

# **Current Transducer LT 1005-S**

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).





#### **Electrical data** Α Primary nominal r.m.s. current 1000 I<sub>PN</sub> Primary current, measuring range $0.. \pm 2000$ $\dot{R}_{M}$ Measuring resistance @ $T_{.} = 70^{\circ}C$ $\mathbf{T}_{\Delta} = 85^{\circ}\mathrm{C}$ $R_{M \text{ min}} R_{M \text{ max}}$ @ ± 1000 A<sub>max</sub> 22.5 18.5 with ± 15 V Ω @ ± 1200 A<sub>max</sub> Ω 0 11 0 8 @ ± 1000 A<sub>max</sub> 0 65 0 62 Ω with ± 24 V @ ± 2000 A<sub>max</sub> 10 0 7 Ω 200 Secondary nominal r.m.s. current mΑ Conversion ratio 1:5000 Supply voltage (± 5 %) ± 15 .. 24 Current consumption $30(@\pm 24 V) + I_s mA$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn kV R.m.s. rated voltage 1), safe separation 1750 basic isolation 3500

| Accuracy - Dynamic performance data |                                                                                                                 |                       |                   |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|--|--|--|
| X <sub>G</sub>                      | Overall accuracy @ I <sub>PN</sub> , T <sub>A</sub> = 25°C<br>Linearity                                         | ± 0.4<br>< 0.1        | %<br>%            |  |  |  |
| L                                   | Linearity                                                                                                       | -                     |                   |  |  |  |
| I <sub>o</sub><br>I <sub>ot</sub>   | Offset current @ $I_p = 0$ , $T_A = 25$ °C  Thermal drift of $I_0$ - 10°C + 85°C                                | ± 0.4                 |                   |  |  |  |
| t,<br>di/dt<br>f                    | Response time <sup>2)</sup> @ 90 % of I <sub>P max</sub> di/dt accurately followed Frequency bandwidth (- 1 dB) | < 1<br>> 50<br>DC 150 | μs<br>A/μs<br>kHz |  |  |  |

| General data              |                               |                     |            |    |  |  |
|---------------------------|-------------------------------|---------------------|------------|----|--|--|
| $T_{A}$                   | Ambient operating temperature |                     | - 10 + 85  | °C |  |  |
| T <sub>s</sub>            | Ambient storage temperature   |                     | - 25 + 100 | °C |  |  |
| $\mathbf{R}_{\mathrm{s}}$ | Secondary coil resistance @   | $T_A = 70^{\circ}C$ | 43         | Ω  |  |  |
| Ī                         |                               | $T_A = 85^{\circ}C$ | 46         | Ω  |  |  |
| m                         | Mass                          |                     | 320        | g  |  |  |
|                           | Standards 3)                  |                     | EN 50178   |    |  |  |

# $I_{PN} = 1000 A$



#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

### **Advantages**

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

#### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) With a di/dt of 100 A/µs
- 3) A list of corresponding tests is available

980716/4



## **Dimensions** LT **1005-S** (in mm. 1 mm = 0.0394 inch)



### **Mechanical characteristics**

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary
- $\pm$  0.5 mm
- 4 holes  $\varnothing$  6.5 mm
- 40.5 x 40.5 mm
- Faston 6.3 x 0.8 mm

#### **Remarks**

- I<sub>s</sub> is positive when I<sub>p</sub> flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.