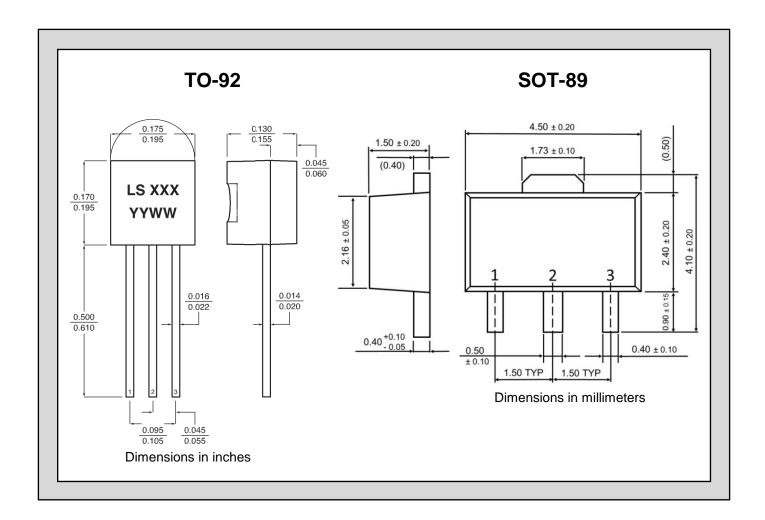


Twenty-Five Years Of Quality Through Innovation

LSJ74, SST74

ULTRA LOW NOISE SINGLE P-CHANNEL JFET


FEATURES					
ULTRA LOW NOISE (f = 1kHz)	$e_n = 0.9 \text{nV}/\sqrt{\text{Hz}}$				
HIGH GAIN	$G_{fs} = 22mS (typ)$				
HIGH INPUT IMPEDANCE	$I_G = 1.0 \text{nA}$				
LOW CAPACITANCE	C _{RSS} = 32pF				
IMPROVED SECOND SOURCE REPLACEMENT FOR 2SJ74					
ABSOLUTE MAXIMUM RATINGS¹ @ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150°C				
Junction Operating Temperature	-55 to +135°C				
Maximum Power Dissipation					
Continuous Power Dissipation	400mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)} = -10mA$				
Maximum Voltages					
Gate to Drain Voltage	$V_{GDS} = 25V$				
Gate to Source Voltage	V _{GSS} = 25V				

^{*} For equivalent N-Channel, see LSK170 family.

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS		
BV _{GDS}	Gate to Drain Breakdown Voltage		25			V	$V_{DS} = 0V, I_G = 100 \mu A$		
V _{GS(OFF)}	Gate to Source Pinch-off Voltage		0.15		2		$V_{DS} = -10V, I_{D} = -0.1 \mu A$		
Ibss	Drain to Source Saturation Current ²	LSJ74A	-2.6		-6.5	mA	mA V _{DG} = -10V, V _{GS} = 0V		
		LSJ74B	-6		-12				
		LSJ74C	-10		-20				
		LSJ74D	-17		-30				
lg	Gate Operating Current			50		pА	$V_{DG} = -10V, I_{D} = -1mA$		
Igss	Gate to Source Leakage Current				1	nA	$V_{GS} = 25V$, $V_{DS} = 0V$		
G _{fss}	Full Conductance Transconductance		8	22		mS	$V_{DG} = -10V$, $V_{GS} = 0V$, $f = 1kHz$		
	Noise Voltage		Naisa Valtaga			0.9	1.9	nV/√Hz	$V_{DS} = -10V$, $I_D = -2mA$, $f = 1kHz$, $NBW = 1Hz$
e n				2.5	4	IIV/ VIIZ	$V_{DS} = -10V$, $I_{D} = -2mA$, $f = 10kHz$, $NBW = 1Hz$		
C _{ISS}	Common Source Input Capacitance			105	·	pF	$V_{DS} = -10V$, $V_{GS} = 0V$, $f = 1MHz$		
Crss	Common Source Reverse Transfer Cap.			32			$V_{DS} = -10V, I_D = 0A, f = 1MHz$		

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300 μ S, Duty Cycle \leq 3%.
- 3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate negative electrical polarity only.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.