TECHNICAL MANUAL

LSIFC929X Dual Channel Fibre Channel I/O Processor

June 2003 Version 2.0

www.DataSheet4U.com DB14-000202-01 This document contains proprietary information of LSI Logic Corporation. The information contained herein is not to be used by or disclosed to third parties without the express written permission of an officer of LSI Logic Corporation.

LSI Logic products are not intended for use in life-support appliances, devices, or systems. Use of any LSI Logic product in such applications without written consent of the appropriate LSI Logic officer is prohibited.

DB14-000202-01, June 2003

This document describes the LSI Logic Corporation LSIFC929X Dual Channel Fibre Channel I/O Processor and will remain the official reference source for all revisions/releases of this product until rescinded by an update.

LSI Logic Corporation reserves the right to make changes to any products herein at any time without notice. LSI Logic does not assume any responsibility or liability arising out of the application or use of any product described herein, except as expressly agreed to in writing by LSI Logic; nor does the purchase or use of a product from LSI Logic convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of LSI Logic or third parties.

Copyright © 2002, 2003 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT

LSI Logic, the LSI Logic logo design, Fusion-MPT, and GigaBlaze are trademarks or registered trademarks of LSI Logic Corporation. ARM is a registered trademark of ARM Ltd., used under license. All other brand and product names may be trademarks of their respective companies.

DB

To receive product literature, visit us at http://www.lsilogic.com.

For a current list of our distributors, sales offices, and design resource centers, view our web page located at

http://www.lsilogic.com/contacts/index.html

Preface

This book is the primary reference and technical manual for the LSIFC929X Dual Channel Fibre Channel I/O Processor. It contains a complete functional description for the LSIFC929X and includes complete physical and electrical specifications for the product.

Audience

This document was prepared for logic designers and applications engineers and is intended to provide an overview of the LSI Logic LSIFC929X and to explain how to use the LSIFC929X in the initial stages of system design.

This document assumes that you have some familiarity with microprocessors and related support devices. The people who benefit from this book are

- engineers and managers who are evaluating the LSIFC929X for possible use in a system
- engineers who are designing the LSIFC929X into a system

Organization

This document has the following chapters and appendixes:

- Chapter 1, Introduction, provides a general description of the LSIFC929X.
- Chapter 2, Fibre Channel Overview, briefly describes some key elements of Fibre Channel, including layers, topologies, and classes of service.

- Chapter 3, LSIFC929X Overview, provides an introduction to the basic features of the LSIFC929X, including the message interface, protocol assist engines, and support components.
- Chapter 4, Signal Descriptions, lists and describes the signals on the LSIFC929X.
- Chapter 5, PCI-X Functional Description, describes the PCI-X features contained in the LSIFC929X.
- Chapter 6, **Registers**, briefly describes the PCI-X address space, the Configuration registers, and the Host Interface registers.
- Chapter 7, Specifications, describes the electrical specifications of the LSIFC929X, and provides pinout information and packaging dimensions.
- Appendix A, Register Summary, is a register summary.
- Appendix B, Reference Specifications, lists several specifications and applicable World Wide Web URLs that may benefit the reader.
- Appendix C, **Glossary of Terms and Abbreviations**, provides definitions for terms and abbreviations used in this manual.

Related Publications

Fusion-MPT™ Message Passing Interface Specification, Volume 1.2, Document No. DB14-000174-02

PCI Local Bus Specification, Version 2.2

PCI-X Addendum to the PCI Local Bus Specification, Version 1.0a

Conventions Used in This Manual

Preface

The word *assert* means to drive a signal true or active. The word *deassert* means to drive a signal false or inactive. Signals that are active LOW end in a "/."

Hexadecimal numbers are indicated by the prefix "0x" —for example, 0x32CF. Binary numbers are indicated by the prefix "0b" —for example, 0b0011.0010.1100.1111.

Revision Record

Revision	Date	Remarks
0.5	3/2002	First Advance Information release.
2.0	6/2003	Final release.

Contents

Introduction			
1.1	Overvi	ew	1-1
	1.1.1	Hardware Features	1-1
	1.1.2	FC Features	1-2
	1.1.3	Software Features	1-3
	1.1.4	OS Support	1-3
	1.1.5	Targeted Applications	1-3
1.2	Genera	al Description	1-4
	1.2.1	Multifunction PCI-X	1-5
	1.2.2	Autospeed Negotiation	1-5
	1.2.3	Autotopology Negotiation	1-5
	1.2.4	Failover and Load Balancing	1-6
1.3	Hardw	are Overview	1-6
	1.3.1	PCI/PCI-X Interface	1-7
	1.3.2	32-Bit Memory Controller	1-7
	1.3.3	I/O Processor	1-7
	1.3.4	System Interface	1-8
	1.3.5	Integrated 2 Gbit/s Transceivers	1-8
	1.3.6	Link Controllers	1-8
	1.3.7	Datapath	1-8
	1.3.8	Context Managers	1-8
1.4	Initiato	r Operations	1-9
1.5	Target	Operations	1-9
1.6	Diagno	ostics	1-9
Fibr	e Chann	el Overview	
2.1	Introdu	iction	2-2
2.2	FC La	yers	2-3
2.3	Frame	S	2-4
	1.1 1.2 1.3 1.3 1.4 1.5 1.6 Fibr 2.1 2.2	1.1 Overvi 1.1.1 1.1.2 1.1.3 1.1.3 1.1.4 1.1.5 1.2 Genera 1.2.1 1.2.2 1.2.3 1.2.4 1.3 Hardw 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8 1.4 Initiato 1.5 Target 1.6 Diagno Fibre Chann 2.1 Introdu 2.2 FC Lay	 1.1 Overview 1.1.1 Hardware Features 1.1.2 FC Features 1.1.3 Software Features 1.1.3 Software Features 1.1.4 OS Support 1.1.5 Targeted Applications 1.2 General Description 1.2.1 Multifunction PCI-X 1.2.2 Autospeed Negotiation 1.2.3 Autotopology Negotiation 1.2.4 Failover and Load Balancing 1.3 Hardware Overview 1.3.1 PCI/PCI-X Interface 1.3.2 32-Bit Memory Controller 1.3.3 I/O Processor 1.3.4 System Interface 1.3.5 Integrated 2 Gbit/s Transceivers 1.3.6 Link Controllers 1.3.7 Datapath 1.3.8 Context Managers 1.4 Initiator Operations 1.5 Target Operations 1.6 Diagnostics Fibre Channel Overview 2.1 Introduction 2.2 FC Layers

				www.DataSheet4U.com
	2.4	Exchang	es	2-5
	2.5	FC Ports	i	2-7
	2.6	FC Topo	logies	2-7
		2.6.1	Point-to-Point Topology	2-8
		2.6.2	Fabric Topology	2-8
		2.6.3	Arbitrated Loop Topology	2-8
	2.7	Classes	of Service	2-9
Chapter 3	LSIF	C929X Ov	erview	
	3.1	Introduct	ion	3-1
	3.2	Message	Interface	3-3
		3.2.1	Messages	3-3
		3.2.2	Message Flow	3-4
	3.3	SCSI Me	essage	3-6
	3.4	LAN Mes	ssage	3-6
	3.5	Target M	essage	3-8
	3.6	Support	Components	3-8
		3.6.1	SSRAM Memory	3-9
		3.6.2	Flash ROM	3-10
		3.6.3	Serial EEPROM	3-10
Chapter 4	Sign	al Descrip	tions	
	4.1	PCI/PCI-	X Interface	4-3
	4.2	Fibre Ch	annel Interface	4-7
	4.3	Memory	Interface	4-10
	4.4	Configura	ation and Miscellaneous	4-14
	4.5	Test and	I/O Processor Debug	4-15
	4.6	Power ar	nd Ground	4-16
Chapter 5	PCI-	X Function	nal Description	
	5.1	Overview	/	5-1
	5.2	PCI-X Ad	ddressing	5-2
		5.2.1	PCI Configuration Space	5-2
		5.2.2	PCI I/O Space	5-3
		5.2.3	PCI Memory Space	5-3
	5.3	PCI/PCI-	X Bus Commands and Implementatic	n 5-3

			www.DataSheet4	U.com
		5.3.1	Interrupt Acknowledge Command	5-5
		5.3.2	Special Cycle Command	5-5
		5.3.3	I/O Read Command	5-5
		5.3.4	I/O Write Command	5-5
		5.3.5	Memory Read Command	5-5
		5.3.6	Memory Read Dword Command	5-5
		5.3.7	Memory Write Command	5-6
		5.3.8	Alias to Memory Read Block Command	5-6
		5.3.9	Alias to Memory Write Block Command	5-6
		5.3.10	Configuration Read Command	5-6
		5.3.11	Configuration Write Command	5-6
		5.3.12	Memory Read Multiple Command	5-7
		5.3.13	Split Completion Command	5-7
		5.3.14	Dual Address Cycles (DAC) Command	5-8
		5.3.15	Memory Read Line Command	5-8
		5.3.16	Memory Read Block Command	5-8
		5.3.17	Memory Write and Invalidate Command	5-8
		5.3.18	Memory Write Block Command	5-9
	5.4	PCI Art	pitration	5-9
	5.5	PCI Ca	che Mode	5-9
Chapter 6	Regi	sters		
	6.1		Configuration Space Register Description	6-2
	6.2	PCI I/O	Space and Memory Space Register Description	6-32
	6.3		Memory	6-44
Chapter 7	Spec	cification	S	
	7.1		al Requirements	7-2
	7.2	AC Tim	ing	7-7
		7.2.1	PCI/PCI-X Interface Timings	7-7
		7.2.2	-	7-7
		7.2.3	Memory Interface Timings	7-8
	7.3	Packag	· ·	7-11
	7.4		nical Drawing	7-18
	7.5		e Thermal Considerations	7-19
		0		

Appendix A	Register Summary
Appendix B	Reference Specifications
Appendix C	Glossary of Terms and Abbreviations
	Index
	Customer Feedback

Figures

1.1	LSIFC929X Typical Implementation	1-5
1.2	LSIFC929X Functional Block Diagram	1-7
2.1	FC Layers	2-2
2.2	Link Control Frame	2-4
2.3	Data Frame	2-4
2.4	Exchange to Character	2-5
2.5	FCP Exchange	2-6
2.6	Write Event Trellis	2-7
2.7	Point-to-Point Topology	2-8
2.8	Fabric Topology	2-8
2.9	Arbitrated Loop Topology	2-9
3.1	LSIFC929X Block Diagram	3-2
3.2	LSIFC929X Message Flow	3-5
3.3	LAN Protocol Stack	3-7
3.4	LSIFC929X Typical Implementation	3-9
4.1	LSIFC929X Functional Signal Grouping	4-2
7.1	SSRAM Read/Write/Read Timing Waveforms	7-8
7.2	Flash ROM Read Timing Waveforms	7-9
7.3	Flash ROM Write Timing Waveforms	7-10
7.4	LSIFC929X 456-Pin PBGA Top View	7-12
7.5	456-Pad Plastic Ball Grid Array	7-18

www.DataSheet4U.com

Tables

4.1	PCI/PCI-X Interface	4-3
4.2	Fibre Channel Interface	4-7
4.3	Memory Interface	4-10
4.4	Configuration and Miscellaneous	4-14
4.5	Test and I/O Processor Debug	4-15
4.6	Power and Ground	4-16
5.1	PCI/PCI-X Bus Commands and Encodings	5-4
6.1	LSIFC929X PCI-X Configuration Space Address Map	6-3
6.2	Device ID Values	6-5
6.3	Multiple Message Enable Field Bit Encoding	6-25
6.4	Maximum Outstanding Split Transactions	6-29
6.5	Maximum Memory Read Byte Count	6-29
6.6	PCI I/O Space Address Map	6-33
6.7	PCI Memory [0] Address Map	6-33
6.8	PCI Memory [1] Address Map	6-34
6.9	Interrupt Signal Routing	6-41
7.1	Absolute Maximum Stress Ratings	7-3
7.2	Operating Conditions	7-3
7.3	Capacitance	7-4
7.4	Input Signals (FAULT1/, FAULT0/, MODE[7:0], SWITCH, HOTSWAPEN/)	7-4
7.5	Schmitt Input Signals (REFCLK, TCK, TDI, TRST/,	
	TMS_CHIP, TMS_ICE)	7-4
7.6	4 mA Bidirectional Signals (LIPRESET/, ODIS1, ODIS0,	
	BYPASS1/, BYPASS0/, MD[31:0], MA[21:0], MWE[1:0]/,	
	FLASHCS/, BWE[3:0]/, RAMCS/, ZZ, MP[3:0], SCL,	
	SDA, RXLOS1, RXLOS0, ADSC/, ADV/, TDO)	7-4
7.7	8 mA Bidirectional Signals (MODDEF1[2:0],	
	MODDEF0[2:0], GPIO[5:0], MOE[1:0]/, LED[4:0]/, MCLK)	7-5
7.8	PCI Input Signals (PCICLK, GNT/, IDSEL, RST/)	7-5
7.9	PCI Bidirectional Signals (AD[63:0], C_BE[7:0]/, FRAME/, IRDY/, TRDY/, STOP/, PERR/, PAR, ACK64/, ENUM/,	
	64EN/)	7-6
7.10	PCI Output Signals (PAR64, REQ/, REQ64/, DEVSEL/,	
	SERR/, INTA/, INTB/)	7-6
7.11	SSRAM Read/Write/Read Timings	7-8
7.12	FLASH ROM Read Timings	7-9

7.13	Flash ROM Write Timings	7-10
7.14	Alphanumeric Pad Listing by PBGA Position	7-14
7.15	Alphanumeric Pad Listing by Signal Name	7-16
7.16	Maximum Allowable Ambient Temperature vs. Airflow	7-19
A.1	LSIFC929X Multifunction PCI Registers	A-1
A.2	LSIFC929X Host Interface Registers	A-3
B.1	Reference Specifications	B-1

Chapter 1 Introduction

This chapter provides an overview of the LSIFC929X Dual Channel Fibre Channel I/O Processor. The chapter contains the following sections:

- Section 1.1, "Overview"
- Section 1.2, "General Description"
- Section 1.3, "Hardware Overview"
- Section 1.4, "Initiator Operations"
- Section 1.5, "Target Operations"
- Section 1.6, "Diagnostics"

1.1 Overview

The LSIFC929X is a high-performance, cost-effective, Dual Channel Fibre Channel (FC) I/O processor. It represents the latest system level integration technology in intelligent I/O processors from LSI Logic. The Storage Area Network (SAN) environment is fully supported with both Fibre Channel Protocol (FCP) for SCSI and LAN/IP.

1.1.1 Hardware Features

The LSIFC929X supports the following list of hardware features:

- Highly integrated, full duplex, Dual Channel FC I/O processor
- Integrated 2 Gbit/s Dual Channel FC serial link
- 64-bit/66 MHz host PCI bus and 133 MHz PCI-X bus (both are backward compatible with 32-bit/33 MHz)
- Integrated bit error rate (BER) link testing
- 32-bit ARM[®] RISC processor

- Intelligent, high-performance context management
- Synchronous SRAM (SSRAM) external memory interface
- Full simultaneous target and initiator operations
- Implementation of common Message Passing Interface (MPI)
- Firmware support for concurrent host commands
 - 1000 concurrent commands with 1 Mbyte SRAM (default)
 - 2000 concurrent commands with 2 Mbytes SRAM
 - 4000 concurrent commands with 4 Mbytes SRAM
- PC2001 compliant
- Peripheral Component Interface (PCI) 2.2 compliant
- JTAG debug interface
- 456-pin plastic ball grid array (PBGA)

1.1.2 FC Features

The LSIFC929X supports the following list of FC features:

- Class 2 and Class 3 support (with optional confirmed delivery)
- BB credit of 16, alternate login of 1 (each channel)
- FC-PH compliance
- FC-AL 7.0 compliance
- FC-FCP, FC-PLDA compliance
- FC-FLA compliance
- FCA-IP, IETF-IPFC compliance
- NL_Port (Arbitrated Loop)
- N_Port (Point-to-Point)
- FL_Port (Public Loop Attach)
- F_Port (Fabric Attach)
- AutoNegotiation between link speeds under firmware control; provides automatic interoperability between 1 Gbit/s and 2Gbit/s links (independent for each channel)

1.1.3 Software Features

The LSIFC929X supports the following list of software features:

- Fusion-MPT[™] drivers
- Optimum server I/O profile with low CPU utilization
- Optimum workstation I/O profile with maximum I/O performance
- Diagnostic capability
- Host driver support for failover and load balancing
- SAN Storage Management

1.1.4 OS Support

The LSIFC929X supports the following list of operating systems:

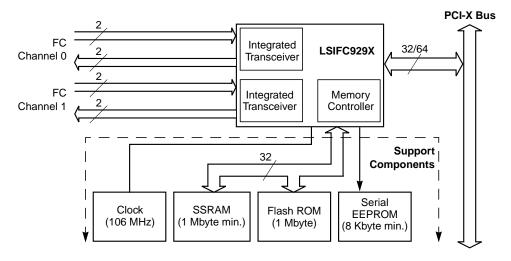
- Windows 2000
- Windows NT 4.0 SP4 and Windows NT 5.0
- Windows XP
- NetWare 4.11 and 5.0
- UnixWare 2.12 and Gemini
- Solaris 2.6, 2.7–X86
- Solaris SPARC
- Linux susi, Turbolinux, and Red Hat Linux

1.1.5 Targeted Applications

The LSIFC929X targets the following list of key applications:

- SANs
- Storage virtualization
- Server clustering environments
- Embedded RAID
- Low cost PCI-X/FC host adapters
- Host main boards
- Routers and bridges

1.2 General Description


The LSIFC929X Dual Channel FC I/O processor is a high-performance, Intelligent I/O processor (IOP) that simultaneously supports mass storage and IP protocols on a full duplex, 2 Gbit/s FC link. The sophisticated design and local memory architecture work together to reduce the host CPU and PCI bandwidth required to support FC I/O operations.

From the host CPU perspective, the LSIFC929X manages the FC link at the exchange level for mass storage (FCP) protocols. The LSIFC929X supports multiple I/O requests per host interrupt in most applications.

From the FC link perspective, the LSIFC929X is a highly efficient NL_Port supporting point-to-point, public and private loop topologies, and the FC switch/attach topology defined under the ANSI X3T11 FC-FS standard. The LSIFC929X uniquely supports FC environments where independent, full duplex transmission is required for maximum FC link efficiency. Special attention has been given to the design to accelerate context switching and link utilization.

The LSIFC929X includes a 64-bit, 66 MHz host PCI interface and a 133 MHz PCI-X interface to the host environment. The host interface minimizes the amount of time spent on the PCI bus for nondata moving activities such as initialization, command, and error recovery. In addition, the host interface has inherent flexibility to support the OEM implementation tradeoffs between CPU, PCI-X, and I/O bandwidth.

The high level of integration in the LSIFC929X controller enables low cost FC implementations. Figure 1.1 shows a typical implementation incorporating the LSIFC929X controller.

Figure 1.1 LSIFC929X Typical Implementation

1.2.1 Multifunction PCI-X

Coupled with the dual channel operation, the LSIFC929X adds multifunction capability on the PCI-X bus. This capability allows the host to see two distinct "channels" or host adapters. Each channel provides full, concurrent support for FCP Initiator, Target, and LAN protocols.

1.2.2 Autospeed Negotiation

Backward compatibility with 1 Gbit/s FC devices is maintained through Autospeed Negotiation. After a power-on, loss of signal, or loss of word synchronization for longer than the R_T_TOV time-out, the LSIFC929X performs this operation to determine whether a point-to-point device or all of the devices on a link are either 1 Gbit/s or 2 Gbit/s devices, and it automatically configures itself to be compatible with the devices on the link.

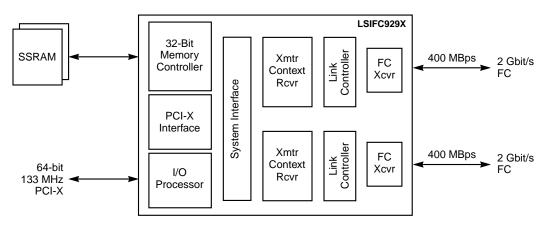
1.2.3 Autotopology Negotiation

The LSIFC929X maintains compatibility with private loop, public loop, and point-to-point topologies through Autotopology Negotiation. The LSIFC929X performs this operation to determine the type of attached link, and automatically configures each LSIFC929X port to the current port type.

1.2.4 Failover and Load Balancing

The LSIFC929X supports two PCI-X functions and two FC ports, which improves performance and provides a redundant path in high-availability systems that require failover capabilities. In case of a Link Failure, the LSIFC929X architecture allows the OS driver to support automatic failover without the need for LSIFC929X intervention. Load Balancing also can be provided in the host driver to partition the I/O workload across each channel of the LSIFC929X.

1.3 Hardware Overview


In today's fast growing SAN, storage virtualization, server/workstation, and RAID storage systems marketplaces, higher levels of performance, scalability, and reliability are required to stay competitive.

The LSIFC929X provides the performance and flexibility to meet future FC connectivity requirements.

The LSIFC929X and LSI Logic software drivers provide superior performance and lower host CPU overhead than other competitive solutions. Because of its high level of integration and streamlined architecture, the LSIFC929X provides the highest level of performance in a more cost effective FC solution.

Figure 1.2 shows the functional block diagram for the LSIFC929X. The architecture maximizes performance and flexibility by deploying fixed gates in critical performance areas and utilizing multiple ARM RISC processors (two for context management and one for the I/O processor). Each of the major blocks is described briefly.

1.3.1 PCI/PCI-X Interface

The LSIFC929X uses a 64-bit (33 MHz, 66 MHz, or 133 MHz) PCI/PCI-X interface or a 32-bit (33 MHz, 66 MHz, or 133 MHz) PCI/PCI-X interface. In addition, support is provided for Dual Address Cycle (DAC), PCI-X power management, Subsystem Vendor ID, Vendor Product Data (VPD), and Message Signaled Interrupt (MSI).

1.3.2 32-Bit Memory Controller

The memory controller provides access to Flash ROM and 32-bit Synchronous SRAM and nonvolatile SRAM (NVSRAM). It supports both interleaved and noninterleaved configurations up to a maximum of 4 Mbytes of synchronous SRAM. A general purpose memory expansion bus supports up to 1 Mbyte of Flash ROM.

1.3.3 I/O Processor

The LSIFC929X uses a 32-bit ARM RISC processor to control all system interface and message transport functionality. This frees the host CPU for other processing activity and improves overall I/O performance. The RISC processor and associated firmware can manage an I/O from start to finish without host intervention. The RISC processor also manages the message passing interface.

1.3.4 System Interface

The system interface efficiently passes messages between the LSIFC929X and other I/O agents. It consists of four hardware FIFOs for the message queuing lists: Request Free, Request Post, Reply Free, and Reply Post. Control logic for the FIFOs is provided within the LSIFC929X system interface with messages stored in external memory.

1.3.5 Integrated 2 Gbit/s Transceivers

The LSIFC929X implements GigaBlaze[®] 2 Gbit/s transceivers. GigaBlaze is backward-compatible with 1 Gbit/s systems, using a firmware-implemented "Autospeed Negotiation" for automatic compatibility between 1 Gbit/s and 2 Gbit/s links. The integrated 2 Gbit/s transceivers provide a FC-compliant physical interface for cost conscious and real estate limited applications.

1.3.6 Link Controllers

The integrated link controller is FC-AL-2 (Rev. 7.0) compatible and performs all link operations. The controller monitors the Link State and strictly adheres to the Loop Port State Machine, ensuring maximum system interoperability. The link controller interfaces to the integrated transceiver.

1.3.7 Datapath

The transmitter builds sequences based on context information and transmits resulting frames to the FC link using the Link Controller. Each transmitter includes two 2 Kbyte buffers to support frame payloads.

The receivers accept frame data from the Link Controller and DMAs the encapsulated information to local or system memory. Each receiver contains sixteen 2112-byte buffers that support a BB Credit of up to sixteen or an Alternate Login BB Credit of 1 on each channel.

1.3.8 Context Managers

The LSIFC929X uses an ARM RISC processor in each channel to support I/O context swap to external memory and FCP management for both Initiator and Target applications. Context operations include support for transmit and resource queue management, as well as scatter/gather list management.

1.4 Initiator Operations

The LSIFC929X autonomously handles FCP exchanges upon request from the host. The LSIFC929X generates appropriate sequences and frames necessary to complete the request and provides feedback to the host on the status of the request.

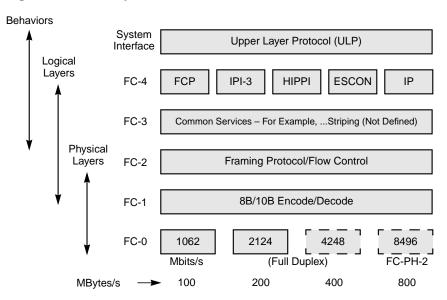
1.5 Target Operations

The LSIFC929X provides for general purpose target functions such as those required for front-end RAID applications.

1.6 Diagnostics

The LSIFC929X provides the capabilities to do a simplified "Link Check" BER test on the link for diagnostic purposes. In a special test mode the controller can transmit and verify a programmed data pattern for link evaluation.

Chapter 2 Fibre Channel Overview


This chapter provides general overview information on Fibre Channel (FC). The chapter contains the following sections:

- Section 2.1, "Introduction"
- Section 2.2, "FC Layers"
- Section 2.3, "Frames"
- Section 2.4, "Exchanges"
- Section 2.5, "FC Ports"
- Section 2.6, "FC Topologies"
- Section 2.7, "Classes of Service"

2.1 Introduction

FC is a high-performance, hybrid interface. It is both a channel and a network interface that contains network features to provide the required connectivity, distance, protocol multiplexing, as well as traditional channel features to retain the required simplicity, repeatable performance, and guaranteed delivery. Popular industry standard networking protocols such as Internet Protocol (IP) and channel protocols such as Small Computer System Interface (SCSI) have been mapped to the FC standard.

The FC structure is defined by five functional layers. These layers, shown in Figure 2.1, define the physical media and transmission rates, encoding scheme, framing protocol and flow control, common services, and the Upper Level Protocol (ULP) interfaces.

Figure 2.1 FC Layers

2.2 FC Layers

The lowest layer, FC-0, is the media interface layer. It defines the physical characteristics of the interface. It includes transceivers, copper-to-optical transducers, connectors, and any other associated circuitry necessary to transmit or receive at 1062 or greater Mbit/s rates over copper or optical cable.

The FC-1 layer defines the 8B/10B encoding/decoding scheme, the transmission protocol necessary to integrate the data and transmit clock, and the receive clock recovery. Implementation of this layer is usually divided between the hardware implementing the FC-0 layer in a transceiver, and the protocol device that implements the FC-2 layer. Specifically, the FC-0 transceivers can include the clock recovery circuitry while the 8B/10B encoding/decoding is provided in the protocol device.

The FC-2 layer defines the rules for the signaling protocol and describes transfer of the frames, sequences, and exchanges. The meaning of the data being transmitted or received is transparent to the FC-2 layer. However, the context between any given set of frames is maintained at the FC-2 layer through the Sequence and Exchange constructs. The framing protocol creates the constructs necessary to form frames with the data being packetized within the payload of each frame.

The FC-3 layer provides common services that span multiple N_Ports (refer to Section 2.5, "FC Ports," on page 2-7 for details). Some of these services include Striping, Hunt Groups, and Multicasting. All of these services allow a single port or fabric to communicate to several N_Ports at one time.

The FC-4 layer is the top layer defined in the FC. The FC-4 layer provides a seamless integration of existing standards. It specifies the mapping of ULPs to the layers below. Some of these ULPs include SCSI and IP. Each of these ULPs is defined in its own ANSI document.

2.3 Frames

There are two types of frames used in FC: Link Control frames and Data frames. Link Control frames, which contain no payload, are flow control responses to Data frames. An example of a Link Control frame is the ACK frame.

Figure 2.2 Link Control Frame

Start of Frame	Frame Header	CRC	End of Frame
(4 Bytes)	(24 Bytes)	(4 Bytes)	(4 Bytes)

A Data frame is any frame that contains data in the payload field. An example of a Data frame is the LOGIN frame.

Figure 2.3 Data Frame

Start of Frame	Frame Header	Data Field (Optional Headers and Payload)	CRC	End of Frame
(4 Bytes		(0 to 2112 Bytes)	(4 Bytes)	(4 Bytes)

In FC, an Ordered Set is a group of four 10-bit characters that provide low level link functions, such as frame demarcation and signaling between two ends of a link. All frames start with a Start-of-Frame (SOF) and end with an End-of-Frame (EOF) Ordered Set. Each frame contains at least a 24-byte header defining such things as Destination and Source ID, Class of Service and type of frame (for example, FCP or FC-LE). The biggest field within a frame can be the payload field. If the frame is a Link Control frame, then there is no payload. If it is a Data frame, then the frame contains a payload field of up to 2112 bytes. Finally, the frame includes a CRC field used for detection of transmission errors, followed by the EOF Ordered Set.

2.4 Exchanges

Figure 2.4 outlines the FC Hierarchical Data structures. At the most elemental level, four 8B/10B encoded characters make up an FC word. An FC Frame is a collection of FC words. An FC Sequence is made up of one or more frames, and a FC Exchange is made up of one or more sequences.

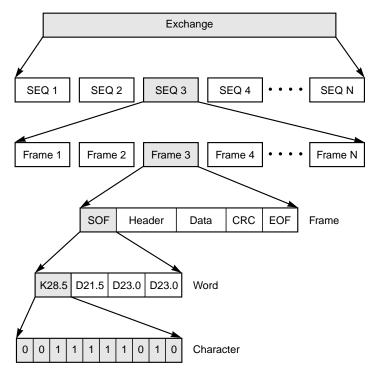


Figure 2.4 Exchange to Character

The following discussion illustrates an Exchange by considering a typical parallel SCSI I/O. In parallel SCSI, several phases make up the I/O. These phases include Command, Data, Message, and Status.

Using the FCP for the SCSI ULP, these phases can be mapped into the other lower FC layers. Figure 2.5 shows the components that make up the FCP exchange.

Figure 2.5 FCP Exchange

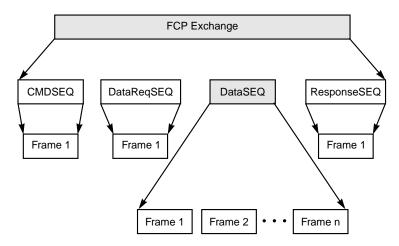
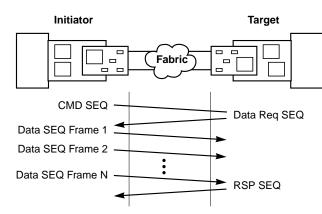



Figure 2.6 shows how the Exchange flows between the Initiator and Target. The Initiator starts the FCP Exchange by sending a Command Sequence containing one frame to the Target. The Frame payload contains the Command Descriptor Block (CDB). The Target then responds with a Data Delivery Request Sequence containing one Frame. The payload of this Frame contains a XFER_RDY response. When the Initiator receives the Target's response, it begins to send the Data Sequence(s), which may contain one or more Frames. This is analogous to parallel SCSI DATA_OUT phase. When the Target has received the last Frame of the Data Sequence(s), it sends a Response Sequence containing one Frame to the Initiator, thus concluding the FCP Exchange.

Figure 2.6 Write Event Trellis

2.5 FC Ports

FC devices are called nodes. Each node has at least one port to provide access to other ports in other nodes. The "port" is the hardware entity within a node that performs data communications over the FC link.

Various types of ports are defined within the FC standard, based on the location of the port and the topology associated with it. The most commonly used ports are N_Ports, NL_Ports, F_Ports, and FL_Ports. These types of ports appear in Figure 2.7, Figure 2.8, and Figure 2.9.

2.6 FC Topologies

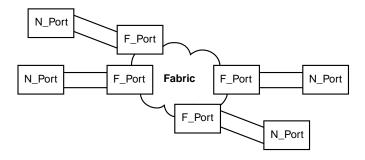
Topologies are defined, based on the capability and the presence or absence of Fabric between the N_Ports:

- Point-to-Point topology
- Fabric topology
- Arbitrated Loop topology

FC-PH protocols are topology-independent. Attributes of a Fabric may restrict operation to certain communication models.

2.6.1 Point-to-Point Topology

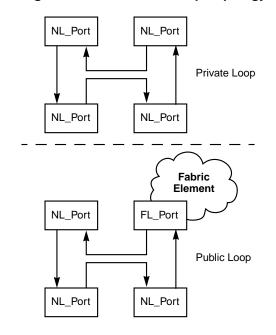
The topology shown in Figure 2.7, in which communication between N_Ports occurs without the use of Fabric, is defined as point-to-point.


Figure 2.7 Point-to-Point Topology

2.6.2 Fabric Topology

Figure 2.8 illustrates multiple N_Ports interconnected by a Fabric. This topology uses the Destination_Identifier (D_ID) embedded in the Frame Header to route the Frame through a Fabric to the desired Destination N_Port.

Figure 2.8 Fabric Topology



2.6.3 Arbitrated Loop Topology

The Arbitrated Loop topology permits 2–127 L_Ports to communicate without the use of a Fabric, as in Fabric topology. The Arbitrated Loop supports a maximum of one point-to-point circuit at a time. When two L_Ports are communicating, the Arbitrated Loop topology supports simultaneous, symmetrical bidirectional flow.

Figure 2.9 illustrates two independent arbitrated loop configurations, each with multiple L_Ports attached. Each line in the figure between L_Ports represents a single fibre. The lower configuration shows an Arbitrated Loop composed of three NL_Ports and one FL_Port (a Public Loop).

Figure 2.9 Arbitrated Loop Topology

2.7 Classes of Service

There are several classes of service in FC. The different classes are distinguished from each other in three ways: by the level of guarantee for data being delivered, the order in which data is delivered, and how data flow control is maintained.

Class 1 is a dedicated connection between two N_Ports. The data delivered is guaranteed with a required acknowledgement frame (ACK), which a Class 1 device uses for flow control. All frames are received in order.

Class 2 is a connectionless class. The data delivered is guaranteed with an ACK frame. The frames can be received out of order. Class 2 uses both ACK frames and the R_RDY Ordered Set for flow control.

Class 3 is also a connectionless class (the data being delivered is not guaranteed). The frames can be received out of order. Class 3 uses only the R_RDY Ordered Set for flow control.

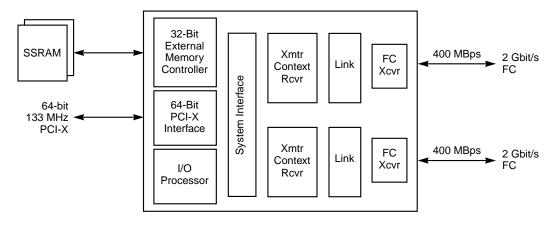
Intermix is an enhancement of Class 1 service. A dedicated Class 1 connection may waste fabric bandwidth while frames are not being transmitted or received between two N_Ports. To recover some of this bandwidth, Intermix allows Class 2 and Class 3 frames to be transmitted/received between Class 1 frames. N_Ports advertising Intermix capability must be capable of receiving Class 2 and Class 3 frames from other N_Ports while maintaining the original Class 1 link.

Chapter 3 LSIFC929X Overview

This chapter provides a general description of the LSIFC929X Dual Channel Fibre Channel I/O processor firmware. The chapter contains the following sections:

- Section 3.1, "Introduction"
- Section 3.2, "Message Interface"
- Section 3.3, "SCSI Message"
- Section 3.4, "LAN Message"
- Section 3.5, "Target Message"
- Section 3.6, "Support Components"

3.1 Introduction


The LSI Logic LSIFC929X connects a host to a high speed FC link. The FCP ANSI standard, FC Private Loop Direct Attach, and Fabric Loop Attach profiles are supported with a sophisticated firmware implementation. All profiles, specifications, and interoperability maintained by the LSIFC929X are listed in Appendix B, "Reference Specifications".

Although optimized for a 64-bit PCI-X interface to communicate with the system CPU(s) and memory, the LSIFC929X also supports a 32-bit Peripheral Component Interface (PCI) environment. The system interface to the LSIFC929X minimizes the amount of PCI-X bandwidth required to support I/O requests. A packetized message passing interface reduces the number of single cycle PCI bus cycles. All FC Data traffic on the PCI-X bus occurs with zero wait state bursts across the PCI-X bus.

The intelligent LSIFC929X architecture allows the system to specify I/Os at the command level. The LSIFC929X manages I/Os at the Frame, Sequence and Exchange level. Error detection and I/O retries are also handled by the LSIFC929X, allowing the system to offload part of the exception handling work from the system driver.

Data Flows – The LSIFC929X uses a 64-bit (33 MHz, 66 MHz, or 133 MHz) PCI-X interface to pass control and data information between the system and the protocol controller. This interface is managed by the PCI-X Interface block, as shown in Figure 3.1. It is backward compatible with 32-bit/33 or 66 MHz buses.

Figure 3.1 LSIFC929X Block Diagram

For incoming serial data, the physical link transfers the data to Link Control using the GigaBlaze Integrated Transceiver. The Link Controller analyzes the received frame, and if appropriate, it passes the frame to the Receiver. The Receiver strips off the frame header and places it in a separate header buffer while the data in the frame payload is placed in a data buffer. The Frame Receiver uses the Receive Context Manager to manage the order and priority of the received frame. The data contained in the Receiver buffers is associated with a specific scatter/gather entry and passed on to the PCI-X Interface. The data also requests the PCI-X bus and bursts the data into system memory.

The I/O processor (IOP), with its firmware, provides the translation from FC specific protocols to the high level Block Storage, SCSI, and LAN message interface. This translation allows the LSIFC929X to be

www.DataSheet4U.com

integrated into the system as if it were a native Parallel SCSI or LAN device, hiding all FC-unique characteristics. Internal communication between the IOP and the Context manager occurs over an internal bus, which also is connected to an External Memory Controller. The IOP uses the External Memory Controller to access local memory. This memory contains the firmware, as well as the dynamic data structures used by the firmware.

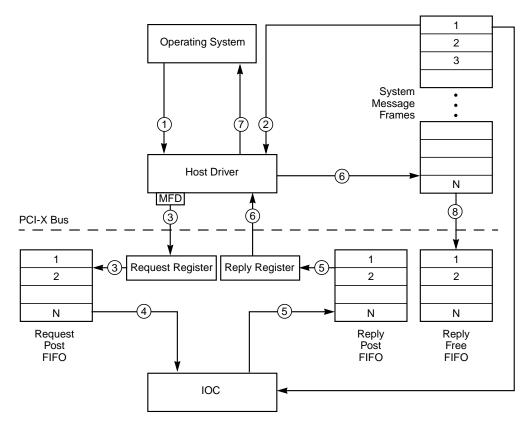
3.2 Message Interface

The LSIFC929X system interface is a high-performance, packetized, mailbox architecture that leverages the intelligence in the LSIFC929X to minimize traffic on the PCI-X bus.

There are two basic constructs in the Message Interface. The first construct, the Message, communicates between the system and the LSIFC929X. Messages are moved between the system(s) and the LSIFC929X using the second construct, a Transport mechanism.

3.2.1 Messages

The LSIFC929X uses two types of messages to communicate with the system. Request messages are created by the system to "request" an action by the LSIFC929X. Reply messages are used by the LSIFC929X to send status information back to the system. Request message data structures are up to 128 bytes in length. The message includes a message header and a payload. The header includes information to uniquely identify the message. The payload is specific to the Request itself, and is unique for SCSI, LAN, and Target messages. For more information regarding the details of the message format, refer to the *Fusion-MPTTM Message Passing Interface Specification*.


3.2.2 Message Flow

Before Requests can be posted to the LSIFC929X, the system must allocate and initialize a pool of message frames, and provide a mechanism to assign individual message frames on a per-request basis. The host also must provide one message frame per target LUN, and prime the Reply Free FIFOs for each function with the physical address of these message frames. When allocation has been completed, requests flow from the host to the LSIFC929X, as represented below and in Figure 3.2.

- 1. The host driver receives an I/O request from the operating system.
- 2. The host driver allocates a system message frame (SMF) and builds an I/O request message within the SMF. The allocation method is the responsibility of the host driver.
- 3. The host driver creates the Message Frame Descriptor (MFD) and writes the MFD to the Request Post FIFO.
- 4. The I/O Controller (IOC) reads the MFD from the Request Post FIFO and DMAs the request to a local message frame.
- 5. The IOC sends the appropriate Fibre Channel request and subsequently receives the reply from the target.
 - If the I/O status is successful, the IOC writes the MessageContext value, plus turbo reply bits, to the Reply Post FIFO, which automatically generates a system interrupt.
 - If the I/O status is not successful, the IOC pops a reply message frame from the Reply Free FIFO and generates a reply message in the reply message frame. The IOC then writes the system physical address of the reply message frame to the Reply Post FIFO, which generates a system interrupt.
- 6. The host driver receives a system interrupt and reads the Reply register. If there are no posted messages, the system reads the value 0xFFFFFFF.
- 7. The host driver responds to the operating system appropriately.
- 8. If the I/O status is not successful, the host driver returns it to the Reply Free FIFO.

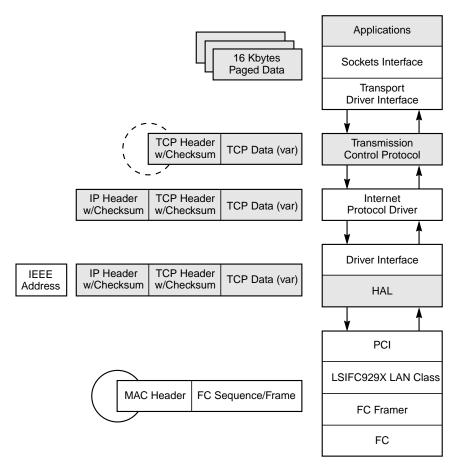
www.DataSheet4U.com

Figure 3.2 LSIFC929X Message Flow

3.3 SCSI Message

The SCSI message interface provides the most direct interface for block-oriented storage media. This includes disk drives and tape devices.

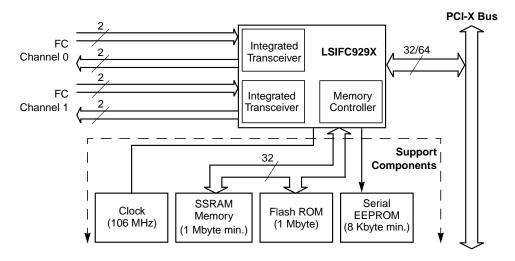
The SCSI I/O path translates a SCSI Command Descriptor Block (CDB) into a Fibre Channel Protocol (FCP) exchange. All FC device and target discovery operations are managed completely within the LSIFC929X. FC target devices are assigned a logical (bus, target ID) identifier, and are accessed by the system as if they were parallel SCSI devices. The system is responsible for scanning the target devices and identifying LUNs on the target devices.


In general, the system is responsible for retrying operations at an I/O request level. The LSIFC929X is responsible for responding to bus protocol-specific errors and exceptions and retrying bus sequences within the scope of an I/O operation. The system is also responsible for maintaining a timer for SCSI I/O operations if this is required by the host system. The host driver may use the provided SCSI Task Management functions to terminate one or more I/O operations when a timeout occurs. For details regarding the SCSI Message Class, refer to the *Fusion-MPTTM Message Passing Interface Specification.*

3.4 LAN Message

The LSIFC929X provides a LAN message interface that supports the system Transfer Communications Protocol (TCP) or User Datagram Protocol (UDP) network driver stack, providing Media Access Controller (MAC) level communication between FC ports.

The typical network driver stack in the system consists of a Socket Driver with a Transport Driver Interface, supported by TCP or UDP and IP drivers, and a Hardware Abstraction layer interface to the LSIFC929X. The TCP driver provides data buffer segmentation. The IP driver provides MTU segmentation, adds a header and checksum to the TCP data, and maps each Fibre Channel MAC port address to an IEEE standard address. ACKs are required at the TCP driver to ensure all segments of the data block are transmitted/received. The LAN message interface also may be used by proprietary protocol stacks in the host, as shown in Figure 3.3. In this environment, the LSIFC929X transmits and receives data between FC nodes without regard to data content. For details regarding the LAN Message Class, refer to the *Fusion-MPTTM Message Passing Interface Specification*.


3.5 Target Message

The Target Interface allows the LSIFC929X to be used as the system interface for FC bridge controllers. The LSIFC929X provides an FCP exchange level message interface that routes commands to the system. The system identifies the appropriate data, and passes a Scatter Gather List (SGL) to the LSIFC929X describing the data to transfer. A single Target message directs the LSIFC929X to send a Xfer_Rdy, as needed, and to transfer data and an FCP response. Target specific Process Login/Logout is managed by the system. Refer to the *Fusion-MPTTM Message Passing Interface Specification* for details on the Target Message Class.

3.6 Support Components

The memory controller block within the LSIFC929X provides access to external local memory resources required to manage FCP.

The following sections provide guidance in choosing the support components necessary for a fully functional implementation using the LSIFC929X. Figure 3.4 shows an LSIFC929X typical implementation diagram.

Figure 3.4 LSIFC929X Typical Implementation

3.6.1 SSRAM Memory

The primary function of this memory is to store data structures used by the LSIFC929X to manage exchanges and transmit and receive queues. The SSRAM memory also stores part of the run time image of the LSIFC929X firmware, such as initialization and error recovery code. The mainline code is stored within the internal LRAM for performance reasons.

The LSIFC929X uses a 32-bit, nonmultiplexed memory bus to access the SSRAM. This memory bus has the capability to address up to 4 Mbytes of SSRAM.

The LSIFC929X firmware also supports optional byte wide parity error detection. This configurable option is specified as a serial EEPROM parameter.

The amount of SSRAM (1 Mbyte) determines the maximum number of outstanding Request Messages (1024). This roughly equates to the maximum number of outstanding I/O requests pending in the LSIFC929X.

3.6.2 Flash ROM

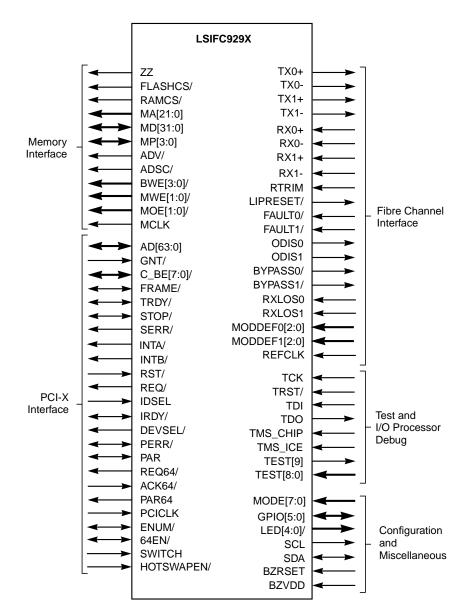
The memory controller in the LSIFC929X also manages an optional Flash ROM. If present, the Flash ROM stores the firmware for the LSIFC929X, and if desired, the Intel BIOS and/or Solaris Open Boot BIOS software.

If the Flash ROM is not used, then the host platform is responsible for downloading the IOP firmware to the LSIFC929X through the PCI-X interface. The LSIFC929X supports a simple register handshake interface for firmware download. Firmware may be directly written to the LSIFC929X internal memory and external SSRAM through this interface. Details of this implementation are available in the *Fusion-MPTTM Message Passing Interface Specification*. Flash ROM is optional for the LSIFC929X, but it is required for applications that require Intel or Solaris BIOS software.

The Flash ROM is accessed using the upper 8 bits of the Memory Interface. If a Flash ROM is to be used, then it should have a capacity of 1 Mbyte with a maximum access time of 150 ns. Refer to the *Fusion-MPTTM Message Passing Interface Specification* for details on the programming of the Flash ROM.

3.6.3 Serial EEPROM

The serial EEPROM stores nonvolatile data for the LSIFC929X, such as the World Wide Name, VPD, and other vendor-specific information. The SEEPROM data is programmed by the firmware, so the firmware must be downloaded and running before the SEEPROM is programmed. The required minimum size of the SEEPROM is 8 Kbytes.


Chapter 4 Signal Descriptions

This chapter contains signal descriptions for the LSIFC929X. A slash (/) indicates an active LOW signal, I/O = bidirectional signal, I = input signal, O = output signal, T/S = 3-state, and S/T/S = sustained 3-state. The chapter contains the following sections:

- Section 4.1, "PCI/PCI-X Interface"
- Section 4.2, "Fibre Channel Interface"
- Section 4.3, "Memory Interface"
- Section 4.4, "Configuration and Miscellaneous"
- Section 4.5, "Test and I/O Processor Debug"
- Section 4.6, "Power and Ground"

Figure 4.1 on page 4-2 is a functional signal grouping for the chip.

Figure 4.1 LSIFC929X Functional Signal Grouping

Signal Descriptions Copyright © 2002, 2003 by LSI Logic Corporation. All rights reserved.

4.1 PCI/PCI-X Interface

Table 4.1 lists the PCI/PCI-X Interface signals.

Table 4.1 PCI/PCI-X Interface

Signal	I/O	BGA Pad No.	Pad Type	Description
PCICLK	I	V1	5 V Tol In	Clock . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
RST/	I	U3	5 V Tol In	Reset . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
GNT/	I/O	U4	5 V Tol BiDir PCI	Grant . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
REQ/	I/O	V2	5 V Tol BiDir PCI	Request . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
REQ64/	I/O	AD14	5 V Tol BiDir PCI	Request64 . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
ACK64/	S/T/S	AE14	5 V Tol BiDir PCI	Acknowledge64 . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.

Signal	I/O	BGA Pad No.	Pad Type	Description
AD[63:0]	T/S	AE16, AE17, AD17, AC17, AF18, AE18, AD18, AF19, AC19, AE19, AC19, AE19, AF20, AE20, AC20, AF21, AE21, AD21, AF22, AC21, AE22, AD22, AF23, AE23, AE24, AE25, AD25, AD26, AD24, AC25, AD24, AC25, AC1, AC3, AD2, AF6, AE3, AC8, AE8, AF8, AD9, AE10, AC10, AC11, AE12, AC13, AD13, AC15, AC13	5 V Tol BiDir PCI	Address and Data. Refer to the PCI Local Bus Specification, Version 2.2, and the PCI-X Addendum to the PCI Local Bus Specification, Version 1.0a, for this signal description.
C_BE[7:0]/	T/S	AC14, AF15, AE15, AF14, AA2, AE4, AF7, AD10	5 V Tol BiDir PCI	Command and Byte Enables. Refer to the <i>PCI Local Bus Specification, Version 2.2</i> , and the <i>PCI-X Addendum to the PCI Local Bus Specification, Version 1.0a</i> , for this signal description.
IDSEL	I/O	AA3	5 V Tol BiDir PCI	Initialization Device Select . Refer to the <i>PCI</i> <i>Local Bus Specification, Version 2.2,</i> and the <i>PCI-X Addendum to the PCI Local Bus</i> <i>Specification, Version 1.0a,</i> for this signal description.
FRAME/	S/T/S	AF3	5 V Tol BiDir PCI	Cycle Frame . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.

Table 4.1 PCI/PCI-X Interface (Cont.)

Table 4.1 PCI/PCI-X Interface (Cont.)

Signal	I/O	BGA Pad No.	Pad Type	Description
IRDY/	S/T/S	AE5	5 V Tol BiDir PCI	Initiator Ready. Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
TRDY/	S/T/S	AF4	5 V Tol BiDir PCI	Target Ready . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
DEVSEL/	I/O	AC6	5 V Tol BiDir PCI	Device Select . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
STOP/	S/T/S	AD6	5 V Tol BiDir PCI	Stop . Refer to the <i>PCI Local Bus Specification</i> , <i>Version 2.2</i> , and the <i>PCI-X Addendum to the</i> <i>PCI Local Bus Specification</i> , <i>Version 1.0a</i> , for this signal description.
PERR/	S/T/S	AE6	5 V Tol BiDir PCI	Parity Error . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
SERR/	I/O	AF5	5 V Tol BiDir PCI	System Error . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
PAR	T/S	AE7	5 V Tol BiDir PCI	Parity . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
PAR64	I/O	AF16	5 V Tol BiDir PCI	Parity64 . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
INTA/	I/O	Τ4	5 V Tol BiDir PCI	Interrupt A . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.

Signal	I/O	BGA Pad No.	Pad Type	Description
INTB/	I/O	T2	5 V Tol BiDir PCI	Interrupt B . Refer to the <i>PCI Local Bus</i> Specification, Version 2.2, and the <i>PCI-X</i> Addendum to the <i>PCI Local Bus Specification</i> , Version 1.0a, for this signal description.
ENUM/	I/O	P4	5 V Tol BiDir PCI	Enumeration Interrupt . This signal must be asserted by a hot swap capable card immediately after insertion and during removal. This signal notifies the system host either that a board has been freshly inserted or that one is about to be extracted, and informs the system host that the configuration of the system has changed. The system host then can perform any necessary maintenance such as installing a device driver upon board insertion, or quiescing a device driver and the board.
64EN/	I/O	P1	5 V Tol BiDir PCI	PCI Bus Width Enable . This signal indicates the width of the bus when hot swap capability is enabled.
SWITCH	I	R1	5 V Tol In	Insertion/Deassertion Indicator . This signal is an input to the LSIFC929X to signal the insertion or impending extraction of a board. This signal causes the assertion of ENUM/. The operator normally activates the switch (actuator), waits for the illumination of the LED, and then extracts the board.
HOTSWAPEN/	I/O	T1	5 V Tol In	Hot Swap Enable . When this signal is LOW, the LSIFC929X is configured to conform to hot swap protocol. This includes changing the bus width detection method, the addition of configuration registers, and support for the ENUM/, BLUELED/ and SWITCH pins.
GPIO[2] (BLUELED/)	I/O	K1	3.3 V BiDir 8 mA with pull-up	GPIO[2] (BLUELED/). This signal drives a blue LED that is mounted on the front of hot swap capable host adapters. This signal indicates that the system software has been placed in a state for orderly extraction of the board. Refer also to the GPIO[2] pin description in Table 4.4 on page 4-14 for details on other operational capabilities of this signal.

Table 4.1 PCI/PCI-X Interface (Cont.)

4.2 Fibre Channel Interface

Table 4.2 lists the Fibre Channel Interface signals.

Table 4.2 Fibre Channel Interface

Signal	I/O	BGA Pad No.	Pad Type	Description
TX0+	0	B10	Diff Tx	Transmit differential data (Channel0).
TX1+	0	B15	Diff Tx	Transmit differential data (Channel1).
TX0-	0	A10	Diff Tx	Transmit differential data (Channel0).
TX1-	0	A15	Diff Tx	Transmit differential data (Channel1).
RX0+	I	B12	Diff Rx	Receive differential data (Channel0).
RX1+	I	B17	Diff Rx	Receive differential data (Channel1).
RX0-	I	A12	Diff Rx	Receive differential data (Channel0).
RX1-	I	A17	Diff Rx	Receive differential data (Channel1).
RTRIM	I	C13		Trim Resistor. This pin is the analog current reference for the integrated transceiver core. A 2.74 k $\Omega \pm 1\%$ resistor should be tied from the RTRIM pad to either the RXVDD0 or the RXVDD1 pin.
LIPRESET/	0	C14	3.3 V BiDir 4 mA	Loop Initialization Primitive Reset . This pin is asserted LOW when a selective reset is received that is targeted to an alias of this device. This pin is asserted for 1–2 ms after the last LIPr is received.
FAULT0/	1	B8	3.3 V TTL Input with pull-up	Electrical Fault . This active-LOW pin indicates that an electrical fault has been detected by the channel0 PHY device/module and, if the module has a laser, the laser has been turned off. This pin causes no interrupt or other reaction. It is assumed that a Link Failure occurs, and that the register bit reporting the value of this pin diagnoses the problem.

Table 4.2	Fibre	Channel	Interface	(Cont.)
-----------	-------	---------	-----------	---------

Signal	I/O	BGA Pad No.	Pad Type	Description
FAULT1/	1	B19	3.3 V TTL Input with pull-up	Electrical Fault . This active-LOW pin indicates that an electrical fault has been detected by the channel1 PHY device/module and, if the module has a laser, the laser has been turned off. This pin causes no interrupt or other reaction. It is assumed that a Link Failure occurs, and that the register bit reporting the value of this pin diagnoses the problem.
ODIS0	0	В7	3.3 V BiDir 4 mA	Output Disable, Channel0. This output, when asserted, disables an external GBIC or MIA transmitter for channel0. This output also clears a module fault.
ODIS1	0	B20	3.3 V BiDir 4 mA	Output Disable, Channel1. This output when asserted disables an external GBIC or MIA transmitter for channel1. This output also clears a module fault.
BYPASS0/	0	D8	3.3 V BiDir 4 mA	Bypass . This line is driven LOW when the LSIFC929X Link Controller block determines that channel0 of the device is operating in a loop environment and that the device has entered a bypassed mode. This may be caused by an internal request or by a loop primitive generated at another node.
BYPASS1/	0	D19	3.3 V BiDir 4 mA	Bypass . This line is driven LOW when the LSIFC929X Link Controller block determines that channel1 of the device is operating in a loop environment and the device has entered a bypassed mode. This may be caused by an internal request or a loop primitive generated at another node.
RXLOS0	I	A8	3.3 V 4 mA BiDir with pull-down	Received Signal Loss . This line is driven HIGH, disabling the on-chip receiver, when the GBIC for channel0 of the LSIFC929X detects a loss of signal. If enabled through the Link Control register, this signal becomes an output test strobe.

Signal	I/O	BGA Pad No.	Pad Type	Description
RXLOS1	I	A19	3.3 V 4 mA BiDir with pull-down	Received Signal Loss . This line is driven HIGH, disabling the on-chip receiver, when the GBIC for channel1 of the LSIFC929X detects a loss of signal. If enabled through the Link Control register, this signal becomes an output test strobe.
MODDEF0[2:0]	I	D9, A7, E11	3.3 V BiDir 8 mA with pull-up	Module Identifiers . GBIC and pluggable small form factor (SFF) optical module Identifiers (channel0).
MODDEF1[2:0]	I	E16, A20, D18	3.3 V BiDir 8 mA with pull-up	Module Identifiers . GBIC and pluggable SFF optical module Identifiers (channel1).
REFCLK	I	C1	3.3 V Schmitt Input	FC Reference Clock. FC reference clock (106.25 MHz ± 100 ppm).

Table 4.2 Fibre Channel Interface (Cont.)

4.3 Memory Interface

Table 4.3 sh	ows the	Memory	Interface	signals.
--------------	---------	--------	-----------	----------

Table 4.3Memory Interface

Signal	I/O	BGA Pad No.	Pad Type	Description
MD[31:0] <i>MD[31:24]</i>	I/O	P24, P23, N26, N25, N24, N23, M26, M25, M23, L26, L25, L23, K26, K25, K24, K23, D25, C26, C25, B25, A24, B24, C24, A23, B23, D23, A22, B22, C21, D21, D20, E20	3.3 V BiDir 4 mA	SSRAM Read/Write Data. MD[31:24] are used for the FLASH ROM Read/Write Data.
MP[3:0]	I/O	P25, J24, D26, E19	3.3 V 4 mA BiDir with pull-up	Memory Parity. Byte lane parity is as follows: MP [0]: Parity for MD[7: 0] MP [1]: Parity for MD[15: 8] MP [2]: Parity for MD[23:16] MP [3]: Parity for MD[31:24] Memory Parity may be optionally even, odd, or none (not used) as defined in the LSIFC929X Programming Model.

 Table 4.3
 Memory Interface (Cont.)

Signal I/O BGA Pad No. Pad Type Description	
MA[21:0] I/O AC26, AB26, AA25, Y26, Y25, W26, W25, W23, V26, V25, V24, U26, U25, U24, U26, U25, U24, ST23, R26, R25, R23, R22 3.3 V BiDir 4 mA SSRAM/FLASH ROM Addr These pins are also used at provide configuration inform LSIFC929X. Following are th functions of each of the pins "0" means the pin is p "0" means the pin is	t power-on to ation to the he power-on sense s: pulled up on reset ulled down on reset rnal put-downs) for power-on sense DP from booting booting following RXLOS1 signal e LOW RXLOS1 signal e HIGH RXLOS0 signal e LOW RXLOS0 signal e HIGH gnal polarity is gnal polarity is gnal polarity is gnal polarity is size is 256 Kbytes size is 512 Kbytes size is 1 Mbyte s present ort bus as 66 MHz ce as 66 MHz

Signal	I/O	BGA Pad No.	Pad Type	Description
MA[21:0]	I/O			MA[7] 1 = Report device as not PCI-X compatible 0 = Report device as PCI-X compatible
				MA[6] 1 = PciFunction1 SubSysCntlld LSB will be a "1" 0 = PciFunction1 SubSysCntlld LSB will be a "0"
				MA[5] 1 = PciFunction0 SubSysCntlld LSB will be a "1" 0 = PciFunction0 SubSysCntlld LSB will be a "0"
				MA[4] 1 = PciFunction1 DeviceId LSB will be a "1" 0 = PciFunction1 DeviceId LSB will be a "0"
				MA[3] 1 = PciFunction0 DeviceId LSB will be a "1" 0 = PciFunction0 DeviceId LSB will
				be a "0" MA[2] 1 = Force single function device (EEPROM override) 0 = Do not force single function
				 device (EEPROM override) MA[1] MA[0] Mot Applicable for power-on sense 1 = Set to this if EEPROM size is 1 Kbyte, 2 Kbytes, 4 Kbytes, 8 Kbytes, or 16 Kbytes 0 = Set to this if EEPROM size is 32 Kbytes or 64 Kbytes
MOE[1:0]/	0	F26, E26	3.3 V BiDir 8 mA	Memory Output Enable . When asserted LOW, the selected SRAM or Flash (MOE[1]/) device may drive data. This signal is typically an asynchronous input to SRAM and/or Flash devices. The two output enables allow for interleaving configurations, with MOE[0]/ being the only output enable used for a noninterleaved implementation.
MWE[1:0]/	0	F25, G23	3.3 V BiDir 4 mA	Memory Write Enables . These active-LOW bank write enables are required for interleaving configurations. MWE[0]/ is the only write enable used for a noninterleaved implementation.
FLASHCS/	0	E24	3.3 V BiDir 4 mA	FLASH Chip Select . This active-LOW chip select allows connection of a single, 8-bit FLASH ROM device.

Table 4.3 Memory Interface (Cont.)

Signal	I/O	BGA Pad No.	Pad Type	Description
MCLK	В	J26	3.3 V 8 mA T/S Output	Memory Clock . All synchronous RAM control/data signals are referenced to the rising edge of this clock. Exceptions are MOE/ and ZZ, which are typically asynchronous inputs to SRAM and/or FLASH devices.
ADSC/	В	J25	3.3 V 4 mA T/S Output	Address-Strobe-Controller. Initiates Read, Write, or chip deselect cycle. When this signal is asserted, it also latches the memory address signals.
ADV/	В	H26	3.3 V 4 mA T/S Output	Advance. When asserted LOW, the ADV/ input causes a selected synchronous SRAM to increment its burst address counter.
BWE[3:0]/	0	H25, H23, G26, G25	3.3 V BiDir 4 mA	Memory Byte Write Enables . These active-LOW, byte lane write enables allow writing of partial words to memory.
RAMCS/	0	F24	3.3 V BiDir 4 mA	RAM Chip Select . This pin is an active-LOW synchronous chip select for all SSRAMs (up to four SSRAMs for interleaved and depth expanded configuration without additional decode logic).
ZZ	0	F23	3.3 V BiDir 4 mA	Snooze Control . Asserting this output HIGH causes a synchronous SRAM to enter its lowest power state (not all RAMs support this function).

Table 4.3 Memory Interface (Cont.)

4.4 Configuration and Miscellaneous

Table 4.4 shows the Configuration and Miscellaneous signals.

Table 4.4 Configuration and Miscellaneous

Signal	I/O	BGA Pad No.	Pad Type	Description
GPIO[5:0]	I/O	J2, K3, H2, K1, J3, J1	3.3 V BiDir 8 mA with pull-up	General Purpose I/O Pins. These pins default to input mode on reset. These signals are controlled/observed by firmware and may be configured as inputs or outputs. GPIO[3] may be optionally enabled as an external interrupt source to the ARM RISC processor core. Refer also to the GPIO[2] pin description in Table 4.1 on page 4-3 for details on other operational capabilities of this signal.
LED[4:0]/	0	B3, E7, D6, B4, D7	3.3 V BiDir 8 mA	LED Outputs. These output signals may be controlled by firmware or driven by chip activity. When configured as activity driven, the LED[n] outputs have the following meanings when asserted LOW: LED[4]: Channel 1 – Fault LED[3]: Channel 1 – Active LED[2]: Channel 0 – Fault LED[1]: Channel 0 – Active LED[0]: Firmware Controlled (Heartbeat)
SCL	0	B21	3.3 V 4 mA BiDir with pull-up	Serial EEPROM clock.
SDA	I/O	A21	3.3 V 4 mA BiDir with pull-up	Serial EEPROM data.
MODE[7:0]	I	A4, C3, A5, D4, B2, E1, C2, E3	3.3 V TTL Input with pull-up	Mode Select. This 8-bit bus defines operational and test modes for the chip. Valid mode encodings are as follows: Mode[7:0] = 00111111 — Interleaved PBSRAM Mode[7:0] = 00011111 — Noninterleaved PBSRAM
BZRSET		P3		Reference resistor node for the PCI-X impedance controller.
BZVDD		R4		Reference resistor node for the PCI-X impedance controller.

4.5 Test and I/O Processor Debug

Table 4.5 shows the Test and I/O Processor Debug signals.

Table 4.5 Test and I/O Processor Debug

Signal	I/O	BGA Pad No.	Pad Type	Description	
тск	I	L2	3.3 V Schmitt with pull-up	JTAG/CtxMgr Debug Test Clock.	
TRST/	I	M2	3.3 V Schmitt with pull-up	JTAG/Debug Test Reset . Asynchronous active LOW.	
TDI	I	N4	3.3 V Schmitt with pull-up	JTAG/CtxMgr Debug Test Data In.	
TDO	В	M4	3.3 V 4 mA T/S Output with pull-up	JTAG/CtxMgr Debug Test Data Out.	
TMS_CHIP	Ι	L4	3.3 V Schmitt with pull-up	JTAG Test Mode Select.	
TMS_ICE	I	N1	3.3 V Schmitt with pull-up	CtxMgr Debug Test Mode Select.	
TEST[9]	0	N3		Factory Test Pin. Not used during normal operation, and must be left unconnected.	
TEST[8:0]	I	C6, H5, F3, F1, N2, L1, E8, B5, A6		Factory Test Pins. Not used during normal operation, and must be tied to VDDIO (3.3 V) or VSSIO (0 V) depending on pin, as follows:TEST[8]3.3 VTEST[7]3.3 VTEST[6]3.3 VTEST[6]3.3 VTEST[5]3.3 VTEST[4]0 VTEST[3]0 VTEST[2]0 V	
				TEST[1] 0 V TEST[0] 0 V	

4.6 Power and Ground

Table 4.6 shows the Power and Ground signals.

Table 4.6Power and Ground

Signal	BGA Pad No.	Description	Voltage
VDDC ¹	C9, C18, D5, D22, E15, G5, G22, J4, J23, M5, M22, R5, T22, W22, AA1, AB4, AB7, AB11, AB16, AB20, AB23, AC9, AC18	Core power.	1.8 V
VSSC	C5, C10, C17, C22, E4, E12, E23, H4, H22, L5, L22, P26, T5, V4, V23, Y5, Y22, AB8, AB12, AB15, AB19, AC5, AC22	Core ground.	0 V
VDDIO	A2, A26, B1, C7, C11, C15, C19, C23, D3, E6, E10, E14, E18, E22, E25, F5, G24, H3, J22, K5, L24, M3, N22, P5, R24, T3, U22, V5, W24, Y3, AA22, AB3, AB5, AB9, AB13, AB17, AB21, AC24, AD5, AD8, AD12, AD16, AD20, AE26, AF1, AF25	I/O power.	3.3 V
VSSIO	A1, A25, B26, C4, C8, C12, C16, C20, D24, E2, E5, E9, E13, E17, E21, F22, G3, H24, J5, K22, L3, L11, L12, L13, L14, L15, L16, M11, M12, M13, M14, M15, M16, M24, N5, N11, N12, N13, N14, N15, N16, P11, P12, P13, P14, P15, P16, P22, R3, R11, R12, R13, R14, R15, R16, T11, T12, T13, T14, T15, T16, T24, U5, V22, W3, Y24, AA5, AB6, AB10, AB14, AB18, AB22, AB25, AC4, AD7, AD11, AD15, AD19, AD23, AE1, AF2, AF26	I/O ground.	0 V

Signal	BGA Pad No.	Description	Voltage
V5PCIX	U1, U2, AC2, AC7, AC16, AC23, AD1, AE2, AF9, AF11, AF12, AF17, AF24	PCI-X 5 V reference power supply.	5 V
REFPLLVDD	D2	Analog power for PCI FSN cell.	1.8 V
REFPLLVSS	G4	Analog ground for PCI FSN cell.	0 V
PCIPLLVDD	AD3	Analog power for ARM clock generation.	1.8 V
PCIPLLVSS	AD4	Analog ground for ARM clock generation.	0 V
RXBVDD0	B13	Analog power for integrated transceiver core.	1.8 V
RXBVSS0	A13	Analog ground for integrated transceiver core.	0 V
RXBVDD1	D16	Analog power for integrated transceiver core.	1.8 V
RXBVSS1	D17	Analog ground for integrated transceiver core.	0 V
RXVDD0	D13	Analog power for integrated transceiver core.	1.8 V
RXVSS0	D12	Analog ground for integrated transceiver core.	0 V
RXVDD1	A18	Analog power for integrated transceiver core.	1.8 V
RXVSS1	B18	Analog ground for integrated transceiver core.	0 V
TXBVDD0	D11	Analog power for integrated transceiver core.	1.8 V
TXBVSS0	D10	Analog ground for integrated transceiver core.	0 V
TXBVDD1	B14	Analog power for integrated transceiver core.	1.8 V
TXBVSS1	A14	Analog ground for integrated transceiver core.	0 V
TXVDD0	A9	Analog power for integrated transceiver core.	1.8 V
TXVSS0	В9	Analog ground for integrated transceiver core.	0 V
TXVDD1	D14	Analog power for integrated transceiver core.	1.8 V
TXVSS1	D15	Analog ground for integrated transceiver core.	0 V

Table 4.6Power and Ground (Cont.)

The required core voltage on the LSIFC929X is 1.8 V. The I/O pads are 5 V tolerant. The PCI I/O voltage requires 3.3 V, and the GigaBlaze Fibre Channel transceiver interface requires 1.8 V. Configure the power supply to the chip so that the lower voltages power-up in advance of the higher voltages. The recommended power sequencing depends on the number of supplies used. For a PCI system with PCI buffers, the recommended power sequence is 1.8 V, then 5 V, and then 3.3 V; or make certain that the following conditions are met during the power cycling: (VDD1.8 > 1 V) before (VDD3.3 > 1 V) VDD5 > (VDD3.3 - 0.3 V)

www.DataSheet4U.com

Chapter 5 PCI-X Functional Description

This chapter provides a general description of the PCI-X features contained in the LSIFC929X Dual Channel Fibre Channel I/O processor chip. The chapter contains the following sections:

- Section 5.1, "Overview"
- Section 5.2, "PCI-X Addressing"
- Section 5.3, "PCI/PCI-X Bus Commands and Implementation"
- Section 5.4, "PCI Arbitration"
- Section 5.5, "PCI Cache Mode"

5.1 Overview

The host PCI-X interface complies with the *PCI Local Bus Specification, Revision 2.2,* and the *PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0a.* The LSIFC929X supports up to a 133 MHz, 64-bit PCI-X bus. The LSIFC929X supports 64-bit addressing with Dual Address Cycle (DAC).

The LSIFC929X is a true multifunction PCI-X device that presents a single electrical load to the PCI-X bus. The LSIFC929X uses a single REQ/-GNT/ pair to arbitrate for PCI-X bus mastership. Separate interrupt signals for PCI Function [0] and PCI Function [1] allow independent control of the two PCI functions.

5.2 PCI-X Addressing

The three physical address spaces the PCI specification defines are:

- PCI Configuration Space
- PCI I/O Space for operating registers
- PCI Memory Space for operating registers

The following sections describe the PCI address spaces.

5.2.1 PCI Configuration Space

The LSIFC929X defines an independent set of PCI Configuration Space registers for each PCI function. Each configuration space is a contiguous, 256-x-8-bit set of addresses. The system BIOS initializes the configuration registers using PCI-X configuration cycles. The LSIFC929X decodes the C_BE[3:0]/ field to determine whether a PCI-X cycle intends to access the configuration register space. The IDSEL signal behaves as a chip select signal that enables access to the configuration register space only. The LSIFC929X ignores configuration read/write cycles when IDSEL is not asserted.

Because the LSIFC929X is a multifunction PCI-X device, bits AD[10:8] decode either the PCI Function [0] Configuration Space (AD[10:8] = 0b000) or the PCI Function [1] Configuration Space (AD[10:8] = 0b001). The LSIFC929X does not respond to any other encodings of AD[10:8]. Bits AD[7:2] select one of the 64 Dword registers in the LSIFC929X PCI Configuration Space. Bits AD[1:0] determine whether the configuration command is a Type 0 Configuration Command (AD[1:0] = 0b00) or a Type 1 Configuration Command (AD[1:0] = 0b01). Because the LSIFC929X is not a PCI Bridge device, all PCI Configuration Commands designated for the LSIFC929X must be Type 0. Bits C_BE[3:0]/ address the individual bytes within each Dword and determine the type of access to perform.

5.2.2 PCI I/O Space

The PCI specification defines I/O space as a contiguous 32-bit, I/O address that all system resources share, including the LSIFC929X. The I/O Base Address register determines the 256-byte PCI I/O area that the PCI device occupies.

5.2.3 PCI Memory Space

The LSIFC929X contains two PCI memory spaces: PCI Memory Space [0] and PCI Memory Space [1]. PCI Memory Space [0] supports normal memory accesses, while PCI Memory Space [1] supports diagnostic memory accesses. The LSIFC929X requires 64 Kbytes of memory space.

The PCI specification defines memory space as a contiguous, 64-bit memory address that all system resources share. The Memory [0] Base Address Low and Memory [0] Base Address High registers determine which 64 Kbyte memory area PCI Memory Space [0] occupies. The Memory [1] Base Address Low and Memory [1] Base Address High registers determine which 64 Kbyte memory area PCI Memory Space [1] occupies.

5.3 PCI/PCI-X Bus Commands and Implementation

Bus commands indicate to the target the type of transaction the master is requesting. The master encodes the bus commands on the C_BE[3:0]/ lines during the address phase. The PCI/PCI-X bus commands and their encodings appear in Table 5.1.

C_BE[3:0]/	PCI Bus Command	PCI-X Bus Command	Supports as Master	Supports as Slave
0b0000	Interrupt Acknowledge	Interrupt Acknowledge	No	No
0b0001	Special Cycle	Special Cycle	No	No
0b0010	I/O Read	I/O Read	Yes	Yes
0b0011	I/O Write	I/O Write	Yes	Yes
0b0100	Reserved	Reserved	N/A	N/A
0b0101	Reserved	Reserved	N/A	N/A
0b0110	Memory Read	Memory Read Dword	Yes	Yes
0b0111	Memory Write	Memory Write	Yes	Yes
0b1000	Reserved	Alias to Memory Read Block	PCI: N/A PCI-X: No	PCI: N/A PCI-X: Yes
0b1001	Reserved	Alias to Memory Write Block	PCI: N/A PCI-X: No	PCI: N/A PCI-X: Yes
0b1010	Configuration Read	Configuration Read	No	Yes
0b1011	Configuration Write	Configuration Write	No	Yes
0b1100	Memory Read Multiple	Split Completion	Yes	Yes ²
0b1101	Dual Address Cycles (DAC)	Dual Address Cycles (DAC)	Yes	Yes
0b1110	Memory Read Line	Memory Read Block	Yes	Yes ²
0b1111	Memory Write and Invalidate	Memory Write Block	Yes	Yes ³

Table 5.1 PCI/PCI-X Bus Commands and Encodings¹

The LSIFC929X ignores reserved commands as a slave and never generates them as a master.
 When acting as a slave in the PCI mode, the LSIFC929X supports this command as the

PCI Memory Read command.

3. When acting as a slave in the PCI mode, the LSIFC929X supports this command as the PCI Memory Write command.

> The following sections describe how the LSIFC929X implements these commands.

5.3.1 Interrupt Acknowledge Command

The LSIFC929X ignores this command as a slave and never generates it as a master.

5.3.2 Special Cycle Command

The LSIFC929X ignores this command as a slave and never generates it as a master.

5.3.3 I/O Read Command

The I/O Read command reads data from an agent mapped in the I/O address space. When decoding I/O commands, the LSIFC929X decodes the lower 32 address bits and ignores the upper 32 address bits. The LSIFC929X supports this command when operating in either the PCI or PCI-X bus mode.

5.3.4 I/O Write Command

The I/O Write command writes data to an agent mapped in the I/O address space. When decoding I/O commands, the LSIFC929X decodes the lower 32 address bits and ignores the upper 32 address bits. The LSIFC929X supports this command when operating in either the PCI or PCI-X bus mode.

5.3.5 Memory Read Command

The LSIFC929X uses the Memory Read command to read data from an agent mapped in the memory address space. The target can perform an anticipatory read if such a read produces no side effects. The LSIFC929X supports this command when operating in the PCI bus mode.

5.3.6 Memory Read Dword Command

The Memory Read Dword command reads up to a single Dword of data from an agent mapped in the memory address space and can only be initiated as a 32-bit transaction. The target can perform an anticipatory read if such a read produces no side effects. The LSIFC929X supports this command when operating in the PCI-X bus mode.

5.3.7 Memory Write Command

The Memory Write command writes data to an agent mapped in the memory address space. The target assumes responsibility for data coherency when it returns "ready". The LSIFC929X supports this command when operating in either the PCI or PCI-X bus mode.

5.3.8 Alias to Memory Read Block Command

This command is reserved for future implementations of the PCI specification. The LSIFC929X never generates this command as a master. When a slave, the LSIFC929X supports this command using the Memory Read Block command.

5.3.9 Alias to Memory Write Block Command

This command is reserved for future implementations of the PCI specification. The LSIFC929X never generates this command as a master. When a slave, the LSIFC929X supports this command using the Memory Write Block command.

5.3.10 Configuration Read Command

The Configuration Read command reads the configuration space of a device. The LSIFC929X never generates this command as a master, but does respond to it as a slave. A device on the PCI bus selects the LSIFC929X by asserting its IDSEL signal when bits AD[1:0] = 0b00. During the address phase of a configuration cycle, bits AD[7:2] address one of the 64 Dword registers in the configuration space of each device. C_BE[3:0]/ address the individual bytes within each Dword register and determine the type of access to perform. Bits AD[10:8] address either the PCI Function [0] Configuration Space (AD[10:8] = 0b000) or the PCI Function [1] Configuration Space (AD[10:8] = 0b001). The LSIFC929X treats AD[63:11] as logical don't cares.

5.3.11 Configuration Write Command

The Configuration Write command writes the configuration space of a device. The LSIFC929X never generates this command as a master, but does respond to it as a slave. A device on the PCI bus selects the LSIFC929X by asserting its IDSEL signal when bits AD[1:0] = 0b00.

During the address phase of a configuration cycle, bits AD[7:2] address one of the 64 Dword registers in the configuration space of each device. C_BE[3:0]/ address the individual bytes within each Dword register and determine the type of access to perform. Bits AD[10:8] decode either the PCI Function [0] Configuration Space (AD[10:8] = 0b000) or the PCI Function [1] Configuration Space (AD[10:8] = 0b001). The LSIFC929X treats AD[63:11] as logical don't cares.

5.3.12 Memory Read Multiple Command

The Memory Read Multiple command is identical to the Memory Read command, except it additionally indicates that the master intends to fetch multiple cache lines before disconnecting. The LSIFC929X supports PCI Memory Read Multiple functionality when operating in the PCI mode and determines when to issue a Memory Read Multiple command instead of a Memory Read command.

Burst Size Selection – The Memory Read Multiple command reads multiple cache lines of data during a single bus ownership. The number of cache lines the LSIFC929X reads is a multiple of the cache line size, which the *PCI Local Bus Specification, Revision 2.2,* provides. The LSIFC929X selects the largest multiple of the cache line size based on the amount of data to transfer.

5.3.13 Split Completion Command

Split transactions in PCI-X replace the delayed transactions in conventional PCI. The LSIFC929X supports up to eight outstanding split transactions when operating in the PCI-X mode. A split transaction consists of at least two separate bus transactions: a split request, which the requester initiates; and one or more split completion commands, which the completer initiates. The *PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0a,* permits split transaction completion for the Memory Read Block, Alias to Memory Read Block, Memory Read Dword, Interrupt Acknowledge, I/O Read, I/O Write, Configuration Read, and Configuration Write commands. When operating in the PCI-X mode, the LSIFC929X supports the Split Completion command for all of these commands except the Interrupt Acknowledge command, which the LSIFC929X neither responds to nor generates.

5.3.14 Dual Address Cycles (DAC) Command

The LSIFC929X performs Dual Address Cycles (DAC), according to the *PCI Local Bus Specification, Revision 2.2.* The LSIFC929X supports this command when operating in either the PCI or PCI-X bus mode.

5.3.15 Memory Read Line Command

This command is identical to the Memory Read command except it additionally indicates that the master intends to fetch a complete cache line. The LSIFC929X supports this command when operating in the PCI mode.

5.3.16 Memory Read Block Command

The LSIFC929X uses this command to read from memory. The LSIFC929X supports this command when operating in the PCI-X mode.

5.3.17 Memory Write and Invalidate Command

The Memory Write and Invalidate command is identical to the Memory Write command, except it additionally guarantees a minimum transfer of one complete cache line. The master uses this command when it intends to write all bytes within the addressed cache line in a single PCI transaction unless interrupted by the target. This command requires implementation of the PCI Cache Line Size register. The LSIFC929X determines when to issue a Write and Invalidate command instead of a Memory Write command, and supports this command when operating in the PCI bus mode.

5.3.17.1 Alignment

The LSIFC929X uses the calculated line size value to determine whether the current address aligns to the cache line size. If the address does not align, the LSIFC929X bursts data using a noncache command. If the starting address aligns, the LSIFC929X issues a Memory Write and Invalidate command using the cache line size as the burst size.

5.3.17.2 Multiple Cache Line Transfers

The Memory Write and Invalidate command can write multiple cache lines of data in a single bus ownership. The LSIFC929X issues a burst transfer as soon as it reaches a cache line boundary. The PCI Local Bus specification states that the transfer size must be a multiple of the cache line size. The LSIFC929X selects the largest multiple of the cache line size based on the transfer size. When the DMA buffer contains less data than the value Cache Line Size register specifies, the LSIFC929X issues a Memory Write command on the next cache boundary to complete the data transfer.

5.3.18 Memory Write Block Command

The LSIFC929X uses this command to burst data to memory. The LSIFC929X supports this command when operating in the PCI-X bus mode.

5.4 PCI Arbitration

The LSIFC929X contains independent bus mastering functions for each of the SCSI functions and for the system interface. The system interface bus mastering function manages DMA operations as well as the request and reply message frames. The SCSI channel bus mastering functions manage data transfers across the SCSI channels.

The LSIFC929X uses a single REQ/-GNT/ signal pair to arbitrate for access to the PCI bus. To ensure fair access to the PCI bus, the internal arbiter uses a round robin arbitration scheme to decide which of the three internal bus mastering functions can arbitrate for access to the PCI bus.

5.5 PCI Cache Mode

The LSIFC929X supports an 8-bit, Cache Line Size register. This register provides the ability to sense and react to nonaligned addresses corresponding to cache line boundaries. The LSIFC929X determines when to issue a PCI cache command (Memory Read Line, Memory Read Multiple, and Memory Write and Invalidate) or PCI noncache command (Memory Read or Memory Write).

www.DataSheet4U.com

Chapter 6 Registers

This chapter describes the PCI host register space. The chapter consists of the following sections:

- Section 6.1, "PCI-X Configuration Space Register Description"
- Section 6.2, "PCI I/O Space and Memory Space Register Description"
- Section 6.3, "Shared Memory"

The register map at the beginning of each register description provides the default bit settings for the register. Shading indicates a reserved bit or register. Do not access the reserved address areas.

There are two PCI functions on the LSIFC929X. Each PCI function has its own independent interrupt pin and its own PCI Address space. The PCI System Address space consists of three regions: PCI Configuration Space, PCI Memory Space, and PCI I/O Space. PCI Configuration Space supports the identification, configuration, initialization, and error management functions for the LSIFC929X PCI devices. PCI Memory Space [0] and PCI Memory Space [1] form PCI Memory Space. PCI Memory Space [1] provides diagnostic memory accesses. PCI I/O Space and PCI Memory Space [0] provide normal system access to memory.

6.1 PCI-X Configuration Space Register Description

This section provides bit level descriptions of the PCI Configuration Space registers. Table 6.1 defines the PCI Configuration Space registers. A separate set of PCI Configuration Space registers exists for each PCI function.

The LSIFC929X enables, orders, and locates the PCI-extended capability register structures (Power Management, Messaged Signaled Interrupts, and PCI-X) to optimize device performance. The LSIFC929X does not hardcode the location and order of the PCI-extended capability structures. The address and location of the PCI-extended capability structures are subject to change. To access a PCI-extended capability structure, follow the pointers held in the Capability Pointer registers and identify the extended capability structure with the Capability ID register for the given structure.

31		15		Offset	Page		
Devic	e ID	Vend	lor ID	0x00	6-4		
Sta	tus	Com	mand	0x04	6-5		
	Class Code		Revision ID	0x08	6-9		
Reserved	Header Type	Latency Timer	Cache Line Size	0x0C	6-10		
	I/O Ba	se Address		0x10	6-12		
	Memory [0] Base Address Low						
	Memory [0] Base Address High						
	Memory [1] E	Base Address Low		0x1C	6-13		
	Memory [1] B	ase Address High		0x20	6-14		
		0x24	-				
	0x28	-					
Subsys	tem ID	Subsystem	Subsystem Vendor ID				
	Expansion R	OM Base Address	0x30	6-16			
	Reserved		Capabilities Pointer	0x34	6-17		
				0x38	-		
Maximum Latency	Minimum Grant	Interrupt Pin	Interrupt Line	0x3C	6-18		
	Re	served			-		
Power Managem	ent Capabilities	PM Next Pointer	PM Capability ID		6-20		
PM Data	PM BSE	Power Manageme	ent Control/Status		6-22		
	Re	served			-		
Message	Control	MSI Next Pointer	MSI Capability ID		6-24		
	Messa	ge Address		0x40-	6-26		
	Message	Upper Address		0x40-	6-26		
	Message Data						
	Re	served]	-		
PCI-X Co	ommand	PCI-X Next Pointer	PCI-X Capability ID	1	6-28		
	PCI-	X Status]	6-30		
	Re	eserved			-		

Table 6.1 LSIFC929X PCI-X Configuration Space Address Map

Register: 0x00–0x01 Vendor ID Read Only

15							8	7							0
	Vendor ID														
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

Vendor ID

[15:0]

This 16-bit register identifies the device manufacturer. The Vendor ID is 0x1000.

Register: 0x02–0x03 Device ID Read Only

15							8	7							0
	Device ID														
0	0	0	0	0	1	1	0	0	0	1	0	0	0	1	x

Device ID

[15:0]

This register identifies the particular device. The most significant 12 bits are hardcoded to a constant of 0x062. The LSB is dependent upon the power-on-sense functions corresponding to the states of pins MA[4] and MA[3] as decoded in Table 6.2.

Single/Dual Channel	State of MA[4:3]	Device ID
Function 1		
Dual Channel	MA[4] = 0	0x0626
Dual Channel	MA[4] = 1	0x0627
Single Channel	MA[4] = 0	0x0628
Single Channel	MA[4] = 1	0x0629
Function 0		
Dual Channel	MA[3] = 0	0x0626
Dual Channel	MA[3] = 1	0x0627
Single Channel	MA[3] = 0	0x0628
Single Channel	MA[3] = 1	0x0629

Table 6.2Device ID Values

Register: 0x04–0x05 Command Read/Write

15							8	7							0
	Command														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register provides coarse control over how the PCI function generates and responds to PCI cycles. Writing a zero to this register logically disconnects the LSIFC929X PCI function from the PCI bus for all accesses except configuration accesses.

Reserved

[15:9]

8

7

This field is reserved.

SERR/ Enable

Setting this bit enables the LSIFC929X to activate the SERR/ driver. Clearing this bit disables the SERR/ driver.

Reserved

This bit is reserved.

6-6

Enable Parity Error Response

Setting this bit enables the LSIFC929X PCI function to detect parity errors on the PCI bus and report these errors to the system. Clearing this bit causes the LSIFC929X PCI function to set the Detected Parity Error bit (bit 15 in the Status register (register 0x06–0x07)) but not assert the PERR/ signal when the PCI function detects a parity error. This bit only affects parity checking. The PCI function always generates parity for the PCI bus.

Reserved

This bit is reserved.

Write and Invalidate Enable

Setting this bit enables the PCI function to generate write and invalidate commands on the PCI bus when operating in the conventional PCI mode.

Reserved

This bit is reserved.

Enable Bus Mastering

Setting this bit allows the PCI function to behave as a PCI bus master. Clearing this bit disables the PCI function from generating PCI bus master accesses.

Enable Memory Space

This bit controls the ability of the PCI function to respond to Memory Space accesses. Setting this bit allows the LSIFC929X to respond to Memory Space accesses at the address range specified by the Memory [0] Base Address Low, Memory [0] Base Address High, Memory [1] Base Address Low, Memory [1] Base Address High, and the Expansion ROM Base Address registers. Clearing this bit disables the PCI function response to memory space accesses.

Enable I/O Space

This bit controls the LSIFC929X PCI function response to I/O space accesses. Setting this bit enables the PCI function to respond to I/O Space accesses at the address range the PCI Configuration Space I/O Base Address register specifies. Clearing this bit disables the PCI function response to I/O space accesses.

2

1

3

0

6

5

4

Register: 0x06–0x07 Status Read/Write

15	15 8 7											0			
	Status														
0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0

Reads to this register behave normally. To clear a bit location that is currently set, write the bit to one (1). For example, to clear bit 15 when it is set, and not affect any other bits, write 0x8000 to the register.

Detected Parity Error (from Slave) This bit is set according to the <i>PCI Local Bus</i> <i>Specification, Revision 2.2,</i> and the <i>PCI-X Addendum</i> <i>the PCI Local Bus Specification, Revision 1.0a.</i>	15 to
Signaled System Error The LSIFC929X PCI function sets this bit when asserting the SERR/ signal.	14 ng
Received Master Abort (from Master) A master device sets this bit when a Master Abort command terminates its transaction (except for Special Cycle).	13
Received Target Abort (from Master) A master device sets this bit when a Target Abort command terminates its transaction.	12
Reserved This bit is reserved.	11
DEVSEL/ Timing [10 These two read-only bits encode the timing of the DEVSEL/ signal and indicate the slowest time that a device asserts the DEVSEL/ signal for any bus comman except Configuration Read and Configuration Write. Th LSIFC929X only supports medium DEVSEL/ timing. The possible timing values are as follows:	- nd ne

0b00	Fast
0b01	Medium
0b10	Slow
0b11	Reserved

Data Parity Error Reported

This bit is set according to the *PCI Local Bus* Specification, Revision 2.2, and the *PCI-X Addendum to* the *PCI Local Bus Specification, Revision 1.0a.* Refer to bit 0 of the PCI-X Command register for details.

Reserved

This field is reserved.

66 MHz Capable

The MA[10] Power-On Sense pin controls this bit. Allowing the internal pull-down to pull MA[10] LOW sets this bit and indicates to the host system that the LSIFC929X PCI function is capable of operating at 66 MHz. Pulling MA[10] HIGH clears this bit and indicates to the host system that the LSIFC929X PCI function is not capable of operating at 66 MHz. Refer to Table 4.3 on page 4-10 for details.

New Capabilities

The LSIFC929X PCI function sets this read-only bit to indicate a list of PCI extended capabilities such as PCI Power Management, Message Signaled Interrupt (MSI), and PCI-X support.

Reserved

This field is reserved.

[3:0]

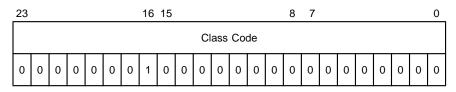
4

8

5

Register: 0x08 Revision ID Read/Write

7							0			
	Revision ID									
х	х	х	х	х	х	х	х			

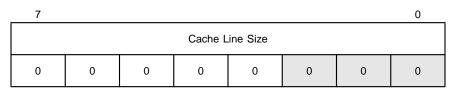

Revision ID

[7:0]

This register indicates the current revision level of the device.

Register: 0x09–0x0B Class Code Read Only

Read Only



Class Code

[23:0]

This 24-bit register identifies the generic function of this device. The upper byte of this register is a base class code, the middle byte is a subclass code, and the lower byte identifies a specific register-level programming interface. The value of this register is 0x0C0400, and is written by the SEEPROM (provided the SEEPROM is present in the system). If no SEEPROM is present in the system, the default Class Code is 0x010000.

Register: 0x0C Cache Line Size Read/Write

Cache Line Size

[7:3]

This register specifies the system cache line size in units of 32-bit words. In the conventional PCI mode, the LSIFC929X PCI function uses this register to determine whether to use Write and Invalidate or Write commands for performing write cycles. Programming this register to a number other than a nonzero power of two disables the the use of the PCI performance commands to execute data transfers. The LSIFC929X PCI function ignores this register when operating in the PCI-X mode.

Reserved

[2:0]

This field is reserved.

Register: 0x0D Latency Timer Read/Write

7							0		
Latency Timer									
0	х	0	0	0	0	0	0		

Latency Timer

[7:4]

This register specifies, in units of PCI bus clocks, the value of the Latency Timer for this PCI bus master.

Reserved

[3:0]

This field is reserved.

Register: 0x0E Header Type Read Only

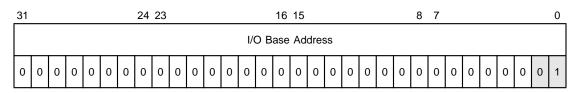
7							0		
Header Type									
х	0	0	0	0	0	0	0		

Header Type

[7:0]

[7:0]

This 8-bit register identifies the layout of bytes 0x10 through 0x3F in configuration space and also indicates whether this device is a single function or multifunction PCI device.


Register: 0x0F Reserved

7	7									
Reserved										
0	0 0 0 0 0 0 0									

Reserved

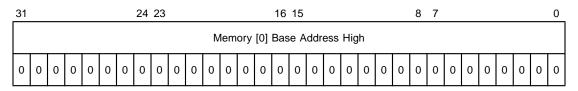
This register is reserved.

Register: 0x10–0x13 I/O Base Address Read/Write

This register maps the operating register set into I/O space. The LSIFC929X requires 256 bytes of I/O space for this register. Hardware sets bit 0 to 0b1. Bit 1 is reserved and returns 0b0 on all reads.

I/O Base Address	[31:2]
This field contains the I/O Base Address.	
Reserved	[1:0]

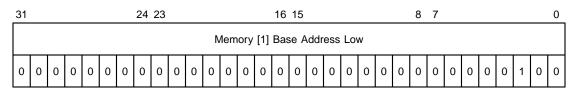
This field is reserved.


Register: 0x14–0x17 Memory [0] Base Address Low Read/Write

31							24	23							16	15							8	7							0
											N	1em	nory	[0]	Bas	se A	٨ddr	ess	Lo	w											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

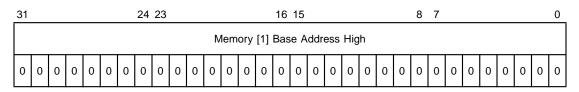
The Memory [0] Base Address Low register and the Memory [0] Base Address High register map SCSI operating registers into Memory Space [0]. The Memory [0] Base Address Low register contains the lower 32 bits of the Memory Space [0] base address. Hardware programs bits [9:0] to 0b000000100, which indicates that the Memory Space [0] base address is 64 bits wide and that the memory data is not prefetchable. The LSIFC929X requires 1024 bytes of memory space.

Memory [0] Base Address Low[31:0]This field contains the Memory [0] Base Address Lowaddress.


Register: 0x18–0x1B Memory [0] Base Address High Read/Write

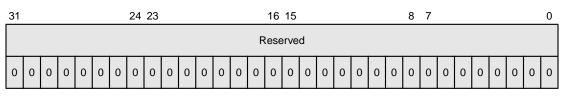
The Memory [0] Base Address High register and the Memory [0] Base Address Low register map SCSI operating registers into Memory Space [0]. The Memory [0] Base Address High register contains the upper 32 bits of the Memory Space [0] base address. The LSIFC929X requires 1024 bytes of memory space.

Memory [0] Base Address High[31:0]This field contains the Memory [0] Base Address High
address.High


Register: 0x1C–0x1F Memory [1] Base Address Low Read/Write

The Memory [1] Base Address Low register and the Memory [1] Base Address High register map the RAM into Memory Space [1]. The Memory [1] Base Address Low register contains the lower 32 bits of the Memory Space [1] base address. Hardware programs bits [12:0] to 0b000000000100, which indicates that the Memory Space [1] base address is 64 bits wide and that the memory data is not prefetchable. The LSIFC929X requires 64 Kbytes of memory for Memory Space [1].

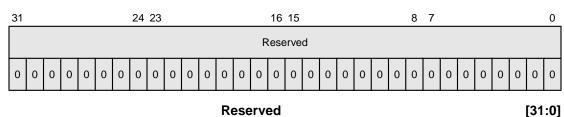
Memory [1] Base Address Low[31:0]This field contains the Memory [1] Base Address Lowaddress.


Register: 0x20–0x23 Memory [1] Base Address High Read/Write

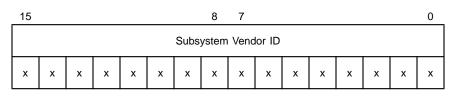
The Memory [1] Base Address Low register and the Memory [1] Base Address High register map the RAM into Memory Space [1]. The Memory [1] Base Address Low register contains the upper 32 bits of the Memory Space [1] base address. The LSIFC929X requires 64 Kbytes of memory for Memory Space [1].

Memory [1] Base Address High[31:0]This field contains the Memory [1] Base Address High
address.High

Register: 0x24–0x27 Reserved



[31:0]


This register is reserved.

Register: 0x28–0x2B Reserved

This register is reserved.

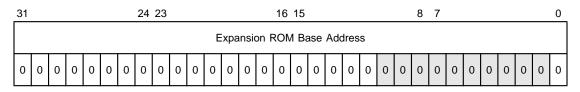
Register: 0x2C-0x2D Subsystem Vendor ID Read Only

Subsystem Vendor ID [15:0] This 16-bit register uniquely identifies the vendor that manufactures the add-in board or subsystem where the LSIFC929X resides. This register provides a mechanism for an add-in card vendor to distinguish their cards from those of another vendor, even if the cards use the same PCI controller (and have the same Vendor ID and Device ID).

The external serial EEPROM can hold a vendor-specific, 16-bit value for this register, which the board designer must obtain from the PCI Special Interest Group (PCI-SIG).

Register: 0x2E-0x2F Subsystem ID **Read Only**

15							8	7							0
						S	ubsys	stem I	D						
x	x	x	x	x	x	x	x	x	x	x	x	х	x	x	x


SID

SVID

Subsystem ID

[15:0] This 16-bit register uniquely identifies the add-in board or subsystem where this PCI device resides. This register provides a mechanism for an add-in card vendor to distinguish their cards from one another even if the cards use the same PCI controller (and have the same Vendor ID and Device ID). The board designer can store a vendor-specific, 16-bit value in an external serial EEPROM.

Register: 0x30–0x33 Expansion ROM Base Address Read/Write

This 32-bit register contains the base address and size information for the expansion ROM.

Expansion ROM Base Address [31:11]

These bits correspond to the upper 21 bits of the expansion ROM base address. The host system detects the size of the external memory by first writing 0xFFFFFFF to this register and then reading the register back. The LSIFC929X responds with zeros in all don't care locations. The least significant one (1) that remains represents the binary version of the external memory size. For example, to indicate an external memory size of 32 Kbytes, this register returns ones in the upper 17 bits when written with 0xFFFFFFF and read back.

Reserved

This field is reserved.

Expansion ROM Enable

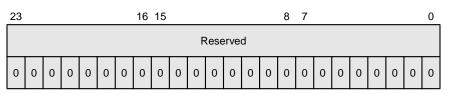
This bit controls whether the device accepts accesses to its expansion ROM. Setting this bit enables address decoding. Depending on the system configuration, the device can optionally use an expansion ROM. Note that to access the expansion ROM, the user must also set bit 1 in the PCI Command register.

[10:1]

0

Register: 0x34 **Capabilities Pointer Read Only**

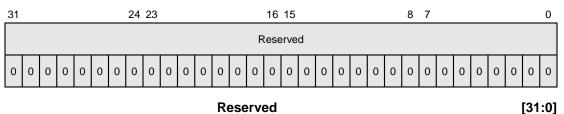
7							0
			Capabilitie	es Pointer			
х	х	х	х	х	х	х	х


Capabilities Pointer

[7:0]

[23:0]

This register indicates the location of the first extended capabilities register in PCI Configuration Space. The value of this register varies according to system configuration.


Register: 0x35-0x37 Reserved

Reserved

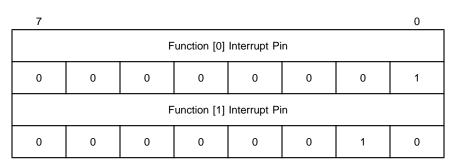
This register is reserved.

Register: 0x38-0x3B Reserved

Reserved

This register is reserved.

Register: 0x3C Interrupt Line Read/Write

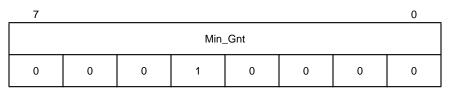

7							0
			Interru	pt Line			
0	0	0	0	0	0	0	0

Interrupt Line

[7:0]

This register communicates interrupt line routing information. Power-On-Self-Test (POST) software writes the routing information into this register as it configures the system. This register indicates the system interrupt controller input to which this PCI function interrupt pin connects. System architecture determines the values in this register.

Register: 0x3D Interrupt Pin Read Only

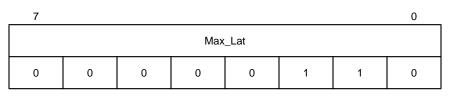


Interrupt Pin

[7:0]

The encoding of this read-only register is unique to each function on the LSIFC929X. It indicates which interrupt pin the function uses. The value for Function [0] is 0x01, which indicates that Function [0] presents interrupts on the INTA/ or ALT_INTA pins. The value for Function [1] is 0x02, which indicates that Function [1] presents interrupts on the INTB/ or ALT_INTB/ pins.

Register: 0x3E Minimum Grant Read Only


Min_Gnt

[7:0]

This register specifies the desired settings for latency timer values in units of 0.25 μ s. The Min_Gnt field specifies how long of a burst period the device needs. The LSIFC929X sets this register to 0x10, indicating a burst period of 4.0 μ s.

Register: 0x3F Maximum Latency

Read Only

Max_Lat

[7:0]

This register specifies the desired settings for latency timer values in units of 0.25 μ s. The Max_Lat field specifies how often the device needs to gain access to the PCI bus. The LSIFC929X sets this register to 0x06, indicating a burst period of 1.5 μ s.

Register: 0xXX Power Management Capability ID Read Only

7							0
		Powe	r Managem	ent Capabil	lity ID		
0	0	0	0	0	0	0	1

Power Management Capability ID [7:0]

This register indicates the type of the current data structure. It is set to 0x01 to indicate the Power Management Data Structure.

Register: 0xXX

Power Management Next Pointer Read Only

7							0
		Powe	r Managem	nent Next Po	ointer		
х	х	х	х	х	х	х	х

Power Management Next Pointer

[7:0]

This register contains the pointer to the next item in the PCI function extended capabilities list. The value of this register varies according to system configuration.

Register: 0xXX Power Management Capabilities Read Only

15							8	7							0
					F	ower	Mana	gemei	nt Cap	abiliti	es				
0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0

PME_Support

These bits define the power management states in which the device asserts the Power Management Event (PME) pin. The LSIFC929X clears these bits because the LSIFC929X does not provide a PME signal.

D2_Support

The PCI function sets this bit since the LSIFC929X supports power management state D2.

D1_Support

The PCI function sets this bit because the LSIFC929X supports power management state D1.

Aux_Current

The PCI function clears this field because the LSIFC929X does not support Aux_Current.

Device Specific Initialization

The PCI function clears this bit because it requires no special initialization before a generic class device driver can use it.

Reserved

This bit is reserved.

PME Clock

3

[2:0]

The LSIFC929X clears this bit because the chip does not provide a PME pin.

Version

The PCI function programs these bits to 0b010 to indicate that the LSIFC929X complies with the PCI Power Management Interface Specification, Revision 1.1.

[15:11]

9

10

[8:6]

5

4

Register: 0xXX Power Management Control/Status Read/Write

15							8	7							0
				I	Power	Mana	ageme	ent Co	ontrol/	Status	6				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PME Status

The PCI function clears this bit because the LSIFC929X does not support PME signal generation from D3_{cold}.

Data_Scale

[14:13]

[12:9]

8

[7:2]

15

The PCI function clears this bit because the LSIFC929X does not support the Power Management Data register.

Data Select

The PCI function clears these bits because the LSIFC929X does not support the Power Management Data register.

PME Enable

The PCI function clears this bit because the LSIFC929X does not provide a PME signal and disables PME assertion.

Reserved

This field is reserved.

Power State

[1:0] These bits determine the current power state of the LSIFC929X. Power states are as follows:

0b00 D0 0b01 D1 0b10 D2 0b11 D3_{hot}

Register: 0xXX Power Management Bridge Support Extensions Read Only

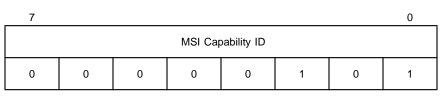
7							0
	Р	ower Mana	gement Bri	dge Suppor	t Extension	S	
0	0	0	0	0	0	0	0

Power Management Bridge Support Extensions [7:0]

This register indicates PCI Bridge specific functionality. The LSIFC929X always returns 0x00 in this register.

Register: 0xXX Power Management Data Read Only

7							0
		Р	ower Mana	gement Dat	a		
0	0	0	0	0	0	0	0


Power Management Data

[7:0]

This register provides an optional mechanism for the PCI function to report state-dependent operating data. The LSIFC929X always returns 0x00 in this register.

Register: 0xXX

MSI Capability ID Read Only

MSI Capability ID

[7:0]

This register indicates the type of the current data structure. This register always returns 0x05, indicating a Message Signaled Interrupt (MSI).

Register: 0xXX MSI Next Pointer Read Only

7							0
			MSI Nex	t Pointer			
х	х	х	х	х	х	х	х

MSI Next Pointer

[7:0]

This register points to the next item in the PCI function extended capabilities list. The value of this register varies according to system configuration.

Register: 0xXX Message Control Read/Write

15							8	7							0
Message Control															
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Reserved

This field is reserved.

64-Bit Address Capable

The PCI function sets this read-only bit to indicate support of a 64-bit message address.

Multiple Message Enable

[6:4]

[15:8]

7

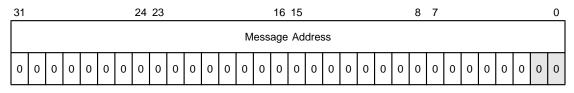
These read/write bits indicate the number of messages that the host allocates to the LSIFC929X. The host system software allocates all or a subset of the requested messages by writing to this field. The number of allocated request messages must align to a power of two. Table 6.3 provides the bit encoding of this field.

Bits [6:4] Encoding	Number of Allocated Messages
0b000	1
0b001	2
0b010	4
0b011	8
0b100	16
0b101	32
0b110	Reserved
0b111	Reserved

Table 6.3 Multiple Message Enable Field Bit Encoding

Multiple Message Capable

[3:1]

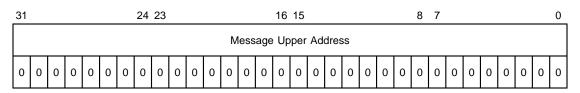

0

These read-only bits indicate the number of messages that the LSIFC929X requests from the host. The host system software reads this field to determine the number of requested messages. The number of requested messages must align to a power of two. The LSIFC929X sets this field to 0b000 to request one message. All other encodings of this field are reserved.

MSI Enable

System software sets this bit to enable MSI. Setting this bit enables the device to use MSI to interrupt the host and request service.

Register: 0xXX Message Address Read/Write


Message Address

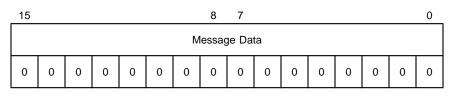
This field contains message address bits [31:2] for the MSI memory write transaction. The host system specifies and aligns the message address to a Dword. During the address phase, the LSIFC929X drives Message Address[1:0] to 0b00.

Reserved

This field is reserved.

Register: 0xXX Message Upper Address Read/Write

Message Upper Address

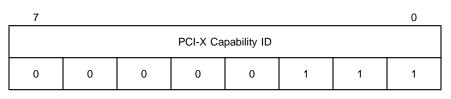

[31:0]

[31:2]

[1:0]

The LSIFC929X supports 64-bit MSI. This register contains the upper 32 bits of the 64-bit message address, which the system specifies. The host system software can program this register to 0x0000 to force the PCI function to generate 32-bit message addresses.

Register: 0xXX Message Data Read/Write



Message Data

[15:0]

System software initializes this register by writing to it. The LSIFC929X sends an interrupt message by writing a Dword to the address held in the Message Address and Message Upper Address registers. This register forms bits [15:0] of the Dword message that the PCI function passes to the host. The PCI function drives bits [31:16] of this message to 0x0000.

Register: 0xXX PCI-X Capability ID Read Only

PCI-X Capability ID

[7:0]

This register indicates the type of the current data structure. This register returns 0x07, indicating the PCI-X Data Structure.

Register: 0xXX PCI-X Next Pointer Read Only

7							0
PCI-X Next Pointer							
х	х	х	х	х	х	х	х

PCI-X Next Pointer

[7:0]

[15:7]

This register points to the next item in the capabilities list of this PCI-X device. The value of this register varies according to system configuration.

Register: 0xXX PCI-X Command Read/Write

15							8	7							0
PCI-X Command															
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

Reserved

This field is reserved.

Maximum Outstanding Split Transactions [6:4]

These bits indicate the maximum number of split transactions the LSIFC929X can have outstanding at one time. The LSIFC929X uses the most recent value of this register each time it prepares a new sequence. Note that if the LSIFC929X prepares a sequence before the setting of this field changes, the PCI function initiates the prepared sequence with the previous setting. Table 6.4 provides the bit encodings for this field.

Bits [6:4] Encoding	Maximum Outstanding Split Transactions
0b000	1
0b001	2
0b010	3
0b011	4
0b100	8
0b101	Reserved
0b110	Reserved
0b111	Reserved

Table 6.4 Maximum Outstanding Split Transactions

Maximum Memory Read Byte Count [3:2]

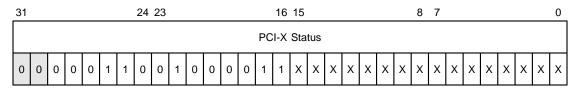
These bits indicate the maximum byte count the LSIFC929X uses when initiating a sequence with one of the burst memory read commands. Table 6.5 provides the bit encodings for this field.

Table 6.5 Maximum Memory Read Byte Count

Bits [3:2] Encoding	Maximum Memory Read Byte Count
0b00	512
0b01	1024
0b10	2048
0b11	Reserved

Reserved

This bit is reserved.


Data Parity Error Recovery Enable

1

0

The host device driver sets this bit to allow the LSIFC929X to attempt to recover from data parity errors. If the user clears this bit and the LSIFC929X is operating in the PCI-X mode, the LSIFC929X asserts SERR/ whenever the Data Parity Error Reported bit in the PCI Status register is set.

Register: 0xXX PCI-X Status Read/Write

Reserved

[31:30]

This field is reserved.

Received Split Completion Error Message 29

The LSIFC929X sets this bit upon receipt of a split completion message if the split completion error attribute bit is set. Write a one (1) to this bit to clear it.

Designed Maximum Cumulative Read Size [28:26] These read-only bits indicate a number greater than or

equal to the maximum cumulative size of all outstanding burst memory read transactions for the LSIFC929X PCI device. The PCI function must report the smallest value that correctly indicates its capability. The LSIFC929X reports 0b001 in this field to indicate a designed maximum cumulative read size of 2 Kbytes.

Designed Maximum Outstanding Split Transactions

[25:23]

These read-only bits indicate a number greater than or equal to the maximum number of all outstanding split transactions for the LSIFC929X PCI device. The PCI function must report the smallest value that correctly indicates its capability. The LSIFC929X reports 0b100 in this field to indicate that the designed maximum number of outstanding split transactions is eight.

Designed Maximum Memory Read Byte Count

[22:21]

These read-only bits indicate a number greater than or equal to the maximum byte count for the LSIFC929X PCI device. The PCI function uses this count to initiate a sequence with one of the burst memory read commands. The PCI function must report the smallest value that

www.DataSheet4U.com

correctly indicates its capability. The LSIFC929X reports 0b10 in this field to indicate that the designed maximum memory read bytes count is 2048.

Device Complexity

The PCI function clears this read-only bit to indicate that the LSIFC929X is a simple device.

Unexpected Split Completion

The PCI function sets this read-only bit when it receives an unexpected split completion. After this bit is set, this bit remains set until software clears it. Write a one (1) to this bit to clear it.

Split Completion Discarded

The PCI function sets this read-only bit when it discards a split completion. After this bit is set, this bit remains set until software clears it. Write a one (1) to this bit to clear it.

133 MHz Capable

The MA[8] power-on sense pin controls this read-only bit. Allowing the internal pull-downs to pull MA[8] LOW sets this bit and enables 133 MHz operation of the PCI bus. Pulling MA[8] HIGH clears this bit and disables 133 MHz operation of the PCI bus. Refer to Table 4.3 on page 4-10 for details on the power-on sense pins.

64-Bit Device

The MA[9] power-on sense pin controls this read-only bit. Allowing the internal pull-downs to pull MA[9] LOW sets this bit and indicates a 64-bit PCI Address/Data bus. Pulling MA[9] HIGH clears this bit and indicates a 32-bit PCI Address/Data bus. If using the LSIFC929X on an add-in card, this bit must indicate the size of the PCI Address/Data bus on the card. Refer to Table 4.3 for details on the power-on sense pins.

Bus Number

These read-only bits indicate the number of the LSIFC929X bus segment. This PCI function uses this number as part of its Requester ID and Completer ID. This field is read for diagnostic purposes only.

16

[15:8]

18

17

20

19

Device Number

[7:3]

These read-only bits indicate the device number of the LSIFC929X. This PCI function uses this number as part of its Requester ID and Completer ID. This field is read for diagnostic purposes only.

Function Number

[2:0]

These read-only bits indicate the number in the Function Number field (AD[10:8]) of a Type 0 PCI configuration transaction. The PCI function uses this number as part of its Requester ID and Completer ID. This field is read for diagnostic purposes only.

6.2 PCI I/O Space and Memory Space Register Description

This section describes the host interface registers in the PCI I/O Space and in the PCI Memory Space. These address spaces contain the Fusion-MPT interface register set. PCI Memory Space [0] and PCI Memory Space [1] form the PCI Memory Space. PCI Memory Space [0] supports normal memory accesses while PCI Memory Space [1] supports diagnostic memory accesses. For all registers except the Diagnostic Read/Write Data and Diagnostic Read/Write Address registers, access the address offset through either PCI I/O Space or PCI Memory Space [0]. Access to the Diagnostic Read/Write Data and Diagnostic Read/Write Address registers is available only through PCI I/O Space.

When the LSIFC929X operates as a multifunction PCI device, the entire PCI Memory and PCI I/O Space register sets are visible to both PCI functions. When the LSIFC929X operates as a single function PCI device, only PCI Function [0] register sets are accessible.

Table 6.6 defines the PCI I/O Space address map.

Table 6.6 PCI I/O Space Address M	Мар
-----------------------------------	-----

31	16 15	0	Offset	Page
	System Doorbell		0x00	6-34
	Write Sequence		0x04	6-35
	Host Diagnostic		0x08	6-36
	Test Base Address		0x0C	6-38
	Diagnostic Read/Write Data		0x10	6-38
	Diagnostic Read/Write Address		0x14	6-39
	Reserved		0x18–0x2F	-
	Host Interrupt Status		0x30	6-40
	Host Interrupt Mask		0x34	6-41
	Reserved		0x38–0x3F	-
	Request FIFO		0x40	6-42
	Reply FIFO		0x44	6-43
	Reserved		0x48–0x4C	-
	Host Index Register		0x50	6-43
	Reserved		0x54–0x7F	_

Table 6.7 defines the PCI Memory Space [0] address map.

Table 6.7 PCI Memory [0] Address Map

31	16 15	0	Offset	Page
	System Doorbell		0x00	6-34
	Write Sequence		0x04	6-35
	Host Diagnostic		0x08	6-36
	Test Base Address		0x0C	6-38
	Reserved		0x10–0x2F	-
	Host Interrupt Status		0x30	6-40
	Host Interrupt Mask		0x34	6-41
	Reserved		0x38–0x3F	-
	Request FIFO		0x40	6-42
	Reply FIFO		0x44	6-43
	Reserved		0x48–0x7F	-
	Shared Memory		0x80– 0x(Sizeof(Mem0)–1)	_

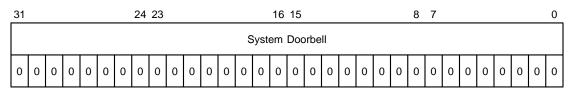

Table 6.8 defines the PCI Memory Space [1] address map.

Table 6.8 PCI Memory [1] Address Map

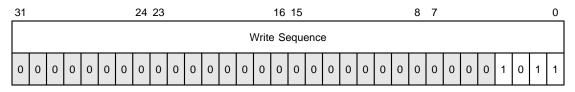
31	l 16 15 0	
	Diagnostic Memory	0x00– 0x(Sizeof(Mem1)–1)

A bit-level description of the PCI Memory and PCI I/O spaces follows.

Register: 0x00 System Doorbell Read/Write

This register is a simple message passing mechanism that allows the system to pass single word messages to the embedded IOP processor and vice versa. There is a unique system doorbell for each PCI function.

When a host system PCI master writes to the Host Registers \rightarrow Doorbell register, the LSIFC929X generates a maskable interrupt to the IOP. The value written by the host system is available for the IOP to read in the System Interface Registers \rightarrow Doorbell register. The IOP clears the interrupt status after reading the value.


Conversely, when the IOP processor writes to the System Interface Registers \rightarrow Doorbell register, the LSIFC929X generates a maskable interrupt to the PCI system. The host system can read the value written by the IOP in the Host Registers \rightarrow Doorbell register. The host system clears the interrupt status bit and interrupt pin by writing any value to the Host Registers \rightarrow Interrupt Status register.

Host Doorbell Value

[31:0]

During a write, this register contains the doorbell value that the host system passes to the IOP. During a read, this register contains the doorbell value that the IOP passes to the host system.

Register: 0x04 Write Sequence Read/Write

This register provides a protection mechanism against inadvertent writes to the Host Diagnostic register. There is one Write I/O register that is visible to both PCI functions. The two PCI functions physically share this register.

Reserved

[31:4]

[3:0]

This field is reserved.

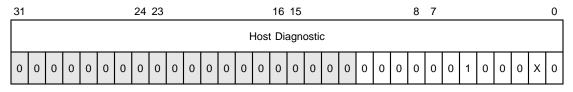
Write I/O Key

To enable write access to the Diagnostic Read/Write Data, Diagnostic Read/Write Address, and Host Diagnostic register, perform five data-specific writes to the Write I/O Key. Writing an incorrect value to the Write I/O Key invalidates the key sequence, and the host must rewrite the entire sequence. The write I/O key sequence is: 0x0004, 0x000B, 0x0002, 0x0007, and 0x000D. To disable write access to the Diagnostic Read/Write Data, Diagnostic Read/Write Address, and Host Diagnostic registers, write any value (except the Write I/O Key sequence) to the Write I/O register. The Diagnostic Write Enable bit (bit 7 in the Host Diagnostic register) indicates the write access status.

www.DataSheet4U.com

11

10


9

8

7

6

Register: 0x08 **Host Diagnostic** Read/Write

This register contains diagnostic controls and status information. There is one Host Diagnostic register that is visible to both PCI functions. The two PCI functions physically share this register. However, the Reset History bit operates independently for each PCI function. This register can only be written when bit 7 of this register is set.

Reserved [31:12]

This field is reserved.

BIST Read Enable

Setting this bit enables reading the two BIST results registers (0x18 and 0x1C) from the host.

Clear Flash Bad Signature

Write this bit to clear the Bad Signature bit (bit 6 of this register).

Prevent IOP Boot

Set this bit to keep the IOP in a reset state.

BIST All Done

When this bit is set, all internal built-in self-test (BIST) operations are complete.

Diagnostic Write Enable

The LSIFC929X sets this read-only bit when the host writes the correct Write I/O Key to the Write Sequence register. The LSIFC929X clears this bit when the host writes a value other than the Write I/O Key to the Write Sequence register.

Flash Bad Signature

The LSIFC929X sets this bit if the IOP ARM966E-S processor encounters a bad Flash signature when booting from Flash ROM. The LSIFC929X also sets the DisARM bit (bit 1 in this register) to hold the IOP ARM

processor in a reset state. The LSIFC929X maintains this state until the PCI host clears both the Flash Bad Signature and DisARM bits.

Reset History

The LSIFC929X sets this bit if it experiences a Power-On Reset (POR), PCI Reset, or TestReset/. A host driver can clear this bit to help coordinate recovery between multiple driver instances in a multifunction PCI implementation.

Diagnostic Read/Write Enable

Setting this bit enables access to the Diagnostic Read/Write Data and Diagnostic Read/Write Address registers.

TTL Interrupt

Setting this bit configures PCI INTA/ as a TTL output. Clearing this bit configures PCI INTA/ as an open-drain output. Use this bit for test purposes only.

Reset Adapter

Setting this write-only bit causes a hard reset within the LSIFC929X. The bit self-clears after eight PCI clock periods. After deasserting this bit, the IOP ARM processor executes from its default reset vector.

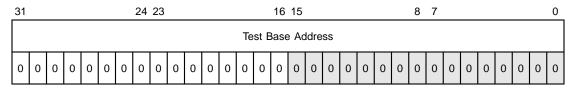
DisARM

Setting this bit disables the IOP ARM processor.

Diagnostic Memory Enable

Setting this bit enables diagnostic memory accesses through PCI Memory Space [1]. Clearing this bit disables diagnostic memory accesses to PCI Memory Space [1] and returns 0xFFFF on reads.

4


3

5

2

1

Register: 0x0C Test Base Address Read/Write

This register specifies the base address for Memory Space [1] accesses. There is one Test Base Address register that is visible to both PCI functions. The two PCI functions physically share this register. Because Diagnostic Memory is visible only to PCI Function [0], PCI Function [1] cannot write to this register.

Test Base Address [31:16] The number of significant bits is determined by the size

of PCI Memory Space [1] in the serial EEPROM.

Reserved [15:0]

This field is reserved.

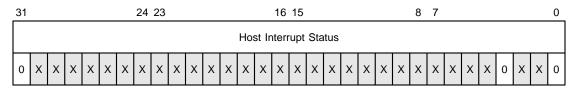
Register: Offset 0x10 **Diagnostic Read/Write Data Read/Write**

3′	1						24	23							16	15							8	7							0
												Dia	gno	stic	Re	ad/	Writ	e D	ata												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register reads or writes Dword locations on the LSIFC929X internal bus. This register is only accessible through PCI I/O space and returns 0xFFFFFFF if read through PCI Memory Space. The host can enable write access to this register by writing the correct Write I/O Key to the Write Sequence register and setting bit 4, the Diagnostic Write Enable bit, of the Host Diagnostic register. A write of any value other than the correct Write I/O Key to the Write Sequence register disables write access to this register. There is one Diagnostic Read/Write Data register that is visible to both PCI functions. The two PCI functions physically share this register.

Diagnostic Read/Write Data [31:0] Using this register, the LSIFC929X reads/writes data at the address that the Diagnostic Read/Write Address register specifies.

Register: 0x14 Diagnostic Read/Write Address Read/Write


31							24	23							16	15							8	7							0
											D	iag	nos	tic F	Read	d/W	rite	Ado	dres	s											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register specifies a Dword location on the internal bus. The address increments by a Dword whenever the host system accesses the Diagnostic Read/Write Address register. This register is only accessible through PCI I/O space and returns 0xFFFFFFF if read through PCI Memory Space. The host can enable write access to this register by writing the correct Write I/O Key to the Write Sequence register and setting bit 4, the Diagnostic Write Enable bit, of the Host Diagnostic register. A write of any value other than the correct Write I/O Key to the Write Sequence register. There is one Diagnostic Read/Write Address register that is visible to both PCI functions. The two PCI functions physically share this register.

Diagnostic Read/Write Address [31:0]

This register holds the address that the Diagnostic Read/Write Data register writes data to or reads data from.

Register: 0x30 Host Interrupt Status Read Only

This register provides read-only interrupt status information to the PCI Host. A write to this register of any value clears the associated System Doorbell interrupt. There is a unique Host Interrupt Status register for each PCI function.

IOP Doorbell Status

The LSIFC929X sets this bit when the IOP receives a message from the system doorbell but has yet to process it. The IOP processes the System Doorbell message by clearing the corresponding system request interrupt.

Reserved

This field is reserved.

Reply Interrupt

The LSIFC929X sets this bit when the Reply Post FIFO is not empty. The LSIFC929X generates a PCI interrupt when this bit is set and the corresponding mask bit in the Host Interrupt Mask register is cleared.

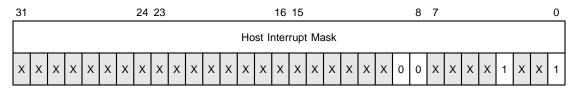
Reserved

This field is reserved.

System Doorbell Interrupt

The LSIFC929X sets this bit when the IOP writes a value to the System Doorbell. The host can clear this bit by writing any value to this register. The LSIFC929X generates a PCI interrupt when this bit is set and the corresponding mask bit in the Host Interrupt Mask register is cleared.

[30:4]


3

[2:1]

0

www.DataSheet4U.com

Register: 0x34 Host Interrupt Mask Read/Write

This register masks and/or routes the interrupt conditions that the Host Interrupt Status register reports. There is a unique Host Interrupt Mask register for each PCI function.

Reserved

This field is reserved.

Interrupt Request Routing Mode [9:8]

This field routes PCI interrupts to the INTx/ pins according to the bit encodings in Table 6.9. If the host system enables MSI, the LSIFC929X does not signal PCI interrupts on the INTx/ pins.

Table 6.9 Interrupt Signal Routing

Bit [9:8] Encodings	Interrupt Signal Routing
0600	INTx/ and ALT_INTx/
0b01	INTx/ Only
0b10	ALT_INTx/ Only
0b11	INTx/ and ALT_INTx/

<u>Note:</u> The LSIFC929X does not support alternate interrupt signals (no device pins are provided). Programming this field to 0b10 effectively disables PCI interrupts for the given PCI function.

Reserved

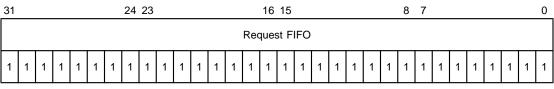
[7:4]

[31:10]

This field is reserved.

Reply Interrupt Mask

Setting this bit masks reply interrupts and prevents the assertion of a PCI interrupt for all reply interrupt conditions.


Reserved

This field is reserved.

Doorbell Interrupt Mask

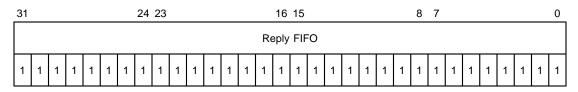
Setting this bit masks System Doorbell interrupts and prevents the assertion of a PCI interrupt for all System Doorbell interrupt conditions.

Register: 0x40 **Request FIFO Read/Write**

This register provides Request Free Message Frame Addresses (MFAs) to the host system on reads and accepts Request Post MFAs from the host system on writes. There is one Request FIFO register that is visible to both PCI functions. The two PCI functions physically share this register.

Request FIFO

[31:0]

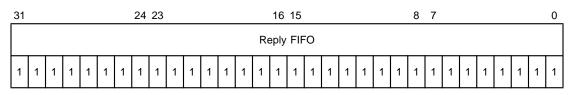

For reads, the Request Free MFA is empty and this register contains 0xFFFFFFF. For writes, the register contains the Request Post MFA.

3

[2:1]

0

Register: 0x44 Reply FIFO Read/Write


This register provides Reply Post MFAs to the host system on reads and accepts Reply Free MFAs from the host system on writes. There is one unique Reply FIFO register for each PCI function.

Reply FIFO

[31:0]

For reads, the Request Free MFA is empty and this register contains 0xFFFFFFF. For writes, the register contains the Reply Free MFA.

Register: 0x50 Host Index Register Read/Write

These registers are used with the Outbound Reply Option (AltReplyPost method) to enable host-resident reply post queues.

Reserved

[31:14]

This field is reserved.

Host Index Value

[13:0]

The Host Index provides an indication of which Reply Post MFAs the host system has processed, and generates Reply Interrupts when the AltReplyPost option is enabled. There is a unique Host Index register associated with each PCI Function.

6.3 Shared Memory

A region of Shared Memory (LSIFC929X local memory mapped to System Addresses) is provided to allow the host to write Request Message Frames. This is the default method (PUSH model) for Request Message Frame transport, where the Host itself copies the Request Message Frame into the LSIFC929X local memory. The total size of Shared Memory is configured by the I/O Processor (IOP) on reset. Supported values are 32 Kbytes, 64 Kbytes, 128 Kbytes (default), 256 Kbytes, and 512 Kbytes. Shared memory is accessible only through Mem0 space starting at address 0x080.

Chapter 7 Specifications

This chapter provides a description of the DC and AC electrical characteristics of the LSIFC929X Dual Channel Fibre Channel I/O processor chip, and the available packaging. The chapter contains the following sections:

- Section 7.1, "Electrical Requirements"
- Section 7.2, "AC Timing"
- Section 7.3, "Packaging"
- Section 7.4, "Mechanical Drawing"
- Section 7.5, "Package Thermal Considerations"

7.1 Electrical Requirements

Table 7.1 provides absolute maximum stress ratings for the LSIFC929X, while Table 7.2 specifies the normal operating conditions. Table 7.3 through Table 7.9 specify the input and output electrical characteristics.

Table 7.1 Absolute Maximum Stress Ratings¹

Symbol	Parameter	Min	Max	Unit	Test Conditions
T _{STG}	Storage temperature	-55	150	°C	-
V _{DD}	Supply voltage	-0.5	4.5	V	-
V _{IN}	Input voltage	V _{SS} - 0.3	V _{DD} + 0.3	V	-
I _{LP} ²	Latch-up current	± 150	-	mA	-
ESD	Electrostatic discharge	_	1.5 k	V	MIL-STD 883C, Method 3015.7

1. Stresses beyond those listed in this table may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated in the Operating Conditions section of the manual is not implied.

2. $-3 V < V_{PIN} < 6.6 V.$

Table 7.2 Operating Conditions¹

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{DDC} ²	Core supply voltage	1.71	1.89	V	-
V _{DDIO}	I/O supply voltage	3.13	3.47	V	_
PCI5VREF	PCI 5 V reference voltage	4.75	5.25	V	5 V PCI System
		-	VDDIO	V	3.3 V PCI System
T _A	Operating free air	0	70	°C	-
$\theta_{JMA}{}^3$	Thermal resistance (junction to moving air)	_	15.3	°C/W	_

1. Conditions that exceed the operating limits may cause the device to function incorrectly.

2. Refer to Note 1 at the end of Table 4.7 (page 4-16) for instructions on power sequencing for the LSIFC929X.

θ_{JMAmax} (junction-to-moving air thermal resistance) assumes a 4-layer package substrate, a 456-pad PBGA, and a 4-layer PCB design (10–12 watt/meter °K). This maximum number is the worst-case θ_{JMA} for the LSIFC929X with no heat sink and no air flow. Refer to Section 7.5, "Package Thermal Considerations," on page 7-19 for details.

Table 7.3Capacitance

Symbol	Parameter	Min	Max	Unit	Test Conditions
Cl	Input capacitance of input pads	-	7	pF	-
C _{IO}	Input capacitance of I/O pads	_	10	pF	_

Table 7.4 Input Signals (FAULT1/, FAULT0/, MODE[7:0], SWITCH, HOTSWAPEN/)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	0.7 V _{DD}	V _{DD} + 0.3	V	-
V _{IL}	Input low voltage	V _{SS} - 0.3	0.2 V _{DD}	V	_
I _{IN}	Input leakage	10	10	μA	_

Table 7.5 Schmitt Input Signals (REFCLK, TCK, TDI, TRST/, TMS_CHIP, TMS_ICE)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	2.0	V _{DD} + 0.3	V	-
V _{IL}	Input low voltage	V _{SS} - 0.3	0.8	V	-
I _{IN}	Input leakage	10	10	μΑ	_

Table 7.64 mA Bidirectional Signals (LIPRESET/, ODIS1, ODIS0, BYPASS1/,
BYPASS0/, MD[31:0], MA[21:0], MWE[1:0]/, FLASHCS/, BWE[3:0]/,
RAMCS/, ZZ, MP[3:0], SCL, SDA, RXLOS1, RXLOS0, ADSC/, ADV/, TDO)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	0.7 V _{DD}	V _{DD} + 0.3	V	_
V _{IL}	Input low voltage	V _{SS} - 0.3	0.2 V _{DD}	V	-
V _{OH}	Output high voltage	2.4	V _{DD}	V	-4 mA
V _{OL}	Output low voltage	V _{SS}	0.4	V	4 mA
I _{OZ}	3-state leakage	-10	10	μΑ	_

Table 7.78 mA Bidirectional Signals (MODDEF1[2:0], MODDEF0[2:0], GPIO[5:0],
MOE[1:0]/, LED[4:0]/, MCLK)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	0.7 V _{DD}	V _{DD} + 0.3	V	-
V _{IL}	Input low voltage	V _{SS} - 0.3	0.2 V _{DD}	V	-
V _{OH}	Output high voltage	2.4	V _{DD}	V	–8 mA
V _{OL}	Output low voltage	V _{SS}	0.4	V	8 mA
I _{OZ}	3-state leakage	-10	10	μΑ	_

Table 7.8 PCI Input Signals (PCICLK, GNT/, IDSEL, RST/)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	2.0	V _{DD} + 0.5	V	5 V PCI System
		0.5 V _{DD}	5.5	V	3.3 V PCI System
V _{IL}	Input low voltage	-0.5	0.8	V	5 V PCI System
		-0.5	0.3 V _{DD}	V	3.3 V PCI System

Table 7.9 PCI Bidirectional Signals (AD[63:0], C_BE[7:0]/, FRAME/, IRDY/, TRDY/, STOP/, PERR/, PAR, ACK64/, ENUM/, 64EN/)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IH}	Input high voltage	2.0	V _{DD} + 0.5	V	5 V PCI System
		0.5 V _{DD}	5.5	V	3.3 V PCI System
V _{IL}	Input low voltage	-0.5	0.8	V	5 V PCI System
		-0.5	0.3 V _{DD}	V	3.3 V PCI System
V _{OH}	Output high voltage	0.9 V _{DD}	V _{DD}	V	-0.5 mA (3.3 V PCI)
V _{OH}	Output high voltage	2.4	-	V	-2 mA (5 V PCI)
V _{OL}	Output low voltage	V _{SS}	0.1 V _{DD}	V	1.5 mA (3.3 V PCI)
V _{OL}	Output low voltage	-	0.55	V	3 mA, 6 mA (5 V PCI) ¹
I _{OZ}	3-state leakage	-10	10	μA	-

1. Signals without pull-up resistors meet a 3 mA output current load. Signals requiring pull-ups meet a 6 mA output current load. The latter include FRAME/, TRDY/, IRDY/, STOP/, PERR/, and, when used, AD[63:32], C_BE[7:4], and ACK64/.

Table 7.10 PCI Output Signals (PAR64, REQ/, REQ64/, DEVSEL/, SERR/, INTA/, INTB/)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{OH}	Output high voltage	0.9 V _{DD}	V _{DD}	V	– 0.5 mA (3.3 V PCI)
V _{OH}	Output high voltage	2.4	-	V	– 2 mA (5 V PCI)
V _{OL}	Output low voltage	V _{SS}	0.1 V _{DD}	V	1.5 mA (3.3 V PCI)
V _{OL}	Output low voltage	-	0.55	V	3 mA, 6 mA (5 V PCI) ¹
I _{OZ}	3-state leakage	-10	10	μΑ	_

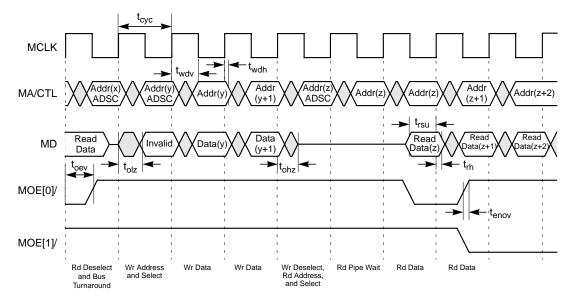
1. Signals without pull-up resistors meet a 3 mA output current load. Signals requiring pull-ups meet a 6 mA output current load. The latter include DEVSEL/, SERR/, INTA/, INTB/, and, when used, PAR64, and REQ64/.

7.2 AC Timing

The AC Timing characteristics described in this section apply over the entire range of operating conditions. Chip timings are based on simulation at worst-case voltage, temperature, and processing. Timings have been developed with a load capacitance of 50 pF.

7.2.1 PCI/PCI-X Interface Timings

The LSIFC929X PCI/PCI-X signals conform to the electrical and timing standards as shown in the *PCI Local Bus Specification, Version 2.2*, and the *PCI-X Addendum to the PCI Local Bus Specification, Version 1.0a.* All hardware validation testing performed by LSI Logic guarantees that the LSIFC929X meets or exceeds the specifications contained in those documents.


7.2.2 Fibre Channel Interface Timings

The LSIFC929X receiver and transmitter serial differential signal pairs conform to the electrical and timing standards as shown in the Fibre Channel Physical Interface specification (FC-PI, Rev. 11). All hardware validation testing performed by LSI Logic guarantees that the LSIFC929X meets or exceeds the specifications contained in that document.

7.2.3 Memory Interface Timings

7.2.3.1 SSRAM Timings

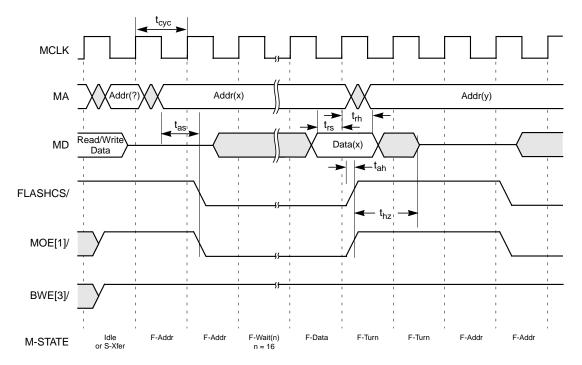


Table 7.11	SSRAM Read/Write/Read Timings
------------	-------------------------------

Symbol	Parameter	Min	Max	Unit
t _{cyc}	MCLK cycle time	14.115	14.119	ns
t _{rsu}	Read setup time	7	-	ns
t _{rh}	Read hold time	0	-	ns
t _{wdv}	Write valid time	_	10	ns
t _{wdh}	Write hold time	2	-	ns
t _{oev}	Output enable valid	_	8	ns
t _{olz}	Data low impedance	2.5	12	ns
t _{ohz}	Data high impedance	2	12	ns
t _{enov}	Output enable nonoverlap	0	-	ns

7.2.3.2 Flash ROM Timings

Figure 7.2 Flash ROM Read Timing Waveforms

Table 7.12 FLASH ROM Read Timings

Symbol	Parameter	Min	Max	Unit
t _{cyc}	MCLK cycle time	14.115	14.119	ns
t _{as}	Address setup time	-5.0 ¹	1 – MCLK ²	ns
t _{ah}	Address hold time	0	-	ns
t _{rs}	Read setup time	7	-	ns
t _{rh}	Read hold time	0	-	ns
t _{hz}	Data high impedance	0	32	ns

1. Address setup time defaults to one (1) MCLK but may be programmed to zero (0) MCLKs using the serial EEPROM.

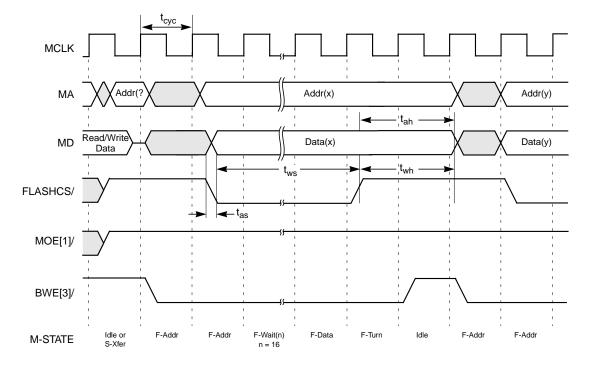


Figure 7.3 Flash ROM Write Timing Waveforms

Table 7.13 Flash ROM Write Timings

Symbol	Parameter	Min	Мах	Unit
t _{cyc}	MCLK cycle time	14.115	14.119	ns
t _{as}	Address setup time	-5.0 ¹	1 – MCLK ²	ns
t _{ah}	Address hold time	1 MCLK	-	ns
t _{ws}	Write setup time	3 ²	11 ³	MCLK
t _{wh}	Write hold time	1 – MCLK	_	ns

1. Address setup time defaults to one (1) MCLK but may be programmed to zero (0) MCLKs using the serial EEPROM.

2. Programmed using the serial EEPROM.

7.3 Packaging

Figure 7.4 illustrates the signal locations for the 456 Plastic Ball Grid Array (PBGA). Table 7.14 on page 7-14 lists the LSIFC929X signals in alphanumeric order by PBGA position. Table 7.15 on page 7-16 lists the LSIFC929X signals alphanumerically by signal name. Figure 7.5 on page 7-18 is the mechanical drawing of the package for the LSIFC929X.

Figure 7.4 LSIFC929X 456-Pin PBGA Top View

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13
VSSIO	VDDIO	NC	MODE[7]	MODE[5]	TEST[0]	MODDEF0[1]		TXVDD0	TX0-	NC	RX0-	RXBVSS0
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
VDDIO	MODE[3]	LED[4]/	LED[1]/	TEST[1]	NC	ODIS0	FAULT0/	TXVSS0	TX0+	NC	RX0+	RXBVDD0
C1	C2	СЗ	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13
REFCLK	MODE[1]	MODE[6]	VSSIO	VSSC D5	TEST[8]	VDDIO	VSSIO D8	VDDC	VSSC D10	VDDIO D11	VSSIO D12	RTRIM D13
51	REF-	53	D4	05	00	<i>D'</i>	08	59	510	DII	012	513
NC	PLLVDD	VDDIO	MODE[4]	VDDC	LED[2]/	LED[0]/	BYPASS0/	MODDEF0[2]	TXBVSS0	TXBVDD0	RXVSS0	RXVDD0
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13
MODE[2]	VSSIO	MODE[0]	VSSC	VSSIO	VDDIO	LED[3]/	TEST[2]	VSSIO	VDDIO	MODDEF0[0]	VSSC	VSSIO
F1	V33IU F2	F3	¥330	V 33IU	VDDIO	LED[3]/	1E31[2]	V33I0	VDDIO	INODDEP0[0]	1330	V33IO
TEST[5]	NC	TEST[6]	NC	VDDIO								
G1	G2	G3	G4	G5								
NC	NC	VSSIO	REFPLLVSS	VDDC								
H1	H2	H3	H4	H5	1							
NC	GPIO[3]	VDDIO	VSSC	TEST[7]								
J1	J2	J3	J4	J5								
GPIO[0]	GPIO[5]	GPIO[1]	VDDC	VSSIO								
К1	К2	кз	K4	К5	1							
GPIO[2]												
(BLUELED/)	NC	GPIO[4]	NC	VDDIO								
L1	L2	L3	L4	L5	1					L11	L12	L13
TEST[3]	TCK	VSSIO	TMS_CHIP	VSSC	-					VSSIO	VSSIO	VSSIO
M1	M2	M3	M4	M5						M11	M12	M13
NC	TRST/	VDDIO	TDO	VDDC						VSSIO	VSSIO	VSSIO
N1	N2	N3	N4	N5	1					N11	N12	N13
TH0 105	TEOTU	TEOTIO	TO	VICE						1/00/0	1/0010	1/0010
TMS_ICE	TEST[4]	TEST[9] P3	TDI	VSSIO P5	-					VSSIO P11	VSSIO P12	VSSIO P13
F1	F2	F3	F 4	-5						- 11	F 12	F13
64EN/	NC	BZRSET	ENUM/	VDDIO						VSSIO	VSSIO	VSSIO
R1	R2	R3	R4	R5	1					R11	R12	R13
SWITCH	NC	VSSIO	BZVDD	VDDC						VSSIO	VSSIO	VSSIO
T1	T2	T3	T4	T5	4					V33IO	T12	T13
HOT-												
SWAPEN/	INTB/	VDDIO	INTA/	VSSC						VSSIO	VSSIO	VSSIO
U1	U2	U3	U4	U5								
V5PCIX	V5PCIX	RST/	GNT/	VSSIO								
V1	V2	V3	V4	V5	1							
PCICLK W1	REQ/ W2	AD[31] W3	VSSC W4	VDDIO W5	4							
AD[30]	AD[29]	VSSIO	AD[22]	AD[28]								
Y1	Y2	Y3	Y4	Y5	1							
AD[27]	AD[26]	VDDIO	AD[25]	VSSC								
AD[27]	AD[20]	AA3	AD[25]	AA5	1							
VDDC	C_BE[3]/	IDSEL	AD[23]	VSSIO	100	1.02	1.04	1.54	1.0.0	1.0	1.0.0	1.5.0
AB1	AB2	AB3	AB4	AB5	AB6	AB7	AB8	AB9	AB10	AB11	AB12	AB13
AD[24]	AD[21]	VDDIO	VDDC	VDDIO	VSSIO	VDDC	VSSC	VDDIO	VSSIO	VDDC	VSSC	VDDIO
AC1	AC2	AC3	AC4	AC5	AC6	AC7	AC8	AC9	AC10	AC11	AC12	AC13
ADION		ADITO	VOOIO	1/000	DEVOEL	VEDOW	ADITO	VERG	ADIO	40/71	40/41	ADIO
AD[20] AD1	V5PCIX AD2	AD[19] AD3	VSSIO AD4	VSSC AD5	DEVSEL/ AD6	V5PCIX AD7	AD[15] AD8	VDDC AD9	AD[8] AD10	AD[7] AD11	AD[4] AD12	AD[0] AD13
	A02	nu0	~~*	nu0	750		n	103	10		AP12	1013
V5PCIX	AD[18]	PCIPLLVDD	PCIPLLVSS	VDDIO	STOP/	VSSIO	VDDIO	AD[12]	C_BE[0]/	VSSIO	VDDIO	AD[2]
AE1	AE2	AE3	AE4	AE5	AE6	AE7	AE8	AE9	AE10	AE11	AE12	AE13
VSSIO	V5PCIX	AD[16]	C_BE[2]/	IRDY/	PERR/	PAR	AD[14]	AD[11]	AD[9]	NC	AD[6]	AD[3]
V55IU AF1	AF2	AD[16] AF3	AF4	AF5	AF6	AF7	AD[14]	AD[11] AF9	AD[9] AF10	AF11	AD[6] AF12	AD[3] AF13
VDDIO	VSSIO	FRAME/	TRDY/	SERR/	AD[17]	C_BE[1]/	AD[13]	V5PCIX	AD[10]	V5PCIX	V5PCIX	AD[5]

Figure 7.4 LSIFC929X 456-Pin PBGA Top View (Cont.)

A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26
TXBVSS1	TX1-	NC	RX1-	RXVDD1	RXLOS1	MOD-	SDA	MD(6)	MD(9)	MD(11)	VSSIO	VDDIO
B14	B15	B16	B17	B18	B19	DEF1[1] B20	B21	MD[5] B22	MD[8] B23	MD[11] B24	B25	B26
				-								
TXBVDD1 C14	TX1+ C15	NC C16	RX1+ C17	RXVSS1 C18	FAULT1/ C19	ODIS1 C20	SCL C21	MD[4]	MD[7] C23	MD[10] C24	MD[12] C25	VSSIO C26
LIPRESET/	VDDIO	VSSIO	VSSC	VDDC	VDDIO	VSSIO	MD[3]	VSSC	VDDIO D23	MD[9]	MD[13]	MD[14]
D14	D15	D16	017	MOD-	D19	D20	D21	022	D23	D24	D25	D26
TXVDD1	TXVSS1	RXBVDD1	RXBVSS1	DEF1[0]	BYPASS1/	MD[1]	MD[2]	VDDC	MD[6]	VSSIO	MD[15]	MP[1]
E14	E15	E16 MOD-	E17	E18	E19	E20	E21	E22	E23	E24	E25	E26
VDDIO	VDDC	DEF1[2]	VSSIO	VDDIO	MP[0]	MD[0]	VSSIO	VDDIO	VSSC	FLASHCS/	VDDIO	MOE[0]/
								F22	F23	F24	F25	F26
								VSSIO	ZZ	RAMCS/	MWE[0]/	MOE[1]/
								G22	G23	G24	G25	G26
								VDDC	MWE[1]/	VDDIO	BWE[0]/	BWE[1]/
								H22	H23	H24	H25	H26
								VSSC	BWE[2]/	VSSIO	BWE[3]/	ADV/
								J22	J23	J24	J25	J26
											1000/	
								VDDIO K22	VDDC K23	MP[2] K24	ADSC/ K25	MCLK K26
L14	L15	L16	1					VSSIO	MD[16]	MD[17]	MD[18]	MD[19]
L14	L15	L10						122	L23	L24	L23	L20
VSSIO	VSSIO	VSSIO						VSSC	MD[20]	VDDIO	MD[21]	MD[22]
M14	M15	M16						M22	M23	M24	M25	M26
VSSIO	VSSIO	VSSIO						VDDC	MD[23]	VSSIO	MD[24]	MD[25]
N14	N15	N16	1					N22	N23	N24	N25	N26
VSSIO	VSSIO	VSSIO						VDDIO	MD[26]	MD[27]	MD[28]	MD[29]
P14	P15	P16	1					P22	P23	P24	P25	P26
VSSIO	VSSIO	VSSIO						VSSIO	MD[30]	MD[31]	MP[3]	VSSC
R14	R15	R16						R22	R23	R24	R25	R26
VSSIO	VSSIO	VSSIO						MA[0]	MA[1]	VDDIO	MA[2]	MA[3]
T14	T15	T16						T22	T23	T24	T25	T26
VSSIO	VSSIO	VSSIO						VDDC	MARA	VSSIO	MA[5]	MA[6]
V55IU	V55IU	V55IU	J					U22	MA[4] U23	V55IU U24	U25	U26
								VDDIO V22	MA[7]	MA[8]	MA[9]	MA[10]
								1422	125	124	v25	120
								VSSIO W22	VSSC W23	MA[11] W24	MA[12] W25	MA[13]
								WZZ	VV23	VV24	vv25	W26
								VDDC	MA[14]	VDDIO	MA[15]	MA[16]
								Y22	Y23	Y24	Y25	Y26
								VSSC	AD[32]	VSSIO	MA[17]	MA[18]
								AA22	AA23	AA24	AA25	AA26
								VDDIO	AD[33]	NC	MA[19]	AD[35]
AB14	AB15	AB16	AB17	AB18	AB19	AB20	AB21	AB22	AB23	AB24	AB25	AB26
VSSIO	VSSC	VDDC	VDDIO	VSSIO	VSSC	VDDC	VDDIO	VSSIO	VDDC	AD[34]	VSSIO	MA[20]
AC14	AC15	AC16	AC17	AC18	AC19	AC20	AC21	AC22	AC23	AC24	AC25	AC26
C_BE[7]/	AD[1]	V5PCIX	AD[60]	VDDC	AD[55]	AD[51]	AD[46]	VSSC	V5PCIX	VDDIO	AD[36]	MA[21]
AD14	AD15	AD16	AD17	AD18	AD19	AD20	AD[40]	AD22	AD23	AD24	AD25	AD26
REORA	VESIO	VDDIC	ADIG11		VESIC	VDDIC	40[49]	ADIAN	Vesio	AD(27)	4.0(20)	40(20)
REQ64/ AE14	VSSIO AE15	VDDIO AE16	AD[61] AE17	AD[57] AE18	VSSIO AE19	VDDIO AE20	AD[48] AE21	AD[44] AE22	VSSIO AE23	AD[37] AE24	AD[39] AE25	AD[38] AE26
ACK64/ AF14	C_BE[5]/ AF15	AD[63] AF16	AD[62] AF17	AD[58] AF18	AD[54] AF19	AD[52] AF20	AD[49] AF21	AD[45] AF22	AD[42] AF23	AD[41] AF24	AD[40] AF25	VDDIO AF26
C_BE[4]/	C_BE[6]/	PAR64	V5PCIX	AD[59]	AD[56]	AD[53]	AD[50]	AD[47]	AD[43]	V5PCIX	VDDIO	VSSIO

Table 7.14 Alphanumeric Pad Listing by PBGA Position

Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #	f Signal
A1	VSSIO VDDIQ	C9	VDDC	E17	VSSIO	L1	TEST[3] TCK	P23	MD[30]
A2 A3	VDDIO NC ¹	C10 C11	VSSC VDDIO	E18 E19	VDDIO MP[0]	L2 L3	VSSIO	P24 P25	MD[31] MP[3]
A3 A4		C12	VSSIO	E19	MD[0]	L3 L4	TMS CHIP	P26	VSSC
A5	MODE[7] MODE[5]	Č13	RTRIM	E21	VSSIO	L5	TMS_CHIP VSSC	R1	SWITCH
A6	TEST[0]	C14	LIPRESET/	E22	VDDIO	L11	VSSIO	R2	NC
A7 A8	MODDEF0[1]	C15	VDDIO	E23	VSSC	L12	VSSIO VSSIO	R3 R4	VSSIO
A8 A9	RXLOŠÓ TXVDD0	C16 C17	VSSIO VSSC	E24 E25	FLASHCS/ VDDIO	L13 L14	VSSIO	R5	BZVDD VDDC
A10	TX0-	C18	VDDC	E26	MOE[0]/	L15	VSSIO	R11	VSSIO
A11	NC	C19	VDDIO	F1	TEST[5]	L16	VSSIO	R12	VSSIO
A12	RX0-	C20	VSSIO	F2	NC	L22	VSSC	R13	VSSIO
A13 A14	RXBVSS0 TXBVSS1	C21 C22	MD[3] VSSC	F3 F4	TEST[6] NC	L23 L24	MD[20] VDDIO	R14 R15	VSSIO VSSIO
A14 A15	TX1-	C23	VDDIO	F5	VDDIO	L24 L25	MD[21]	R16	VSSIO
A16	NC	C24	MD[9]	F22	VSSIO	L26	MD[22]	R22	MA[0]
A17	RX1-	C25	MD[13]	F23	ZZ	M1	- NC	R23	MA[1]
A18 A19	RXVDD1 RXLOS1	C26 D1	MD[14] NC	F24 F25	RAMCS/ MWE[0]/	M2 M3	TRST/ VDDIO	R24 R25	VDDIO
A19 A20	MODDEF1[1]	D2	REFPLLVDD	F25	MOE[1]/	M4	TDO	R25	MA[2] MA[3]
A21	SĎÁ	D3	VDDIO	G1	NC	M5	VDDC	T1	HOTSWAPEN/
A22	MD[5] MD[8]	D4	MODE[4]	G2	NC	M11	VSSIO	T2	INTB/
A23		D5	VDĎĆ	G3	VSSIO	M12	VSSIO	T3	VDDIO
A24 A25	MD[11] VSSIO	D6 D7	LED[2]/ LED[0]/	G4 G5	REFPLLVSS VDDC	M13 M14	VSSIO VSSIO	T4 T5	INTA/ VSSC
A26	VDDIO	D8	BYPASS0/	G22	VDDC	M15	VSSIO	T11	VSSIO
B1	VDDIO	D9	MODDEF0[2]	G23	MWE[1]/	M16	VSSIO	T12	VSSIO
B2	MODE[3]	D10	TXBVSŠÓ	G24	VDDIO	M22	VDDC	T13	VSSIO
B3 B4	LED[4]/ LED[1]/	D11 D12	TXBVDD0 RXVSS0	G25 G26	BWE[0]/ BWE[1]/	M23 M24	MD[23] VSSIO	T14 T15	VSSIO VSSIO
B5	TEST[1]	D13	RXVDD0	H1	NC	M25	MD[24]	T16	VSSIO
B6	NC	D14	TXVDD1	H2	GPIO[3]	M26	MD[25]	T22	VDDC
B7	ODIS0	D15	TXVSS1	H3	VDDIO	N1	TMS_ÌCÉ	T23	MA[4]
B8 B9	FAULT0/ TXVSS0	D16 D17	RXBVDD1 RXBVSS1	H4 H5	VSSC TEST[7]	N2 N3	TEST[4] TEST[9]	T24 T25	VSSIO MA[5]
B10	TX0+	D18	MODDEF1[0]	H22	VSSC	N4	TDI	T26	MA[6]
B11	NC	D19	BYPASS1/	H23	BWE[2]/	N5	VSSIO	U1	V5PCIX
B12	RX0+	D20	MD[1]	H24	VSSIO	N11	VSSIO	U2	V5PCIX
B13 B14	RXBVDD0 TXBVDD1	D21 D22	MD[2] VDDC	H25 H26	BWE[3]/ ADV/	N12 N13	VSSIO VSSIO	U3 U4	RST/ GNT/
B15	TX1+	D23	MD[6]	J1	GPIO[0]	N14	VSSIO	U5	VSSIO
B16	NC	D24	VSSIO	J2	GPIO[5]	N15	VSSIO	U22	VDDIO
B17	RX1+	D25	MD[15]	J3	GPIO[1]	N16	VSSIO	U23	MA[7]
B18 B19	RXVSS1 FAULT1/	D26 E1	MP[1] MODE[2]	J4 J5	VDĎČ VSSIO	N22 N23	VDDIO MD[26]	U24 U25	MA[8] MA[9]
B20	ODIS1	E2	VSSIO	J22	VDDIO	N24	MD[20]	U26	MA[10]
B21	SCL	E3	MODE[0]	J23	VDDC	N25	MD[28]	V1	PCIČLK
B22	MD[4]	E4	VSŠČ	J24	MP[2]	N26	MD[29]	V2	REQ/
B23 B24	MD[7] MD[10]	E5 E6	VSSIO VDDIO	J25 J26	ADSC/ MCLK	P1 P2	64EN/ NC	V3 V4	AD[31] VSSC
B25	MD[12]	E7	LED[3]/		D[2](BLUELED/)	P3	BZRSET	V5	VDDIO
B26	VSŠIO	E8	TEST[2]	K2	NĆ	P4	ENUM/	V22	VSSIO
C1	REFCLK	E9	VSSÌÓ	K3	GPIO[4]	P5	VDDIO	V23	VSSC
C2 C3	MODE[1] MODE[6]	E10 E11	VDDIO MODDEF0[0]	K4 K5	ŇČ VDDIO	P11 P12	VSSIO VSSIO	V24 V25	MA[11] MA[12]
C3 C4	VSSIO	E11	VSSC	K22	VSSIO	P12	VSSIO	V25 V26	MA[12] MA[13]
Č5	VSSC	E13	VSSIO	K23	MD[16]	P14	VSSIO	W1	AD[30]
C6	TEST[8]	E14	VDDIO	K24	MD[17]	P15	VSSIO	W2	AD[29]
C7 C8	VDDÌO VSSIO	E15 E16	VDDC MODDEF1[2]	K25 K26	MD[18] MD[19]	P16 P22	VŠŠIO VSSIO	W3	VSSIO
00	1000			1120	MD[13]	1 44	1000	1	

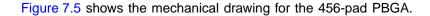
1. NC pins are not connected.

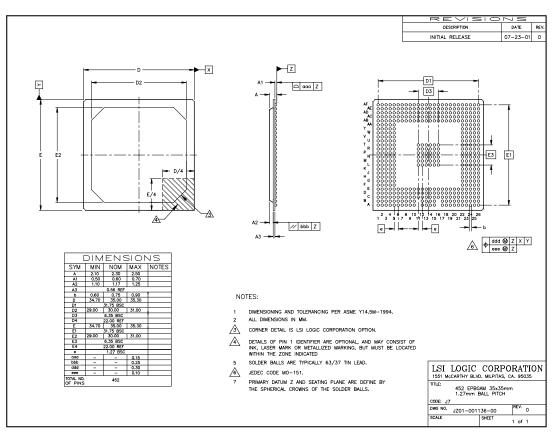
Table 7.14 Alphanumeric Pad Listing by PBGA Position (Cont.)

Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal
W4 W5 W22 W23 W24 W25 W26 Y1 Y2 Y3 Y4 Y22 Y23 Y24 Y25 Y26 AA1 AA2 Y25 Y26 AA1 AA2 AA3 AA4 AA5 AA22 AA3 AA4 AA5 AA22 AA23 AA24 AA25 AA24 AA25 AA24 AA25 AA26 AB1 AB2 AB3 AB4 AB5	AD[22] AD[28] VDDC MA[14] VDDIO MA[15] MA[16] AD[27] AD[26] VDDIO AD[25] VSSC AD[32] VSSC AD[32] VSSC C_BE[3]/ DSEL AD[23] VDDC VDDIO AD[33] VDDC VDDIO AD[33] VDDIO AD[34] AD[24] AD[24] AD[24] AD[24] AD[24] AD[24] VDDIO VDDIO VDDIO VDDIO	AB6 AB7 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB16 AB17 AB18 AB20 AB21 AB22 AB22 AB22 AB22 AB22 AB22 AB22	VSSIO VDDC VSSC VDDIO VSSIO VDDC VSSIC VDDC VSSIO VDDC VSSIO VDDC VDDO VSSIO VDDC VDDO VSSIO VDDC VDDO VSSIO VDDC VDDC VDDC VDDC VDDC VSSIO VDDC VDDC VSSIO VDDC VDDC VSSIO VSSIO VDDC VDDC VDDC VSSIO VSSIO VDDC VSSIO VSSIO VDDC VSSIO VSSIO VDDC VSSIO VSSIO VDDC VSSIO VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VSSIO VDDC VSSIO VSSIO VDDC VSSIO VDDC VSSIO VSSIO VSSIO VDDC VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VSSIO VDDC VSSIO VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VSSIO VDDC VDDC VSSIO VDDC VDDC VSSIO VDDC VDDC VSSIO VDDC VDDC VSSIO VDDC VDDC VDDC VDDC VDDC VDDC VDDC VDD	AC12 AC13 AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AC26 AD1 AD2 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AD17	AD[4] AD[0] C_BE[7// AD[1] V5PC1X AD[60] VDDC AD[55] AD[51] AD[51] AD[46] VSSC V5PC1X VDDIO AD[36] MA[21] V5PC1X AD[36] MA[21] V5PC1X AD[36] PCIPLLVDD PCIPLLVDD PCIPLLVSS VDDIO STOP/ VSSIO VDDIO AD[12] C_BE[0]/ VSSIO VDDIO AD[2] REQ64/ VSSIO VDDIO AD[2]	AD18 AD19 AD20 AD21 AD22 AD23 AD24 AD25 AD26 AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE7 AE8 AE7 AE8 AE7 AE8 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18 AE19 AE21 AE17 AE18 AE17 AE21 AE22 AE23 AE17 AE22 AE23 AE21 AE22 AE23 AE24 AE23 AE24 AE23 AE24 AE23 AE24 AE23 AE24 AE25 AE26 AE27 AE27 AE27 AE27 AE27 AE27 AE27 AE27	AD[57] VSSIO VDDIO AD[48] AD[44] VSSIO V5PCIX AD[39] AD[39] VSSIO V5PCIX AD[11] AD[9] NC AD[61] AD[63] AD[63] AD[54] AD[54] AD[42] AD[42]	AE24 AE25 AE26 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF7 AF8 AF7 AF10 AF11 AF12 AF11 AF12 AF13 AF16 AF17 AF18 AF16 AF17 AF18 AF20 AF21 AF20 AF21 AF22 AF23 AF24 AF25 AF26 AF26 AF20 AF21 AF27 AF20 AF20 AF20 AF20 AF20 AF20 AF20 AF20	AD[41] AD[40] VDDIO VSDIO VSSIO FRAME/ TRDY/ SERR/ AD[17] C_BE[1]/ AD[13] V5PCIX V5PCIX V5PCIX AD[5] C_BE[6]/ PAR64 V5PCIX AD[59] AD[50] AD[53] AD[53] AD[53] AD[53] AD[53] AD[54] V5PCIX VDDIO VSSIO

1. NC pins are not connected.

Table 7.15 Alphanumeric Pad Listing by Signal Name


Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #I
Signal 64EN/ ACK64/ AD[0] AD[1] AD[2] AD[3] AD[4] AD[6] AD[6] AD[6] AD[6] AD[7] AD[8] AD[10] AD[10] AD[10] AD[11] AD[12] AD[10] AD[11] AD[12] AD[11] AD[12] AD[12] AD[12] AD[12] AD[12] AD[13] AD[14] AD[13] AD[14] AD[15] AD[16] AD[17] AD[20] AD[21] AD[20] AD[21] AD[22] AD[23] AD[24] AD[25] AD[26] AD[29] AD[30] AD[31] AD[34] AD[35] AD[36] AD[36] AD[37] AD[36] AD[37] AD[44] AD[45] AD[45] AD[45] AD[45] AD[55] AD	Ball # P1 AE14 AC13 AC15 AD13 AC15 AD13 AC12 AC11 AC10 AF10 AF10 AF10 AF10 AF10 AF10 AF10 AF10 AF10 AF20 AC1 AC10 AF20 AC2 AC2 AC2 AC2 AC2 AC2 AC2 AC2	Signal AD[58] AD[60] AD[61] AD[62] AD[63] AD[61] AD[62] AD[63] ADSSC/ ADV/ BWE[0]/ BWE[1]/ BWE[2]/ BWE[3]/ BYPASS0/ BYPASS1/ BZRSET BZVDD C_BE[0]/ C_BE[1/ C_BE[3]/ C_BE[6]/ BUT/ FAULT1/ FLASHCS/ FRAME/ GPI0[1] GPI0[2](BLUE GPI0[4] GPI0[5] HDTS <	AE18 AF18 AF17 AE17 AE17 AE16 J25 G26 H23 D19 P3 R4 AD10 AF7 AE42 AF15 AC14 AC6 P4 B19 E24 AF15 AC14 AF15 AC14 AE15 AF15 AC14 AF3 AF15 AF15 AC14 AF15 AF15 AF15 AF17 AE16 J25 G26 H23 D19 P3 R4 AD17 AE17 AE16 J25 G26 H23 D19 P3 R4 AD17 AE17 AE16 J25 G26 H23 D19 P3 R4 AD17 AE16 J25 G26 H23 AF17 AE16 J25 G26 H23 AF17 AE16 J25 G26 H23 AF17 AE16 J25 G26 H23 AF17 AE16 J25 G26 H23 AF17 AE16 J25 G26 H23 AF17 AE16 J25 G26 H23 AF17 AE17 AE17 AE16 AD19 AF7 AE42 AF15 AF17 AE42 AF15 AF17 AE42 AF15 AF17 AE42 AF15 AF17 AE42 AF13 AF3 AF3 AF3 AF3 AF3 AF3 AF3 AF3 AF3 AF	Signal MA[12] MA[13] MA[14] MA[15] MA[16] MA[16] MA[17] MA[18] MA[20] MA[20] MA[21] MCLK MD[0] MD[2] MD[3] MD[1] MD[3] MD[4] MD[5] MD[6] MD[6] MD[6] MD[10] MD[10] MD[11] MD[12] MD[13] MD[14] MD[15] MD[16] MD[17] MD[16] MD[17] MD[13] MD[16] MD[17] MD[13] MD[16] MD[20] MD[20] MD[21] MD[22] MD[23] MD[24] MD[23] MD[24] MD[23] MD[24] MD[25] MD[26] MD[27] MD[28] MD[29] MD[29] MD[29] MD[20] MD[21] MDDEF0[2] MODEF1[0] MODE[1] MOD[1] MOD[1] MOD[1] MOD[1] MOD[1] MOD[2] M	Ball # V25 V26 W23 W25 W26 A25 A25 A25 A26 A226 J26 E20 D21 C21 B22 D23 B23 A23 C24 B24 A24 B25 C26 D25 K23 K24 K25 C26 D25 K23 K24 K25 C26 D25 K23 K24 A22 D23 B23 A23 C24 B24 A24 B25 C26 D25 K23 K24 A24 B25 C26 D25 K23 K24 A24 B25 C26 D25 K23 K24 A25 C26 D25 K23 K24 A24 B25 C26 D25 K23 K24 K25 C26 D25 C26 D25 K23 K24 K25 C26 D25 C26 D25 K23 K24 K25 C26 D25 C26 D25 K23 K24 K25 C26 D25 C26 C27 C27 C27 C27 C27 C27 C27 C27	Signal MP[1] MP[2] MP[3] MWE[0]/ MC NC SO PAR PAR64 PCICLK PCIPLLVDS PERR/ REQ/ RX1+ RXBVDD1 RXLOS1 RXVDD1	Ball # D26 J24 P25 G23 F25 A11 A166 B11 B16 D1 F4 G12 G23 F25 A11 A166 B11 B16 D1 F2 F4 G12 H22 K4 M1 P22 A24 B16 D1 F2 F4 G12 H22 K4 M1 P22 A24 B16 D1 F2 F4 G12 H22 K4 M1 P22 A24 B16 D1 F2 F4 G12 H22 K4 M1 P22 A24 F4 G12 F5 G12 F4 G12 F4 G12 F5 G12 F4 G12 F5 G12 F4 G12 F4 F4 F5 G12 F4 F4 F4 F4 F4 F4 F4 F4 F4 F4	Signal TDI TDO TEST[0] TEST[1] TEST[2] TEST[4] TEST[5] TEST[7] TEST[8] TEST[7] TEST[8] TEST[7] TEST[8] TEST[7] TEST[8] TEST[7] TEST[8] TEST[7] TEST[9] TMS_ICE TRDV/ TX0- TX1- TX1+ TSBVSD01 TXVDD0 TXVDD1 TXVDD1 TXVSS1 V5PCIX V5PCIX V5PCIX V5PCIX	Ball #I N4 M4 A6 B5 E8 L1 N2 F1 F3 H5 C6 N3 L4 N1 AF4 A10 B10 A14 B9 D15 D11 B14 D10 A14 B9 D15 U1 U2 AC7 AC13 AD1 AF2 AF9 AF11 AF12 AF17 AF24 C18 D5 D22 EG5 G22 J4 J23 M22 R5 T22 W22 AA1 AB7 AB1


1. NC pins are not connected.

Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #	Signal	Ball #
VDDC VDDC VDDC VDDC VDDC VDDIO	AB16 AB20 AC29 AC3 AC3 AC9 AC48 A22 A26 B1 C7 C11 C15 C19 C23 D3 E6 E10 E14 E12 E25 F5 G24 H3 J22 K5 G24 H3 J22 K5 C12 R24 T3 U22	VDDIO VDSC VSSC VSSC VSSC VSSC VSSC VSSC VSSC	V5 W24 A3 AB3 AB3 AB9 AB17 AB21 AC24 AD5 AD8 AD12 AD16 AD20 AE26 AD12 AD20 AE26 C5 C10 C17 C22 E4 E12 E23 H4 H22 L5 L22 P26 T5	VSSC VSSC VSSC VSSC VSSC VSSC VSSC VSSC	V4 V23 Y5 Y22 AB8 AB12 AB15 AB19 AC5 AC22 A1 A25 B26 C4 C12 C16 C20 D24 E2 E5 E9 E13 E17 E21 F22 G3 H24 J5 K22 L3 L11	VSSIO VSSIO	L12 L13 L14 L15 L16 M112 M13 M14 N15 M16 M24 N112 N14 N12 N14 N15 N112 N14 N15 N112 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N13 N14 N15 N112 N15 N112 N113 N112 N113 N112 N113 N112 N113 N114 N15 N112 N113 N114 N15 N112 N113 N114 N15 N112 N113 N114 N15 N112 N114 N15 N112 N113 N114 N15 N112 N113 N114 N15 N112 N113 N114 N15 N112 N113 N114 N15 N112 N113 N114 N15 N112 N114 N15 N112 N114 N15 N112 N114 N15 N112 N114 N15 N112 N112 N112 N112 N112 N112 N112	VSSIO VSSIO	R16 T11 T12 T13 T14 T15 T16 T24 U5 V22 W3 Y24 AA5 AB10 AB14 AB18 AB22 AB25 AC4 AD7 AD11 AD15 AD19 AD23 AE1 AF26 F23

 Table 7.15
 Alphanumeric Pad Listing by Signal Name (Cont.)

7.4 Mechanical Drawing

Important: This drawing may not be the latest version. For board layout and manufacturing, obtain the most recent engineering drawings from your LSI Logic marketing representative by requesting the outline drawing for package code J7.

7.5 Package Thermal Considerations

Package thermal management is an important element of electronic product design. In any system environment, it is important not to exceed the maximum recommended semiconductor junction temperature. The maximum recommended junction temperature for the LSIFC929X is 115 °C.

To that end, LSI Logic recommends using an appropriate heat sink for the LSIFC929X and maintaining an adequate airflow throughout the system.

Allowing for a maximum dynamic power consumption of 4 W, Table 7.16 shows some examples of the maximum allowable junction temperature to maintain less than a 70 °C ambient for the given airflow and heat sink conditions.

	Airflow (m/s)	^θ JMAmax (°C/W)	Junction Temperature at 70 °C Ambient (°C)	Maximum Allowable Ambient Temperature (°C)
	0	12.2	118.8	66.2
With	0.5	10.1	110.4	74.6
Heat Sink	1.0	8.7	104.8	80.2
	2.0	6.9	97.6	87.4
	3.0	6.2	94.8	90.2
	0	15.3	131.2	53.8
Without	0.5	13.4	123.6	61.4
Heat Sink	1.0	12.8	121.2	63.8
	2.0	11.9	117.6	67.4
	3.0	11.1	114.4	70.6

Table 7.16 Maximum Allowable Ambient Temperature vs. Airflow

Appendix A Register Summary

Table A.1 and Table A.2 list the register summary for the LSIFC929X.

	0		
Register Name	Address	Read/Write	Page
Vender ID	000	Deed Only	0.4

Table A.1 LSIFC929X Multifunction PCI Registers

Addiebe	noua, mno	raye
0x00	Read Only	6-4
0x02	Read Only	6-4
0x04	Read/Write	6-5
0x06	Read/Write	6-7
0x08	Read/Write	6-9
0x09	Read/Write	6-9
0x0C	Read/Write	6-10
0x0D	Read/Write	6-10
0x0E	Read Only	6-11
0x0F	Read Only	6-11
0x10	Read/Write	6-12
0x14	Read/Write	6-12
0x18	Read/Write	6-13
0x1C	Read/Write	6-13
0x20	Read/Write	6-14
0x24–0x28	Read Only	6-14
0x2C	Read Only	6-15
0x2E	Read Only	6-15
	0x02 0x04 0x06 0x08 0x09 0x0C 0x0D 0x0C 0x0D 0x0E 0x0F 0x10 0x14 0x18 0x12 0x20 0x24–0x28 0x2C	0x02Read Only0x02Read/Write0x04Read/Write0x06Read/Write0x08Read/Write0x09Read/Write0x00Read/Write0x0CRead/Write0x0DRead/Write0x0ERead Only0x0FRead/Write0x10Read/Write0x14Read/Write0x12Read/Write0x20Read/Write0x20Read/Write0x24-0x28Read Only0x2CRead Only

Register Name	Address	Read/Write	Page
Expansion ROM Base Address	0x30	Read/Write	6-16
Capabilities Pointer	0x34	Read Only	6-17
Reserved	0x38	Read Only	6-18
Interrupt Line	0x3C	Read/Write	6-18
Interrupt Pin	0x3D	Read Only	6-18
Minimum Grant	0x3E	Read Only	6-19
Minimum Latency	0x3F	Read Only	6-19
Power Management Capability ID	0xXX	Read Only	6-20
Power Management Next Pointer	0xXX	Read Only	6-20
Power Management Capabilities	0xXX	Read Only	6-21
Power Management Control/Status	0xXX	Read/Write	6-22
Power Management Bridge Support Extensions	0xXX	Read Only	6-23
Power Management Data	0xXX	Read Only	6-23
MSI Capability ID	0xXX	Read Only	6-23
MSI Next Pointer	0xXX	Read Only	6-24
Message Control	0xXX	Read/Write	6-24
Message Address	0xXX	Read/Write	6-26
Message Upper Address	0xXX	Read/Write	6-26
Message Data	0xXX	Read/Write	6-27
PCI-X Capability ID	0xXX	Read Only	6-27
PCI-X Next Pointer	0xXX	Read Only	6-28
PCI-X Command	0xXX	Read/Write	6-28
PCI-X Status	0xXX	Read/Write	6-30

Table A.1 LSIFC929X Multifunction PCI Registers (Cont.)

Register Name	Address	Read/Write	Page
System Doorbell	0x00	Read/Write	6-34
Write Sequence	0x04	Read/Write	6-35
Host Diagnostic	0x08	Read/Write	6-36
Test Base Address	0x0C	Read/Write	6-38
Diagnostic Read/Write Data	0x10	Read/Write	6-38
Diagnostic Read/Write Address	0x14	Read/Write	6-39
Host Interrupt Status	0x30	Read Only	6-40
Host Interrupt Mask	0x34	Read/Write	6-41
Request FIFO	0x40	Read/Write	6-42
Reply FIFO	0x44	Read/Write	6-43
Host Index Register	0x50	Read/Write	6-43

Table A.2 LSIFC929X Host Interface Registers

Appendix B Reference Specifications

The LSIFC929X is compliant with the following specifications:

Table B.1 Reference Specifications

Specification	Revision
Fibre Channel Physical Interface (FC-PI)	11
Fibre Channel Physical and Signaling Interface (FC-PH)	4.3
Fibre Channel Arbitrated Loop (FC-AL-2)	7.0
FC Private Loop Direct Attach (FC-PLDA)	1.5
Fibre Channel Protocol for SCSI (FCP)	12
GBIC	5.4
PCI Local Bus	2.2
PCI-X Addendum to the PCI Local Bus	1.0a

Appendix C Glossary of Terms and Abbreviations

8B/10B	A data encoding scheme, developed by IBM, that translates byte wide data to an encoded 10-bit format.
ANSI	American National Standards Institute, the coordinating organization for voluntary standards in the United States.
Arbitrated Loop Topology (FC-AL)	A FC Topology that provides a low cost solution to attach multiple ports in a loop without switches.
BER	Bit error rate.
Bit	A binary digit. The smallest unit of information a computer uses. The value of a bit (0 or 1) represents a two-way choice, such as on or off, and true or false.
Broadcast	Sending a transmission to all N_Ports on a fabric.
Bus	A collection of unbroken signal lines across which information is transmitted from one part of a computer system to another. Connections
	to the bus are made using taps on the lines.
Bus Mastering	to the bus are made using taps on the lines. A high-performance way to transfer data. The host adapter controls the transfer of data directly to and from system memory without bothering the computer's microprocessor. This is the fastest way for multitasking operating systems to transfer data.
Bus Mastering Byte	A high-performance way to transfer data. The host adapter controls the transfer of data directly to and from system memory without bothering the computer's microprocessor. This is the fastest way for multitasking

Configuration	Refers to the way a computer is set up; the combined hardware components (computer, monitor, keyboard, and peripheral devices) that make up a computer system; or the software settings that allow the hardware components to communicate with each other.
CPU	Central Processing Unit. The "brain" of the computer that performs the actual computations. The term Microprocessor Unit (MPU) is also used.
Crosspoint- Switched Topology (FC-XS)	Highest performance FC fabric, providing a choice of multiple path routings between pairs of F_Ports.
DMA	Direct memory access. A method of moving data from a storage device directly to RAM without using the resources of the CPU.
DMA Bus Master	A feature that allows a peripheral to control the flow of data to and from system memory by blocks, as opposed to PIO (Programmed I/O), where the processor is in control and the flow is by byte.
Device Driver	A program that allows a microprocessor (through the operating system) to direct the operation of a peripheral device.
EEPROM	Electronically Erasable Programmable Read Only Memory. A memory chip that typically stores configuration information.
EISA	Extended Industry Standard Architecture. An extension of the 16-bit ISA bus standard. It allows devices to perform 32-bit data transfers.
Exchange	A term that refers to one of the FC "building blocks", composed of one or more nonconcurrent sequences for a single operation.
Fabric	FC-defined interconnection methodology that handles routing in FC networks.
FC	Fibre Channel.
FC-PH	FC Physical standard, consisting of the three lower levels: FC-0, FC-1, and FC-2.
FC-0	Lowest level of FC-PH, covering the physical characteristics of the interface and media.
FC-1	Middle level of FC-PH, defining the 8B/10B encoding/decoding and transmission protocol.

FC-2	www.DataSheet4U.com Highest level of FC-PH, defining the rules for signaling protocol and describing transfer of the frame, sequence, and exchanges.
FC-3	The hierarchical level in the FC standard that provides common services, such as striping definition.
FC-4	The hierarchical level in the FC standard that specifies the mapping of Upper Layer Protocols (ULPs) to levels below.
FCC	Federal Communications Commission.
FCP	Fibre Channel Protocol.
FDDI	Fiber Distributed Data Interface. The ANSI option for a Metropolitan Area Network (MAN); a network based on the use of optical fiber cable to transmit data at 100 Mbits/s.
Fibre Channel Service Protocol (FSP)	The common FC-4 level protocol for all services, transparent to the fabric type or topology.
File	A named collection of information stored on a disk.
Firmware	Software that is permanently stored in ROM. Therefore, it can be accessed during boot time.
F_Port	"Fabric" port, the access point of the fabric for physically connecting the N_Port.
FL_Port	A fabric port configured for loop functionality.
Frame	A linear set of transmitted bits that define a basic transport element.
Hard Disk	A disk made of metal and permanently sealed into a drive cartridge. A hard disk can store very large amounts of information.
HAL	Hardware Abstraction Layer.
HIPPI	High Performance Parallel Interface, an 800 Mbit/s interface to supercomputer networks (formerly known as high speed channel) developed by ANSI.
Host	The computer system in which a SCSI host adapter is installed. It uses the SCSI host adapter to transfer information to and from devices attached to the SCSI bus.

- **Host Adapter** A circuit board or integrated circuit that provides a SCSI bus connection to the computer system.
- IOP I/O Processor.
- IP Internet Protocol.
- IPI Intelligent Peripheral Interface.
- ISA Industry Standard Architecture. A type of computer bus used in most PCs. It allows devices to send and receive data up to 16 bits at a time.
- Kbyte Kilobyte. A measure of computer storage equal to 1024 bytes.
- LCT Logical Configuration Table.
- Link_Control_A termination card that handles the logical and physical control of the FCFacilitylink for each mode of use.
- LLC Logical link control.
- Local Bus A way to connect peripherals directly to computer memory. It bypasses the slower ISA and EISA buses. PCI is a local bus standard.
- **Login Server** Entity within the FC fabric that receives and responds to login requests.
- L_Port An FC port which supports the arbitrated loop topology.
- LUN Logical Unit Number. An identifier, zero to seven, for a logical unit.
- Mbyte Megabyte. A measure of computer storage equal to 1024 kilobytes.
- MFA Message Frame Address.
- MSI Message Signaled interrupt.
- **Multicast** Refers to delivering a single transmission to multiple destination N_Ports.
- NIC Network interface card.
- **N_Port** "Node" port, an FC-defined hardware entity at the node end of a link.
- NL_Port A node port configured for loop functionality.

- Operating
SystemA program that organizes the internal activities of the computer and its
peripheral devices. An operating system performs basic tasks such as
moving data to and from devices, and managing information in memory.
It also provides the user interface.
- **Operation** A term, defined in FC-2, that refers to one of the FC building blocks composed of one or more, possibly concurrent, exchanges.
- Ordered Set An FC term referring to four 10-bit characters (a combination of data and special characters) that provide low level link functions, such as frame demarcation and signaling between two ends of a link. It provides for initialization of the link after power-on and for some basic recovery actions.
- **Originator** An FC term referring to the initiating device.
- **Parity Checking** A way to verify the accuracy of data transmitted over the SCSI bus. One bit in the transfer makes the sum of all the 1 bits either odd or even (for odd or even parity). If the sum is not correct, an error message appears.
- PCI Peripheral Component Interconnect. A local bus specification that allows connection of peripherals directly to computer memory. It bypasses the slower ISA and EISA buses.
- PDB Packet Descriptor Block.
- **PIO** Programmed Input/Output. A way the CPU can transfer data to and from memory using the computer I/O ports. PIO is usually faster than DMA, but requires CPU time.
- **Port** The hardware entity within a node that performs data communications over the FC link.
- **Port Address** Also Port Number. The address through which commands are sent to a host adapter board. This address is assigned by the PCI bus.
- Port Number See Port Address.
- **RAM** Random Access Memory. The primary working memory of the computer in which program instructions and data are stored and are accessible to the CPU. Information can be written to and read from RAM. The contents of RAM are lost when the computer is turned off.
- **Responder** An FC term referring to the answering device.

- **RISC Core** LSIFC929X chips contain a RISC (Reduced Instruction Set Computer) processor, programmed through microcode scripts.
- **ROM** Read Only Memory. Memory from which information can be read but not changed. The contents of ROM are not erased when the computer is turned off.
- SAN Storage Area Network.
- **SCAM** SCSI Configuration Automatically. A method that automatically allocates SCSI IDs using software when SCAM compliant SCSI devices are attached.
- **Scatter/Gather** A device driver feature that lets the host adapter modify a transfer data pointer so that a single host adapter transfer can access many segments of memory. This minimizes interrupts and transfer overhead.
- SCB SCSI Command Block.
- **SCSI** Small Computer System Interface. A specification for a high-performance peripheral bus and command set. The original standard is referred to as SCSI-1.
- **SCSI-2** The current SCSI specification, which adds features to the original SCSI-1 standard.
- SCSI ID A way that uniquely identifies each SCSI device on the SCSI bus. Each SCSI bus has eight available SCSI IDs numbered 0–7 (or 0–15 for Wide SCSI). The host adapter usually gets ID 7, giving it priority to control the bus.
- **Sequence** A term referring to one of the FC building blocks, which are composed of one or more related frames for a single operation.
- SFF small form factor.
- SGL Scatter-gather list.
- SNAP Subnetwork Access Protocol.
- SynchronousOne of the ways data is transferred over the SCSI bus. Transfers are
clocked with fixed frequency pulses. This is faster than asynchronous
data transfer. Synchronous data transfers are negotiated between the
SCSI host adapter and each SCSI device.

System BIOS Controls the low level POST (Power-On Self Test), and basic operation of the CPU and computer system.

TID Target ID.

- **Topology** The logical and/or physical arrangement of stations on a network.
- ULP Upper Layer Protocol.

VCCI Voluntary Control Council for Interference.

- Virtual Memory Space on a hard disk that can be used as if it were RAM.
- VPD Vendor Product Data.
- Word A 2-byte (or 16-bit) unit of information.
- X3T9 A technical committee of the Accredited Standards Committee X3, titled X3T9 I/O Interfaces. It develops standards for moving data in and out of central computers.

Numerics

133 MHz capable bit 6-31 133 MHz PCI-X bit 6-31 4 mA bidirectional signals 7-4 64-bit address capable bit 6-24 64-bit device bit 6-31 64EN/ 4-6 66 MHz capable 6-8 8 mA output signals 7-5 8b/10b decoding 2-3

A

AC timing 7-7 ACK64/ 4-3 AD[1:0] 5-2 AD[10:8] 5-2 AD[63:0] 4-4 AD[7:2] 5-2 address/data bus 6-31 ADSC/ 4-13 ADV/ 4-13 alias to memory read block 5-4, 5-6, 5-7 alias to memory write block 5-4, 5-6 alignment 5-8 arbitrated loop topology 2-8 arbitration 5-9 architecture 1-6 ARM966E-S 6-36 aux_current bit 6-21

В

base address register zero 5-3 BER 1-9 BIOS 5-2 bit error rate 1-9 block diagram 3-2 burst size selection 5-7 bus commands 5-4 bus mastering 5-9 functions 5-9 bus number 6-31 BWE[3:0]/ 4-13 BYPASS0/ 4-8 BYPASS1/ 4-8

С

C_BE[3:0]/ 5-2, 5-3, 5-4, 5-6, 5-7 C_BE[7:0]/ 4-4 cache line size 5-7, 5-8, 5-9, 6-10 cache line size alignment 5-8 cache line size register 6-10 capabilities pointer register 6-17 capability ID 6-2 MSI 6-23 PCI-X 6-27 power management 6-20 capacitance 7-4 channel protocol 2-2 class 1 2-9 class 2 2-9 class 3 2-9 class code register 6-9 class intermix 2-10 classes of service 2-9 CLS 6-10 CLS alignment 5-8 Command Descriptor Block (CDB) 2-6 command register 6-5 configuration read command 5-2, 5-4, 5-6, 5-7, 6-7 write command 5-2, 5-4, 5-6, 5-7, 6-7 configuration space 5-2, 6-1, 6-2 AD[1:0] 5-2 AD[10:8] 5-2 AD[7:2] 5-2 C_BE[3:0]/ 5-2, 5-3, 5-4 context manager 1-8 controller link 1-8 memory 1-7 CRC 2-4 Cyclic Redundancy Check (CRC) 2-4

D

D0 6-22 D1 bit 6-21 D2 bit 6-21 D3 6-22 DAC 5-1, 5-4, 5-8 data parity error reported 6-8 data flows 3-2 data frames 2-4 data parity error recovery enable bit 6-29

LSIFC929X Dual Channel Fibre Channel I/O Processor Technical Manual IX-1 Copyright © 2002, 2003 by LSI Logic Corporation. All rights reserved.

data sequence 2-6 data_scale bit 6-22 data_select bit 6-22 decoding 8b/10b 2-3 designed maximum cumulative read size bit 6-30 designed maximum memory read byte count bit 6-30 designed maximum outstanding split transactions bit 6-30 destination identifier (D_ID) 2-8 detected parity error (from slave) bit 6-7 device complexity bit 6-31 device ID register 6-4 device number bit 6-32 device specific initialization bit 6-21 DEVSEL/ 4-5 DEVSEL/ timing bit 6-7 diagnostic memory 6-32 diagnostic memory enable bit 6-37 diagnostic read/write address register 6-39 diagnostic read/write data register 6-38 diagnostic read/write enable bit 6-37 diagnostic write enable bit 6-36 DisARM bit 6-37 DMA 5-9 doorbell status bit 6-40 system interrupt bit 6-40 doorbell interrupt mask bit 6-42 dual address cycle (DAC) 1-7 dual address cycles command 5-1, 5-4, 5-8

Ε

enable bus mastering bit 6-6 diagnostic memory bit 6-37 diagnostic write bit 6-36 I/O space bit 6-6 memory space bit 6-6 MSI bit 6-25 parity error response bit 6-6 write and invalidate bit 6-6 encode/decode 2-3 End-of-Frame (EOF) 2-4 ENUM/ 4-6 exchanges transfer 2-3 expansion ROM base address register 6-16 expansion ROM enable bit 6-16

F

fabric topology 2-8 FAULTO/ 4-7 FAULT1/ 4-8 FC data structure 2-5 data traffic 3-1 devices 2-7 exchange 2-5 Fibre Channel 2-1 frames 2-5 interface 2-2 layer 2-3 link 1-8 N Ports 2-3 sequence 2-5 structure 2-2

word 2-5 FCP 2-5 exchange 2-6 Fibre Channel Protocol 1-1 Fibre Channel (FC) 2-1 Fibre Channel Protocol (FCP) 1-1 FIFO reply 6-43 request 6-42 flash ROM bad signature bit 6-36 Flash ROM read timing 7-9 Flash ROM write timing 7-10 FLASHCS/ 4-12 frame data 2-4 end of 2-4 link control 2-4 payload 2-6 start of 2-4 transfer 2-3 FRAME/ 4-4 function number bit 6-32 functional block diagram 1-7 functional signal grouping 4-2

G

GigaBlaze transceiver 3-2 GNT/ 4-3, 5-9 GPIO[2](BLUELED/) 4-6 GPIO[3:0] 4-14 grant 5-9

Η

header type register 6-11 host diagnostic register 6-36 host doorbell value 6-34 host interrupt mask register 6-41 host interrupt status register 6-40 HOTSWAPEN/ 4-6

I

```
I/O
   base address register 5-3, 6-12
   key 6-35
   read command 5-4, 5-5, 5-7
   space 5-3, 6-1, 6-32
   write command 5-4, 5-5, 5-7
IDDTN 4-15
IDSEL 4-4. 5-2
implementation 1-5, 3-9
initiator command sequence 2-6
input signals 7-4
INTA/ 4-5, 6-37
INTB/ 4-6
integrated transceiver 1-8
integration 2-3
interface
   FC 2-2
   media 2-3
   system 1-7, 1-8
   upper level protocol (ULP) 2-2
```

interface timing SSRAM read/write/read 7-8 intermix class 2-10 internet protocol (IP) 2-2 interrupt acknowledge command 5-4, 5-5, 5-7 doorbell mask bit 6-42 line register 6-18 pin register 6-18 reply bit 6-40 reply mask bit 6-42 request routing mode bits 6-41 signal routing 6-41 system doorbell bit 6-40 TTL bit 6-37 IOP doorbell status bit 6-40 IRDY/ 4-5

Κ

key I/O 6-35

L

LAN message interface 3-6 LAN protocol stack 3-7 latency timer register 6-10 LED[4:0]/ 4-14 link control frames 2-4 link controller 1-8 LIPRESET/ 4-7

Μ

MA[21:0] 4-11 maximum ambient temperature 7-19 maximum latency register 6-19 maximum memory read byte count bits 6-29 maximum outstanding split transactions bits 6-28 maximum stress ratings 7-3 MCLK 4-13 MD[31:0] 4-10 media interface 2-3 memory alias to read block 5-6, 5-7 alias to write block 5-4, 5-6 read block command 5-4, 5-6, 5-7, 5-8 read command 5-4, 5-5, 5-7, 5-8, 5-9 read dword command 5-4, 5-5, 5-7 read line command 5-4, 5-8, 5-9 read multiple command 5-4, 5-7, 5-9 space 5-3, 6-1 write and invalidate command 5-4, 5-8, 5-9 write block command 5-4, 5-6, 5-9 write command 5-4, 5-6, 5-8, 5-9 memory [0] high register 6-13 memory [0] low register 6-12 memory [1] high register 6-14 memory [1] low register 6-13 memory controller 1-7 memory shared 6-44 memory space [0] 5-3, 6-1, 6-32 memory space [1] 5-3, 6-1 memory space[1] 6-32 message address register 6-26 message control register 6-24

Index

message data register 6-27 message flow 3-5 message interface 3-3 Message Queueing Models 3-4 message transport 1-7 message upper address register 6-26 minimum grant register 6-19 MODE[7:0] 4-14 MODEF0[2:0] 4-9 MODEF1[2:0] 4-9 MOE[1:0] 4-12 MP[3:0] 4-10 MSI capability ID register 6-23 enable bit 6-25 next pointer register 6-24 multifunction PCI 5-2 multiple cache line transfers 5-9 multiple message bits 6-25 MWE[1:0]/ 4-12

Ν

new capabilities 6-8

0

ODIS0 4-8 ODIS1 4-8 operating conditions 7-3 overview 1-1-1-3

Ρ

packaging 7-18, 7-19 PAR 4-5 PAR64 4-5 parity error 6-8 payload 2-4, 2-6 PCI 66 MHz capable 6-8 address/data bus 6-31 addressing 5-2 alias to memory read block command 5-6, 5-7 alias to memory write block command 5-6 arbitration 5-9 bus commands 5-3, 5-4 bus commands and encoding types 5-4 cache line size register 5-8 cache mode 5-9 command 5-4 configuration read 5-2 configuration write 5-2 dual address cycles 5-1 memory read block 5-6 memory write 5-6 configuration read command 5-4, 5-6, 5-7, 6-7 configuration space 5-2, 6-1, 6-2 AD[1:0] 5-2 AD[10:8] 5-2 AD[7:2] 5-2 address map 6-3 C_BE[3:0]/ 5-2, 5-3, 5-4 configuration write command 5-4, 5-6, 5-7, 6-7 DAC 5-1, 5-4, 5-8

dual address cycles command 5-4, 5-8 functional description 5-1 I/O read command 5-4, 5-5, 5-7 I/O space 5-2, 5-3, 6-1, 6-32 I/O space address map 6-33 I/O space and memory space [0] 6-32 I/O write command 5-4, 5-5, 5-7 interrupt acknowledge command 5-4, 5-5, 5-7 memory [0] address map 6-33 memory [1] address map 6-34 memory read block command 5-7, 5-8 memory read command 5-4, 5-5, 5-7, 5-8, 5-9 memory read dword command 5-5, 5-7 memory read line command 5-4, 5-8, 5-9 memory read multiple command 5-4, 5-7, 5-9 memory space 5-2, 5-3, 6-1 memory space [0] 5-3, 6-1 memory space [1] 5-3, 6-1 memory write and invalidate command 5-4, 5-8, 5-9 memory write block command 5-6, 5-9 memory write command 5-4, 5-8, 5-9 multifunction 5-2 new capabilities 6-8 reset 6-37 special cycle command 5-4, 5-5, 6-7 split completion command 5-7 system address space 6-1 PCI bidirectional signals 7-6 PCI input signals 7-5 PCI output signals 7-6 PCICLK 4-3 PCI-X 5-1 133 MHz capable bit 6-31 64-bit device bit 6-31 alias to memory read block command 5-4 alias to memory write block command 5-4 bus commands 5-4 bus number 6-31 capability ID register 6-27 capability register 6-27 command 5-4 command register 6-28 data parity error recovery enable bit 6-29 designed maximum cumulative read size bit 6-30 designed maximum memory read byte count bit 6-30 designed maximum outstanding split transactions bit 6-30 device complexity bit 6-31 device number bit 6-32 function number bit 6-32 maximum memory read byte count bits 6-29 maximum outstanding split transactions bits 6-28 memory read block command 5-4 memory read dword command 5-4 memory write block command 5-4 next pointer register 6-28 received split completion error message bit 6-30 split completion command 5-4 split completion discarded bit 6-31 status register 6-30 unexpected split completion bit 6-31 PERR/ 4-5 PME enable bit 6-22 status bit 6-22 support bits 6-21 PME clock bit 6-21

point-to-point topology 2-8 POR 6-37 ports 2-7 power management aux current bit 6-21 bridge support extensions register 6-23 capabilities register 6-21 capability ID register 6-20 control/status register 6-22 D0 6-22 D1 bit 6-21 D2 bit 6-21 D3 6-22 data register 6-23 data_scale bit 6-22 data select bit 6-22 device specific initialization bit 6-21 next pointer register 6-20 PME clock bit 6-21 PME enable bit 6-22 PME status bit 6-22 power state bit 6-22 support bits 6-21 version bit 6-21 power on reset 6-37 power state bit 6-22 PROC_DRVLS 4-15 processor ARM RISC 1-6, 1-7, 1-8 I/O 1-7 protocol channel 2-2 fibre channel (FCP) 1-1, 2-5 internet 2-2 signaling 2-3 transmission 2-3 upper level 2-2 protocols upper layer 2-3

R

RAMCS/ 4-13 received master abort (from master) bit 6-7 target abort (from master) bit 6-7 received split completion error message bit 6-30 receiver 1-8 REFCLK 4-9 reference specifications B-1 register cache line size 6-10 capabilities pointer 6-17 class code 6-9 command 6-5 device ID 6-4 diagnostic read/write address 6-39 diagnostic read/write data 6-38 expansion ROM base address 6-16 header type 6-11 host diagnostic 6-36 host interrupt mask 6-41 host interrupt status 6-40 I/O base address 6-12 interrupt line 6-18 interrupt pin 6-18

S

latency timer 6-10 map PCI I/O space 6-33 maximum latency 6-19 memory [0] high 6-13 memory [0] low 6-12 memory [1] high 6-14 memory [1] low 6-13 message address 6-26 message control 6-24 message data 6-27 message upper address 6-26 minimum grant 6-19 MSI capability ID 6-23 MSI next pointer 6-24 PCI memory [0] address map 6-33 PCI memory [1] address map 6-34 PCI-X capability 6-27 PCI-X capability ID 6-27 PCI-X command 6-28 PCI-X next pointer 6-28 PCI-X status 6-30 power management bridge support extensions 6-23 power management capabilities 6-21 power management capability ID 6-20 power management control/status 6-22 power management data 6-23 power management next pointer 6-20 reply FIFO 6-43 request FIFO 6-42 revision ID 6-9 status 6-7 subsystem ID 6-15 subsystem vendor ID 6-15 system doorbell 6-34 test base address 6-38 vendor ID 6-4 write sequence 6-35 register map A-1, A-3 PCI configuration space 6-3 reply FIFO register 6-43 reply interrupt bit 6-40 reply interrupt mask bit 6-42 reply message 3-3 reply message frames 5-9 REQ/ 4-3. 5-9 REQ64/ 4-3 request FIFO register 6-42 request message 3-3 request message frames 5-9 request status 1-9 reset adapter bit 6-37 reset history bit 6-37 response sequence 2-6 revision ID register 6-9 ROM expansion enable bit 6-16 RST/ 4-3 RTRIM 4-7 RX0neg 4-7 RX0pos 4-7 RX1neg 4-7 RX1pos 4-7 RXLOS0 4-8 RXLOS1 4-9

Schmitt input signals 7-4 SCL 4-14 SCSI bus mastering functions 5-9 functions 5-9 SCSI message interface 3-6 SDA 4-14 sequences transfer 2-3 SERR/ 4-5. 6-29 SERR/ enable bit 6-5 shared memory 6-44 signaled system error bit 6-7 signaling protocol 2-3 special cycle command 5-4, 5-5, 6-7 split completion command 5-4, 5-7 split completion discarded bit 6-31 SSRAM Memory 3-9 Start-of-Frame (SOF) 2-4 status IOP doorbell bit 6-40 status register 6-7 STOP/ 4-5 subsystem ID register 6-15 subsystem vendor ID register 6-15 Support Components 3-8 Flash ROM 3-10 Serial EEPROM 3-10 SSRAM Memory 3-9 SWITCH/ 4-6

system address space 6-1 system BIOS 5-2 system doorbell interrupt bit 6-40 system doorbell register 6-34 system interface 1-7, 1-8, 5-9 bus mastering function 5-9

Т

target message class 3-8 target operation 1-9 target response 2-6 TCK 4-15 TDI 4-15 TDO 4-15 test base address register 6-38 TestReset/ 6-37 timing diagram Flash ROM read 7-9 Flash ROM write 7-10 SSRAM read/write/read 7-8 TMS_CHIP 4-15 TMS_ICE 4-15 topology arbitrated loop 2-7 fabric 2-7 point-to-point 2-7 transceiver 1-8, 3-2 transfer exchanges 2-3 frames 2-3 sequences 2-3 transmission protocol 2-3 transmitter 1-8 TRDY/ 4-5 **TRST 4-15**

TTL interrupt bit 6-37 TX0neg 4-7 TX0pos 4-7 TX1neg 4-7 TX1pos 4-7

U

unexpected split completion bit 6-31 upper layer protocols (ULPs) 2-3

۷

vendor ID register 6-4 version bit 6-21

W

write and invalidate enable bit 6-6 write I/O key 6-35 write sequence register 6-35

Ζ

ZZ 4-13

Customer Feedback

We would appreciate your feedback on this document. Please copy the following page, add your comments, and fax it to us at the number shown.

If appropriate, please also fax copies of any marked-up pages from this document.

- Important: Please include your name, phone number, fax number, and company address so that we may contact you directly for clarification or additional information.
- Thank you for your help in improving the quality of our documents.

Reader's Comments

Fax your comments to:

LSI Logic Corporation Technical Publications M/S E-198 Fax: 408.433.4333

Please tell us how you rate this document: *LSIFC929X Dual Channel Fibre Channel I/O Processor Technical Manual.* Place a check mark in the appropriate blank for each category.

	Excellent	Good	Average	Fair	Poor
Completeness of information					
Clarity of information					
Ease of finding information					
Technical content					
Usefulness of examples and illustrations					
Overall manual					

What could we do to improve this document?

If you found errors in this document, please specify the error and page number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you directly for clarification or additional information.

Name		_ Date
Telephone	Fax	
Title		
Department		Mail Stop
Company Name		
Street		
City, State, Zip		

You can find a current list of our U.S. distributors, international distributors, and sales offices and design resource centers on our web site at

http://www.lsilogic.com/contacts/index.html