ \\ x \\ y \\ \hline \\ I_R \\ \hline \\ \\ MODEL556 \\ \hline \end{array}$	$\frac{5}{-30 \text{ to}}$ $\frac{-40 \text{ to}}{40 \text{ to}}$ $\frac{260}{1000}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F = 20 \text{ mA}$ $V_R = 4V$ $D(\text{Radiometer/F})$	+85 +100) the han near sur MIN. - 1440 - -	V °C °C °C °C °C d solder. face of tl TYP. 3.2 (1800) 0.30 0.29 -	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow solderin Refer to "7-2.Sold (*3) Ta and Topr mear Electro-optical charace Parameter *orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed)	V _R Topr Tsig Tsol Pulse width ng (Max.10) dering" for the n atmosphere cteristics Symbol V _F I _V x y I _R MODEL556 ent accuracy	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{-40 \text{ to}}{260}$ $t = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $D(\text{Radiometer/}F_7 : \pm 10\%)$	+85 +100) the han near sur MIN. - 1440 - - - Photome	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{-40 \text{ to}}{260}$ $t = 0.1 \text{ms}$ s) he condition in ic temperature $\frac{1}{\text{Condition}}$ $I_F = 20 \text{ mA}$ $V_R = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{-40 \text{ to}}{260}$ $t = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $D(\text{Radiometer/}F_7 : \pm 10\%)$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{-40 \text{ to}}{260}$ $t = 0.1 \text{ms}$ s) he condition in ic temperature $\frac{1}{\text{Condition}}$ $I_F = 20 \text{ mA}$ $V_R = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{-40 \text{ to}}{260}$ $t = 0.1 \text{ms}$ s) he condition in ic temperature $\frac{1}{\text{Condition}}$ $I_F = 20 \text{ mA}$ $V_R = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{-40 \text{ to}}{260}$ $t = 0.1 \text{ms}$ s) he condition in ic temperature $\frac{1}{\text{Condition}}$ $I_F = 20 \text{ mA}$ $V_R = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{-40 \text{ to}}{260}$ $t = 0.1 \text{ms}$ s) he condition in ic temperature $\frac{1}{\text{Condition}}$ $I_F = 20 \text{ mA}$ $V_R = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$ $\frac{1}{V_R} = 4V$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{1}{260}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $0(\text{Radiometer/H})$ $r = \pm 10\%$ S MODEL MCC $r = x, y: \pm 0.01$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	$\frac{\sim}{\sim}$ 20 \sim 22 ratio of the ranks	250 240 are decided by Sharp.	(measurement accuracy : ±10%)
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{1}{260}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $0(\text{Radiometer/H})$ $r = \pm 10\%$ S MODEL MCC $r = x, y: \pm 0.01$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity e delivery ; perate.	~ 20 ~ 22 ratio of the ranks ratio of each rank	240 are decided by Sharp. isn't decided to be as	(measurement accuracy : ±10%, ked to it. (IF=20mA, Ta:
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{1}{260}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $0(\text{Radiometer/H})$ $r = \pm 10\%$ S MODEL MCC $r = x, y: \pm 0.01$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) The Th	1880 2050 e quantity- ne delivery	~ 20 ~ 22 ratio of the ranks ratio of each rank	250 240 are decided by Sharp.	(measurement accuracy : ±10%, ked to it. (IF=20mA, Ta: Point 3 Point 4
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{1}{260}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $0(\text{Radiometer/H})$ $r = \pm 10\%$ S MODEL MCC $r = x, y: \pm 0.01$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	rank	Point 1 x	~ 20 ~ 22 ratio of the ranks ratio of each rank $\frac{y}{2}$	20int 2 2 0, 302	(IF=20mA, Ta: (IF=20mA, Ta: Point 3 Point 4 x y x 308 0, 308 0, 311 0
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{1}{260}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $0(\text{Radiometer/H})$ $r = \pm 10\%$ S MODEL MCC $r = x, y: \pm 0.01$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) Th Th ce does not of Image: Comparison of the second se	1880 2050 e quantity e delivery p perate. perate.	~ 20 ~ 22 ratio of the ranks ratio of each rank $\frac{1}{y}$ x 0.288 0.30 0.283 0.30	240 are decided by Sharp. isn't decided to be asl "oint 2 2 0.302 0.32 0.3 6 0.288 0.3	(IF=20mA, Ta: IF=20mA, Ta: Point 3 y 308 0,308 0,298
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{1}{260}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $0(\text{Radiometer/H})$ $r = \pm 10\%$ S MODEL MCC $r = x, y: \pm 0.01$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) Th Th ce does not of Image: Comparison of the second se	1880 2050 e quantity e delivery p perate. perate.	~ 20 ~ 22 ratio of the ranks ratio of each rank $\frac{y}{2}$	240 are decided by Sharp. isn't decided to be asl "oint 2 2 0.302 0.32 0.3 6 0.288 0.3	(IF=20mA, Tar IF=20mA, Tar Point 3 y (IF=20mA, Tar 308 0,308 0,302 0,298
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{1}{260}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $0(\text{Radiometer/H})$ $r = \pm 10\%$ SMODEL MCC $r = x, y: \pm 0.01$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) Th Th ce does not of Image: Comparison of the second se	1880 2050 e quantity e delivery p perate. perate.	~ 20 ~ 22 ratio of the ranks ratio of each rank $\frac{1}{y}$ x 0.288 0.30 0.283 0.30	240 are decided by Sharp. isn't decided to be asl "oint 2 2 0.302 0.32 0.3 6 0.288 0.3	(IF=20mA, Ta: IF=20mA, Ta: Point 3 y 308 0,308 0,298
Operating temperature(*3) Storage temperature Soldering temperature(*2) (*1) Duty ratio = 1/10, (*2) For reflow soldering Refer to "7-2. Sold (*3) Ta and Topr mean Electro-optical charace Parameter 'orward Voltage minous intensity(*4) Chromaticity(*5) Reverse Current) Measured by EG&G (Measuremed) Measured by Ohtsuka	V _R Topr T _{stg} T _{sol} Pulse width ng (Max.10: dering" for ti n atmospher cteristics Symbol V _F Iv x y I _R MODEL556 ent accuracy a electronics	$\frac{5}{-30 \text{ to}}$ $\frac{-30 \text{ to}}{-40 \text{ to}}$ $\frac{1}{260}$ $r = 0.1 \text{ms}$ s) he condition in ic temperature Condition $I_F=20 \text{ mA}$ $V_R=4V$ $0(\text{Radiometer/H})$ $r = \pm 10\%$ SMODEL MCC $r = x, y: \pm 0.01$	+85 +100) the han near sur MIN. - 1440 - - - Photome PD-2000	V °C °C °C °C °C oc °C dsolder. face of the second	he devic MAX. 3.7 2240 - 50	(Ta=25°C) Unit V mcd	F2 G1 (*1) Th Th ce does not of Image: Comparison of the second se	1880 2050 e quantity e delivery p perate. perate.	~ 20 ~ 22 ratio of the ranks ratio of each rank $\frac{1}{y}$ x 0.288 0.30 0.283 0.30	240 are decided by Sharp. isn't decided to be asl "oint 2 2 0.302 0.32 0.3 6 0.288 0.3	(IF=20mA, Ta: IF=20mA, Ta: Point 3 y 308 0,308 0,298

		<u>Table 6</u>		
Pin No	Symbol	Description	I/O	Remarks
1	VLED	LED1~3 Anode Common	-	
2	LED Cathode1	LED1 Cathode	-	
3	LED Cathode2	LED2 Cathode	-	
4	LED Cathode3	LED3 Cathode	-	
5	VCC2	Power Supply (LCD Driver) for Analog	-	
6	VCC1	Power Supply (LCD Driver) for I/O	-	
7	ID	Vendor Identify	-	Connected to VCC1
8	D15	Data Bus	I/O	
9	D14	Data Bus	I/O	
10	D13	Data Bus	I/O	
11	D12	Data Bus	I/O	
12	D11	Data Bus	I/O	
13	D10	Data Bus	I/O	
14	D9	Data Bus	I/O	
15	D8	Data Bus	I/O	
16	D7	Data Bus	I/O	
17	D6	Data Bus	I/O	
18	D5	Data Bus	I/O	
19	D4	Data Bus	I/O	
20	D3	Data Bus	I/O	
21	D2	Data Bus	I/O	
22	D1	Data Bus	I/O	
23	D0	Data Bus	I/O	
24	GND	GND level pin	-	
25	GND	GND level pin	-	
26	RD	Read enable	Ι	Low enable
27	WR	Write enable	Ι	Low enable
28	A0	Data / Command selectable	Ι	Low: command High: display data / parameter
29	CS	Chip Select	Ι	Low enable
30	VNSCO	Tearing Effect Output	0	
31	IF2	Bus Width Setting	Ι	Refer to Circuit Diagram
32	IF1	Bus Width Setting	Ι	Refer to Circuit Diagram
33	RESET	Reset enable	Ι	Low enable
34	GND	Ground Level Pin		
35	GND	Ground Level Pin		

Corresponded connector : 0.3mm pitch, ZIF Connector (OMRON XF2B-3545-31A)

Signals connect to LCD module. Symbols correspond able to Circuit diagram in Page 30.

Note17: The following load is connected when measuring the data delay (tDD) and data hold time (tDHR)

∔ 50 pF

∲ GND

DB23~DB0

(*) including tool and probe capacitance.

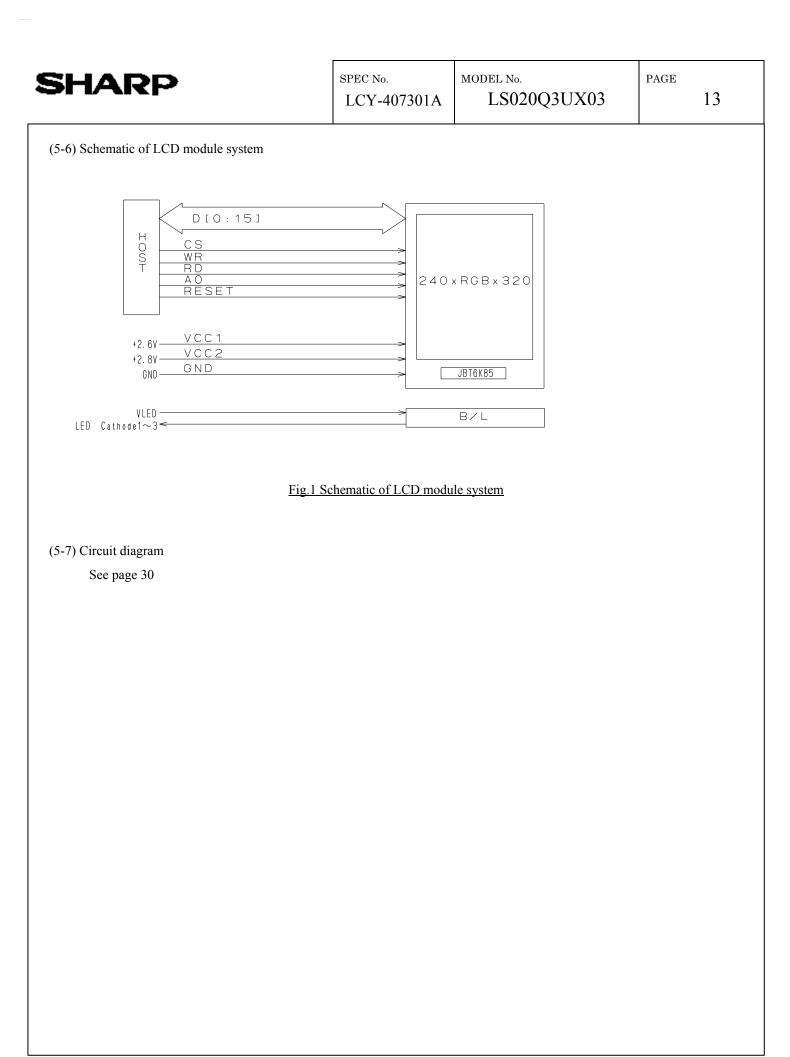
Characteristics		Symbol	Test Circuit Test Condition	Min	Typ.	Max	Uni
Enable cycle time	On write	tcycEW		120	-	-	ns
	On read	tcycER	_	800	_	_	ns
Enable pulse width (Enable time)	On write	PEW		25	—	-	ns
	On read	PER	_	620	-	-	ns
Enable pulse width (Disable time)	On write	PDW		55		2	ns
	On read	PDR	_	170	-	-	ns
Input signal rising/falling ti	me			—	—	20	ns
Address setup time (/CS signal)			—	-4	-	-	ns
Address setup time (RS, F	R/*W signal)			-4	-	-	ns
Address hold time (/CS sig	gnal)			15	—	-	ns
Address hold time (RS, R/	*W signal)		<u></u> 1	15	_	_	ns
Write data setup time				18	—	-	ns
Write data hold time			_	18	-	_	ns
Data delay			Note17	-	-	600	ns
Read data hold time			Note17	5	_	_	ns

Note : tDD and tDHR are measured with the load as shown in the figure.

Condition : High speed Write Mode, VDDIO= $1.65 \sim 2.4$ V, Ta = 25°C

Characteris	tics	Symbol	Test Circuit Test Condition	Min	Тур.	Max	Unit
Enable cycle time	On write	tcycEW	-	60	· — ·	Ι	ns
	On read	tcycER	—	800	-	-	ns
Enable pulse width	On write	PEW	-	20		-	ns
(Enable time)	On read	PER	—	620	-	-	ns
Enable pulse width	On write	PDW	—	20	-	-	ns
(Disable time)	On read	PDR	_	170	a <u>—</u> 1	_	ns
Input signal rising/falling ti	Input signal rising/falling time		-	_	—	20	ns
Address setup time (/CS s	signal)	tAS	—	-4	_	_	ns
Address setup time (RS, I	R/*W signal)	tASR	-	-4	. —.:	<u>.</u>	ns
Address hold time (/CS si	gnal)	tAH	-	15	-	—	ns
Address hold time (RS, R	/*W signal)	tAHR	—	15	-		ns
Write data setup time		tDS	-	18	1	_	ns
Write data hold time		tDHW		18	8. — .0		ns
Data delay		tDD	Note17	-		600	ns
Read data hold time		tDHR	Note17	5	<u> </u>	-	ns

Note : tDD and tDHR are measured with the load as shown in the figure.


Characteris	tics	Symbol	Test Circuit Test Condition	Min	Тур.	Max	Unit
Enable cycle time	On write	tcycEW	-	100		—	ns
	On read	tcycER	—	500	-	-	ns
Enable pulse width (Enable time)	On write	PEW	_	20	1	-	ns
	On read	PER	—	320		3 -	ns
Enable pulse width (Disable time)	On write	PDW	_	40			ns
	On read	PDR	_	170			ns
Input signal rising/falling time		tEr, tEf	_	_	_	20	ns
Address setup time (/CS s	ignal)	tAS	—	-1		-	ns
Address setup time (RS, F	R/*W signal)	tASR	_	-1	—	—	ns
Address hold time (/CS sig	gnal)	tAH	—	15	-		ns
Address hold time (RS, R/	*W signal)	tAHR	_	15	s <u>—</u> s		ns
Write data setup time		tDS	—	18			ns
Write data hold time		tDHW	—	18	-	_	ns
Data delay		tDD	Note17	3 		300	ns
Read data hold time		tDHR	Note17	5	0 — 0		ns

Note : tDD and tDHR are measured with the load as shown in the figure.

Condition : High speed Write Mode, VDDIO= $2.4 \sim 3.6$ V, Ta = 25°C

Characteristics		Symbol	Test Circuit Test Condition	Min	Тур.	Max	Unit
Enable cycle time	On write	tcycEW		50	—	-	ns
	On read	tcycER	-	500	-	-	ns
Enable pulse width	On write	PEW	<u> </u>	20	-	—	ns
(Enable time)	On read	PER	—	320		—	ns
Enable pulse width	On write	PDW	_	20		—	ns
(Disable time)	On read	PDR	_	170	-		ns
Input signal rising/falling ti	me	tEr, tEf	_	-	-	20	ns
Address setup time (/CS s	Address setup time (/CS signal)		_	-1	-	-	ns
Address setup time (RS, F	R/*W signal)	tASR	-	-1	-	-	ns
Address hold time (/CS sig	gnal)	tAH		15			ns
Address hold time (RS, R/	*W signal)	tAHR	—	15			ns
Write data setup time	Write data setup time		-	18	-	_	ns
Write data hold time		tDHW	—	18	—	—	ns
Data delay		tDD	Note17	-	-	300	ns
Read data hold time		tDHR	Note17	5	_	<u> </u>	ns

Note: tDD and tDHR are measured with the load as shown in the figure.

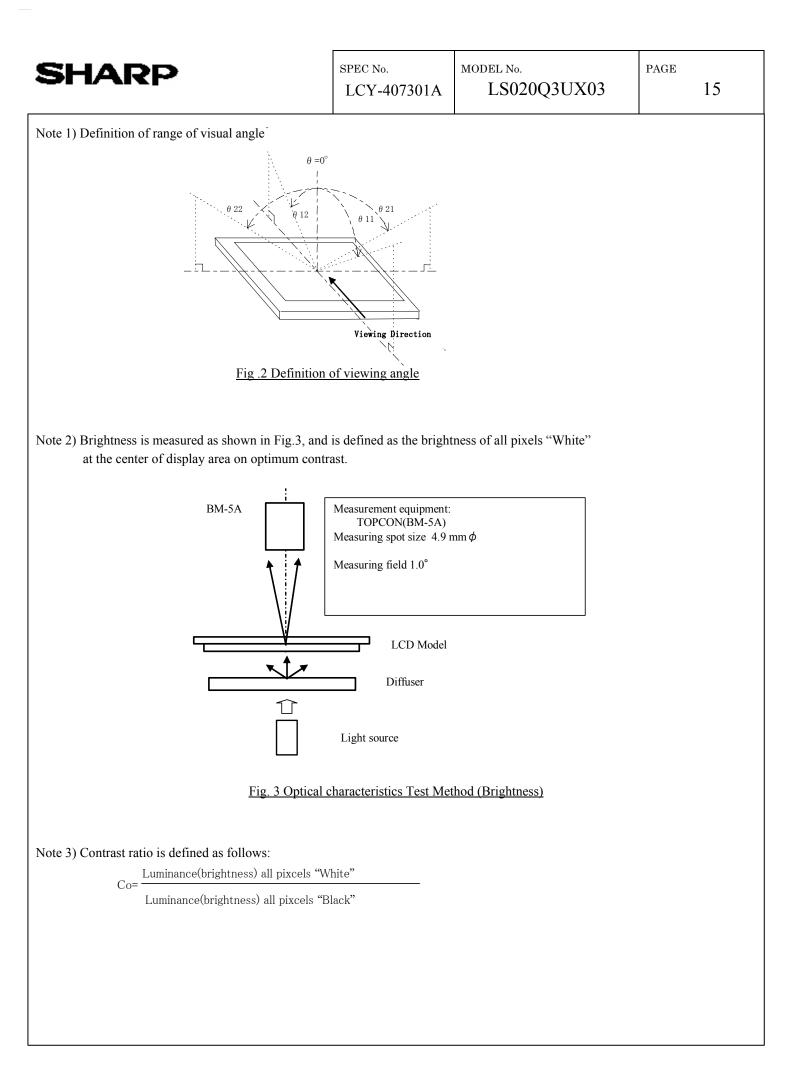
6. Optical Characteristics Δ

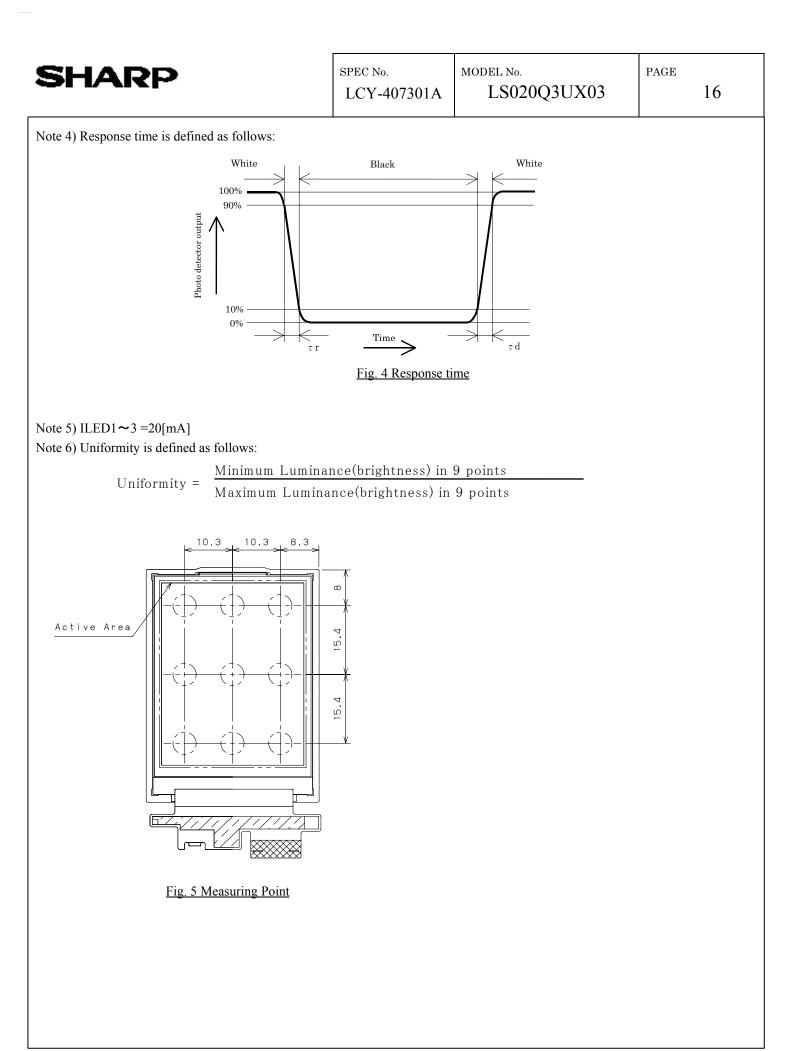
Table 7

VCC1=2.6V, VCC2=2.8V,Ta = 25°C

Parameter		symbol	conditio	MIN	ТҮР	MAX	unit	Remark
Brightness		Br	$\theta = 0^{\circ}$	220	320	-	cd/m²	Note1,2,5
Contrast		Со	$\theta = 0^{\circ}$	300	500	-		Note1,3
Viewing Ang	le	θ11	Co > 5	70	80	_	deg	Note1
		θ12		70	80			
		θ21	_	70	80	-		
		θ22		70	80	-		
Response	Rise	τrl	$\theta = 0^{\circ}$	-	11	22	ms	Note1,4
Time	Decay	τ d1		-	24	48	ms	
White chromaticity		x	$\theta = 0^{\circ}$	0.245	0.295	0.345		Note.1,3
		v		0.26	0.31	0.36		_
Red chromati	city	x	$\theta = 0^{\circ}$	0.60	0.65	0.70		_
		v		0.29	0.34	0.39		_
Green chrom	aticity	x	$\theta = 0^{\circ}$	0.27	0.32	0.37		_
		y		0.58	0.63	0.68		_
Blue chromat	ticity	x	$\theta = 0^{\circ}$	0.09	0.14	0.19		_
		y		0.01	0.05	0.10		
Uniformity		-	$\theta = 0^{\circ}$	70			%	Note.6
NTSC ratio		-	$\theta = 0^{\circ}$	60	70	-	%	
Color Tempe	rature	-	$\theta = 0^{\circ}$	6000	7900	10000	К	
Flicker ratio		_	*1	-	-	7	%	

*1: Measuring condition


• Measuring systems: YOKOGAWA 3298_01 + 3298_11


• Temperature = $25^{\circ}C(\pm 3^{\circ}C)$, Frame Frequency = 65Hz (-0/+5Hz), LED back-light: ON, Environment brightness < 150 lx

·Measuring pattern : Horizontal stripe pattern <black (V0) / gray(V32) / black (V0) /gray (V32) ···>

·Measured sample : New sample before a long term aging.

· Flicker ratio is very sensitive to measuring condition.

7. Reliability Δ

<u>Table. 8</u>								
No.	Test	Condition	Judgment criteria					
1	Temperature Cycling	$-30^{\circ}C \rightarrow 80^{\circ}C \rightarrow -30^{\circ}C \cdots$	Per table in below					
		60min 60min 60min 12cycle						
2	High Temp. Storage	Ta=80°C 96h	Per table in below					
3	Low Temp. Storage	Ta=-30°C 96h	Per table in below					
4	Humidity Operation	Ta=60°C 90%RH,White pattern 96h	Per table in below					
			(polarizer discoloration is					
			excluded)					
5	High Temp. Operation	Ta=70°C,White pattern 96h	Per table in below					
6	Low Temp. Operation	Ta=-20°C,White pattern 96h	Per table in below					
7	Temp. Drift	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Per table in below					
		65%RH(Over 10°C), 0%RH(Under 0°C)						
8	ESD	Discharge resistance: 0 Ω	Per table in below					
		Discharge capacitor: 200 pF						
		Discharge voltage: ±200 V Max						
		Discharge 1 time to each input line						
		X Vss of display module is connected						
		GND of test system ground.						

INSPECTION	CRITERION(after test)
Appearance	No Crack on the FPC, on the LCD Panel
Alignment of LCD Panel	No Bubbles in the LCD Panel
	No other Defects of Alignment in Active area
Electrical current	Within device specifications
Function / Display	No Broken Circuit, No Short Circuit or No Black line
	No Other Defects of Display

Pushing Bar

Fig. 6 3Point Bending Test

LCD Module

18

8. Mechanical strength($\bigstar 1, \bigstar 2, \bigstar 3$) \triangle

<u>Table. 9</u>								
Mechanical strength	MIN	TYP	MAX	Unit	Remark			
3 Point Bending	3.5		_	Kgf	Note.1)			
COG Constant Pushing	2.0		_	Kgf	Note.2)			

XTesting condition

- •Testing systems: TMD-1kN (MINEBA Co., Ltd.)
- Temperature = $25^{\circ}C(\pm 3^{\circ}C)$
- ·Non operation
- •Measured sample : New sample before a long term aging.
- ★ 1. Mechanical Strength specification shall be out of LG Electronics 's incoming inspection standard and not applicable to AQL.
- ★ 2. Above specification are meaning of the typical lowest values gotten from actual measurement at sampling test.
- \star 3. If there are a lot of samples which doesn't meet the specifications in the standard sampling test ,

Sharp & LG have discussions how to proceed in each case.

Note.1) 3 Point Bending Test is measured as follows

The strength of 3 Point Bending is defined as the load of Pushing Bar at when LCD glass is broken.

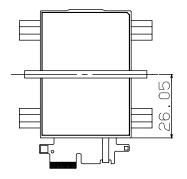
(Test condition)

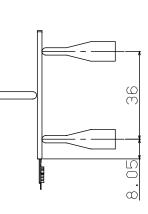
Pushing Bar:

Tip shape: Φ 3mm (round shape)

Sweep Speed: 3mm/min

Material: Aluminum or Steel


Position: Fig. 7


Supporter

Tip shape: Φ 3mm(round shape)

Pitch:36mm

Material: Aluminum or Steel

Supporter

Fig. 7 Test Position

SHARP	SPEC No. LCY-407301A	MODEL No. LS020Q3UX03	PAGE 19					
Note.2) COG Constant Pushing Test is measured as follows The strength of COG Constant Pushing is defined as								

the load of Pushing Rod at when LCD glass or driver IC is broken.

(Test condition)

Pushing Rod:

 $Tip \; diameter \colon \Phi \, 3mm (flat \; shape)$

Sweep Speed:3mm/min

Material: Aluminum or Steel

Position: Fig. 9

Supporter

Tip shape: $\Phi 3mm$

Pitch: 36mm

Material: Aluminum or Steel

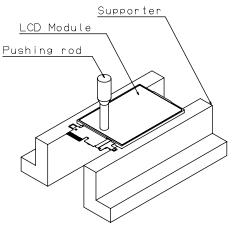
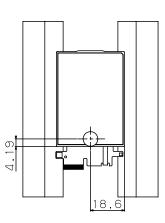



Fig. 8 COG Constant Pushing Test

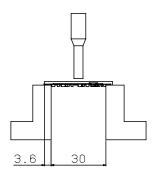


Fig. 9 Test Position

SHARP	SPEC No.	MODEL No.	PAGE
	LCY-407301A	LS020Q3UX03	20

9. Packaging specifications

- (9-1) Details of packaging
 - 1) Packaging materials: Table.11
 - 2) Packaging style : Fig. 10, 11

(9-2) Reliability

1) Vibration test

Table.10	

Item		Test			
Frequency	5 Hz to 50 Hz (3 minutes cycle)				
Direction	Up-Down, Left-Right, Front-Back (3 directions)				
Period	Up-Down Left-Right Front-Back Total				
	60min	15min	15min	90min	

The frequency should start at 5 Hz and vary continuously.

Total amplitude	20mm	0.2mm	20mm	0.2mm	
Frequency	$5~\mathrm{Hz}$	$50~\mathrm{Hz}$	$5~\mathrm{Hz}$	$50~\mathrm{Hz}$	(For 9.8m/s ²)
	•	0	•		
	-	3 minutes			

2) Drop test

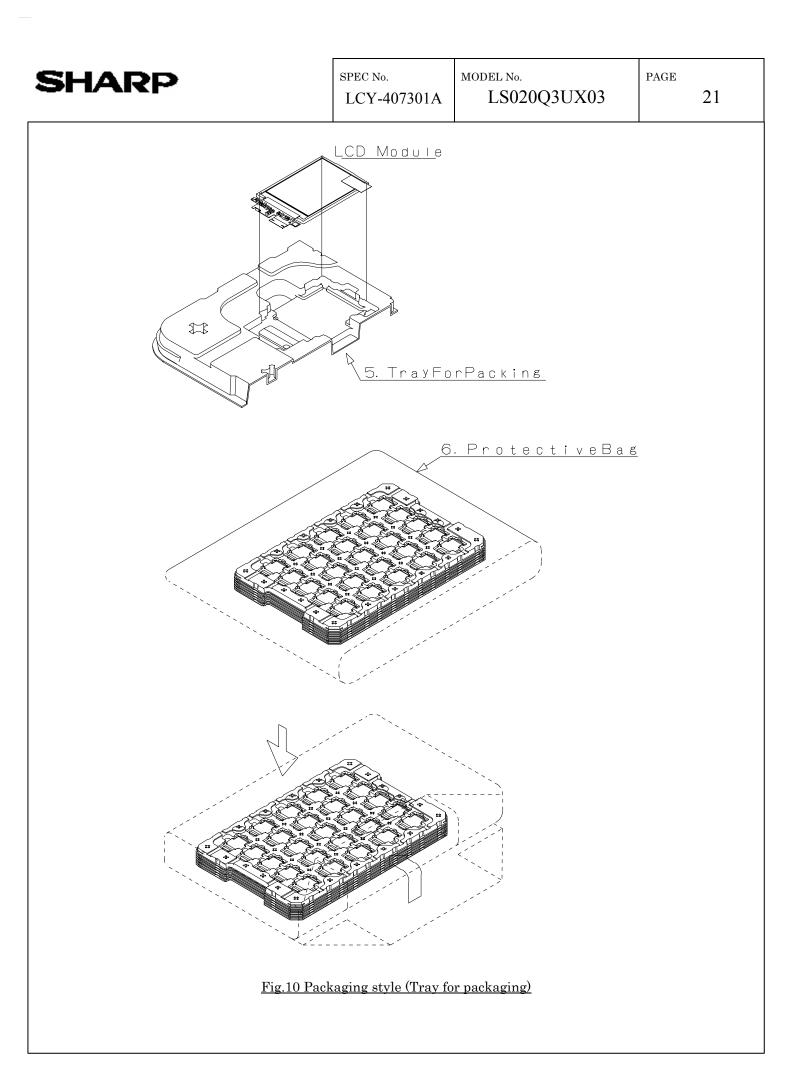
Drop height: 750mm Number of drop: 10 times (Drop sequence: 1 corner, 3 edges, 6 faces)

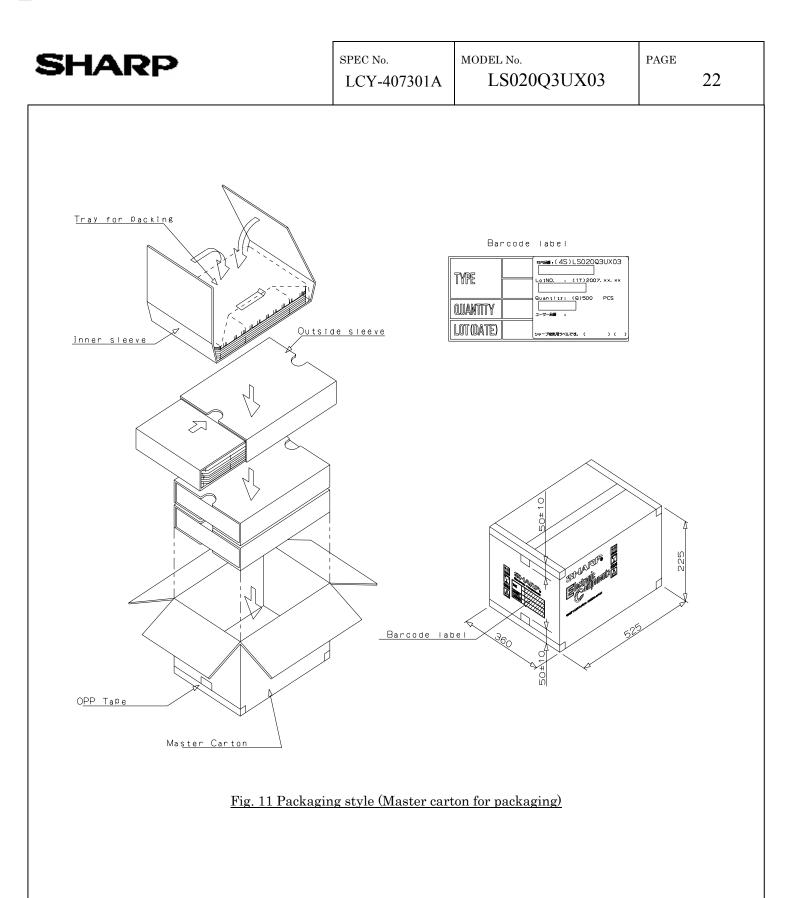
(9-3) Packaging quantities

500 modules (max) per master carton

(9-4) Packaging weight

7.6kg


(9-5) Packaging outline dimensions


360 mm × 525 mm × 225 mm (H)

(Packaging materials)

Table.11

	Parts name	Materials
1	Master carton	Corrugate card board
2	Under pad	Corrugate card board
3	Inside sleeve	Corrugate card board
4	Outside sleeve	Corrugate card board
5	Tray for packaging	Polystyrene with anti-static treatment + anti-static polystyrene
6	Protective bag	Polyethylene with anti-static treatment
7	OPP tape	Polypropylene
8	Bar code label	Anti-static polyethylene

Item	RS	index/data	hex
Initial condition (DB0-15,RS,CSB,WRD,R	DB,RESETE	3="L")	
VDDIO ON			
VDD ON			
WAIT min. 1ms			
Fix logic initial voltage lev	el		
Reset release (RESETB=	H)		
WAIT min. 10ms			-
Deep stand by release 1	L	I	0000
WAIT min. 3 ms			
Deep stand by release 2	L	I	0000
WAIT min. 3 ms			
Deep stand by release 3	L	I	0000
WAIT min. 3 ms			
The on-chip CR oscillator operation starts	L	I	0000
	Н	D	0001
WAIT min. 5ms			
Panel output control	L	I	0100
	Н	D	0000
WAIT min. 1us		_	-
Manual sequence enable	L	I	0101
	Н	D	0000
VGM setting	L	I	0102
	Н	D	000A
XVDD setting	L	I	0103
The booster clock mode of AVDD and XVDD is Dual mode	Н	D	0006
Boosting step setting	L	I	0104
	Н	D	0000
Boosting clock of AVDD and XVDD	L	I	0105
	Н	D	0035
VCS1 setting	L	I	0107
	Н	D	003B
Set Source Driver output Direction	L	I	0001
(From OUT120 to OUT1)	Н	D	0127
STV=1H, Precharge "ON", RGB out put order is normal.	L	I	0002
	Н	D	1210
Display colors mode	L	I	0007
(In case of 16bit c	olor) H	D	8030
(In case of 18bit c	olor)		4030
Transfer mode	L	I	0003
(In case of 16bit 1 time tran	sfer) H	D	0030
Set Front Porch =56, Back Porch=8	L	I	0008
	Н	D	3808
Set the number of clocks in 1H.	L	I	000D
	Н	D	0002
Panel control setting	L	I	0012

10. Initial Sequence

NEXT Page

	SPEC No.	MODEL I	NO.	
	LCY-407301A LS020Q3UX03			UX03
		н	D	0402h
Panel control setting		L	I	0014h
,		н	D	0001h
Panel control setting		L	I	0015h
,		н	D	6300h
Panel control setting		L	I	001Ch
5		Н	D	0000h
Panel control setting		L	I	007Ah
0		н	D	0400h
Select Gamma curve2.			1	0309h
		Н	D	0001h
Set the offset of the VDH/V	GS side of positive Gamma.	L		030Ah
		н	D	0000h
Set the offset of the VDH/V	GS side of negative Gamma.	L	1	030Bh
	J	н	D	0000h
Panel control setting		L		0100h
r unor control setting		Н	D	C000h
Panel control setting		L		0108h
Tuner control setting		н	D	0000h
	WAIT min. 16ms		D	000011
Panel control setting		L	1	0100h
i anoi conti ci cotting		H	D	EA00h
Panel control setting		L	1	0108h
, , , , , , , , , , , , , , , , , , ,		н	D	0001h
	WAIT min. 16ms			
Panel control setting		L	I	0100h
, and the second s		н	D	FA00h
Panel control setting		L	I	0108h
, and the second s		н	D	0000h
RAM address setting. X increment start address set.		L	I	0200h
		н	D	0000h
RAM address setting. Y inc	crement start address set.	L	I	0201h
		Н	D	0000h
RAM data write		L	I	0000h
		L	I	0202h
		н	D	XXXXh
	WAIT min. 16ms			
Switch on Gamma gray sca	le voltage.	L	I	0100h
		Н	D	FB0Ah
	WAIT min. 32ms			
Source output (Black Displ	ay)	L	I	0100h
		н	D	FDEAh
	WAIT min. 16ms	• · · · ·		
Source output (Normal Dis	plav)	L	I	0100h
Source output (Normal Dis	<i>J</i> ,			

[Power OFF Sequence]

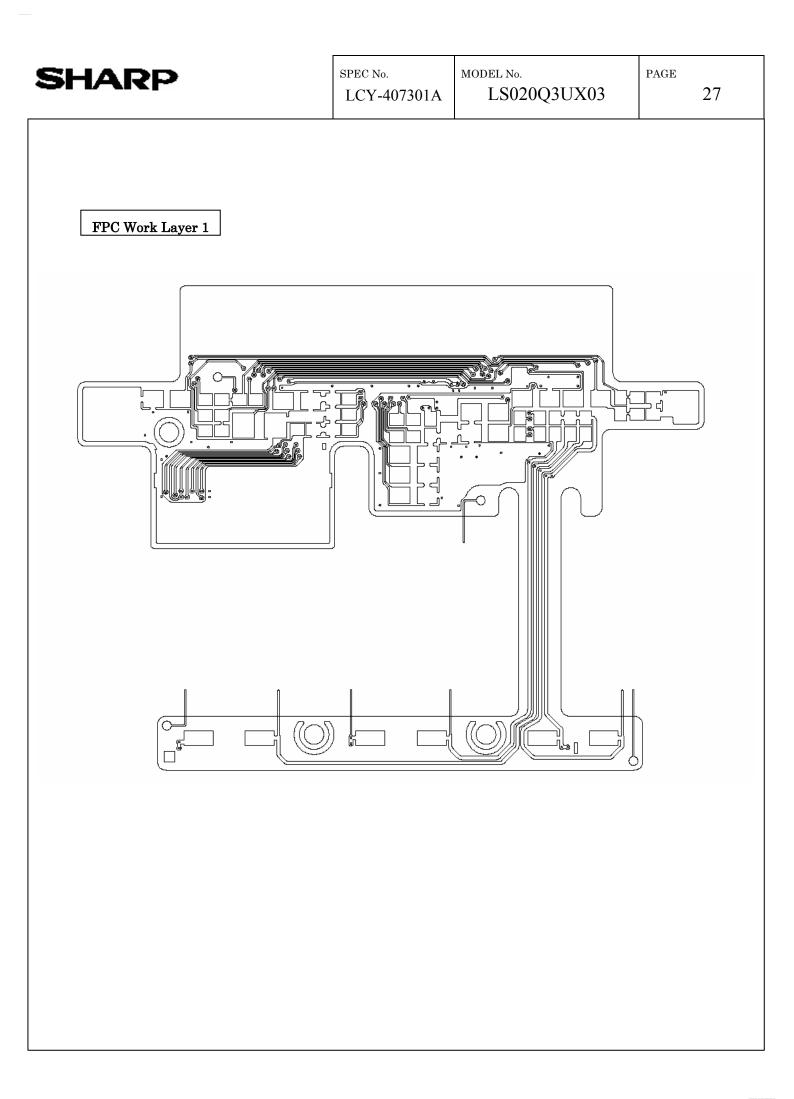
SHARP	
-------	--

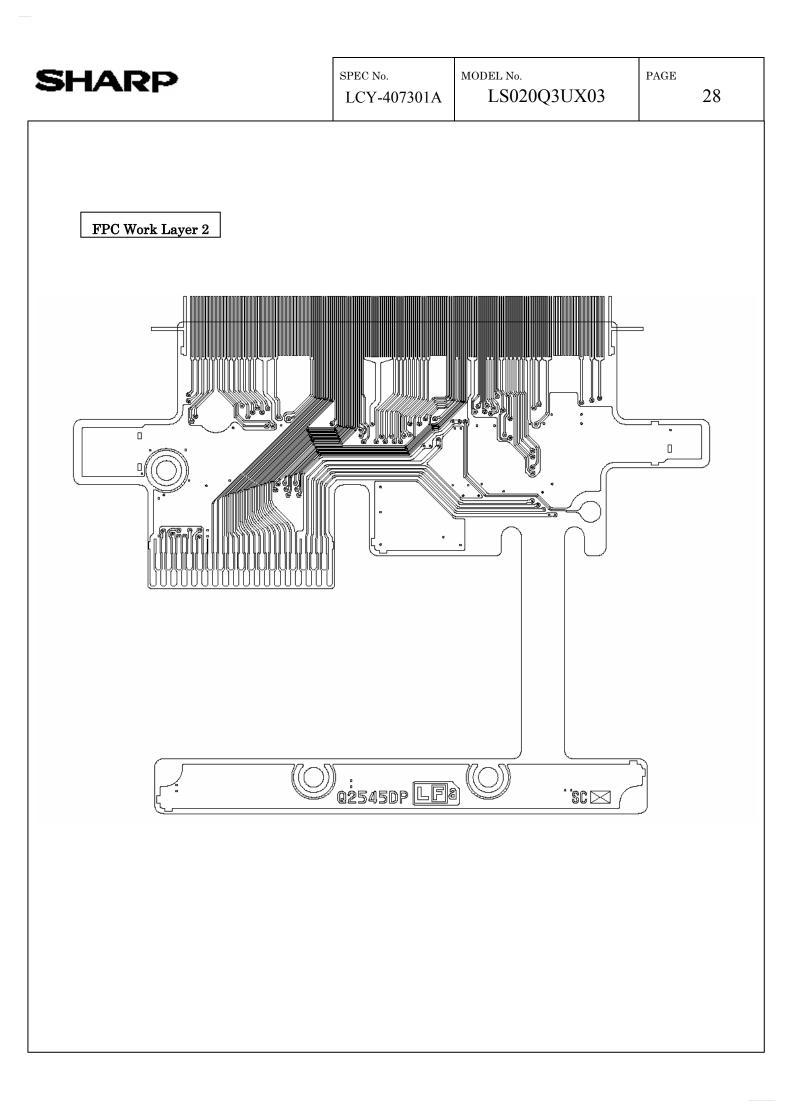
SPEC No. LCY-407301A MODEL No. LS020Q3UX03

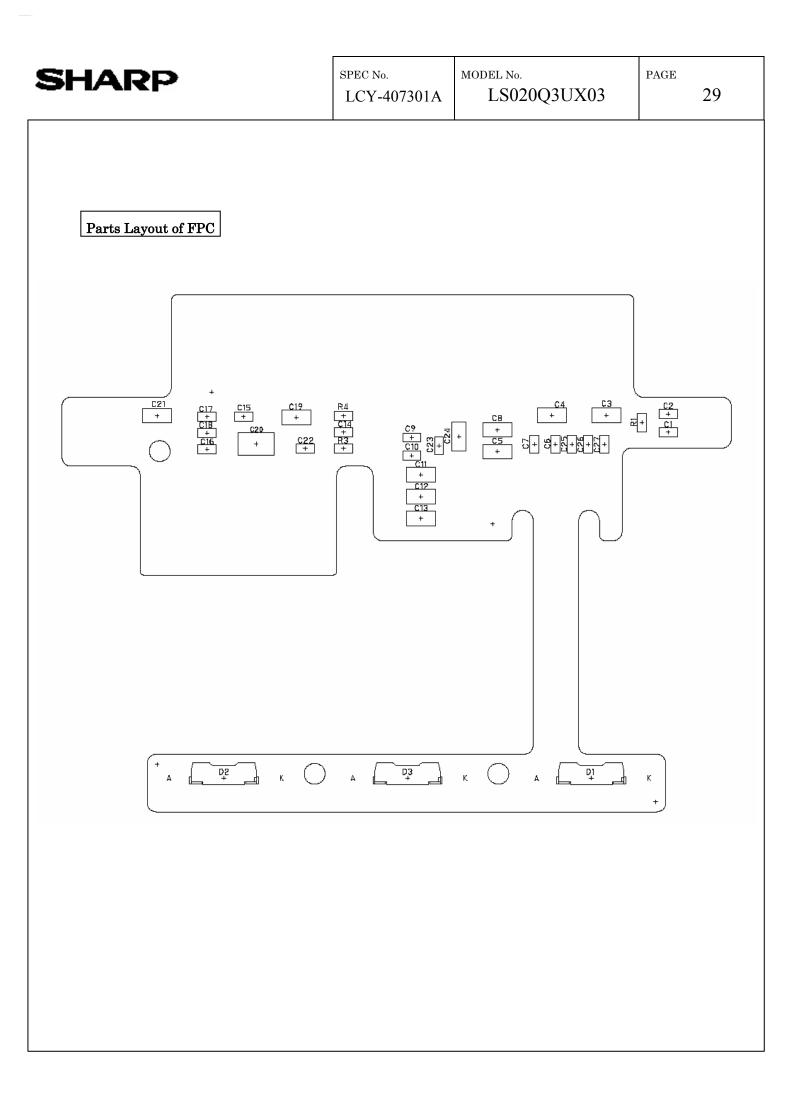
PAGE

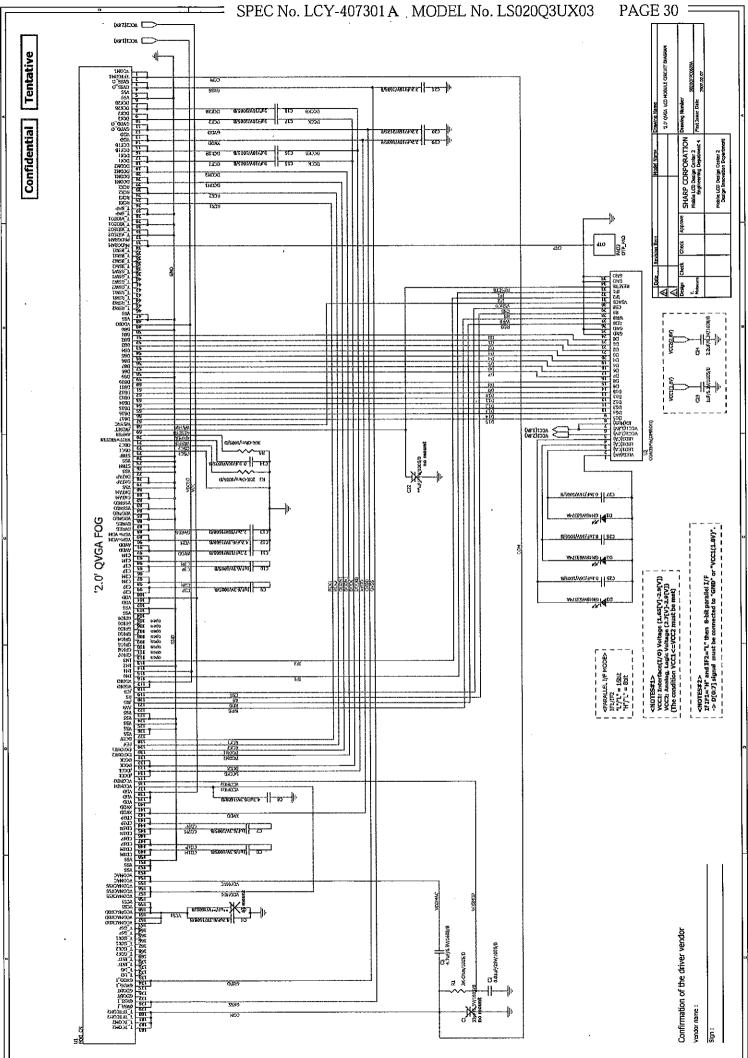
25

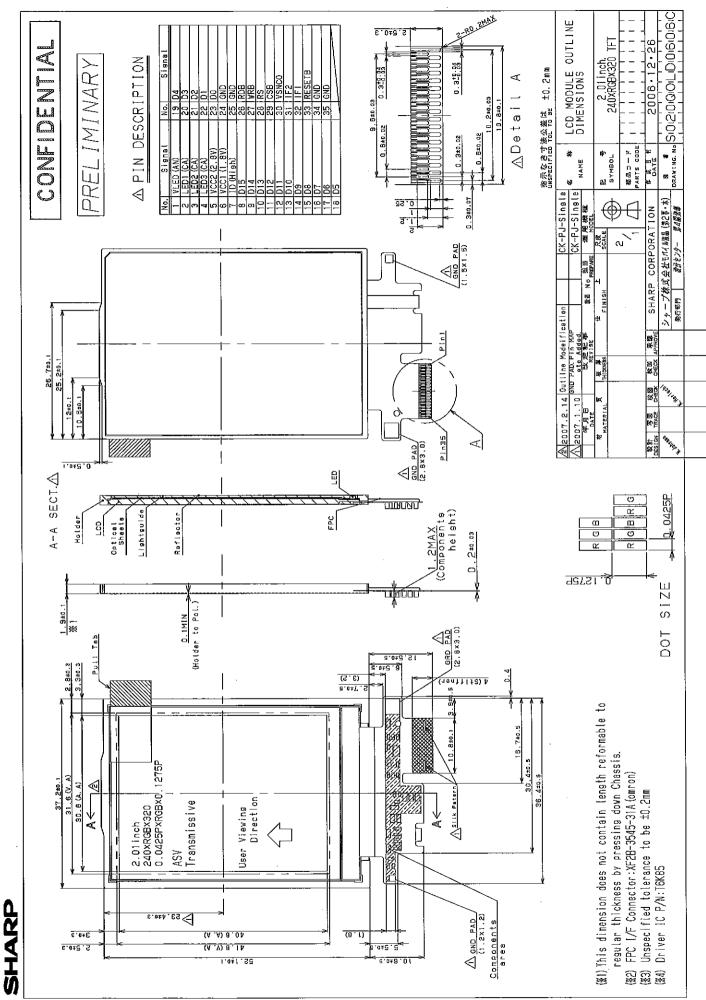
Item	RS	index/data	hex	
Source output (Black Display)	L	I	0100h	
	Н	D	FDEAh	
WAIT min. 16ms				
Panel control setting (Display OFF)	L	I	0100h	
	Н	D	FCC8h	
WAIT min. 32ms				
Panel control setting	L	I	0100h	
	Н	D	C000h	
Panel control setting	L	I	0108h	
	Н	D	0002h	
WAIT min. 16ms				
Sleep mode	L	I	0100h	
	Н	D	0000h	
Panel control setting	L	I	0108h	
	Н	D	0000h	
Deep standby	L	Ι	001Dh	
	Н	D	0000h	
WAIT min. 300ms				
VDD OFF				
VDDIO OFF				
RESET = "L"				


SPEC No.
LCY-407301A


 $\frac{\text{MODEL No.}}{LS020Q3UX03}$


PAGE


26


11. Parts List	1	1	
PARTS CODE	SPECIFICATION	SIZE	VENDOR
LCD	240xRGBX320	2.0"	SHARP
Polarizer		-	NITTO
Driver LSI	JBT6K85-32AS(EZ,S)		TOSHIBA
Back Light		-	Nihon Lights
FPC	2layer Cu/Pl/Cu		Sony Chemical
LED1~3	GM4BW63374A		SHARP
C2	0.01uF/25V	1005	MULTI
C3	4.7uF/6.3V	1608	MULTI
C4	4.7uF/6.3V	1608	MULTI
C6	1.0uF/6.3V	1005	MULTI
C7	1.0uF/6.3V	1005	MULTI
C8	4.7uF/6.3V	1608	MULTI
C9	1.0uF/6.3V	1005	MULTI
C10	1.0uF/6.3V	1005	MULTI
C11	2.2uF/10V	1608	MULTI
C12	4.7uF/6.3V	1608	MULTI
C13	2.2uF/10V	1608	MULTI
C14	0.1uF/10V	1005	MULTI
C15	1.0uF/10V	1005	MULTI
C16	1.0uF/10V	1005	MULTI
C17	1.0uF/10V	1005	MULTI
C18	1.0uF/10V	1005	MULTI
C19	2.2uF/10V	1608	MULTI
C20	2.2uF/16V	2125	MULTI
C21	2.2uF/10V	1608	MULTI
C23	1.0uF/6.3V	1005	MULTI
C24	2.2uF/6.3V	1608	MULTI
C25	0.1uF/16V	1005	MULTI
C26	0.1uF/16V	1005	MULTI
C27	0.1uF/16V	1005	MULTI
R1	3kohm/D	1005	MULTI
R2	20kohm/D	1005	MULTI
R3	30kohm/D	1005	MULTI

SPEC No. LCY-407301A MODEL No. LS020Q3UX03 PAGE 31

SHARP	SPEC No. LCY-407301A	MODEL No. LS020Q3UX03	PAGE 32
 Serial Number Label identification Numbering is specified as follows. 			
<u>7 E 000001 Q</u>			
1234			
1 product year (lower 1 digits)		
7: 2007			
8: 2008			
2 product month			
A: January			
B: February			
C: March			
:			
L: December			
③ serial number			
000001 ~ 99	19999		
(d) factory code			
2. LCD Module Code Rule.			
<u>LS 020 Q 3 U X</u>	X 03		
1 2 3 4 5 6			
①Parts type			
CGS LCD			
②Active area size			
2.0inch			
3Dot format			
QVGA format			
(4)LCD type			
Transmissive			
⑤Interface type			
CPU interface			
[©] Polarizer / LCD viewing type			
(6)Polarizer / LCD viewing type Clear type / Wide view	ing angle		