

LONTIUM SEMICONDUCTOR CORPORATION

ClearedEdgeTM Technology

LT8522EX Matrix Switch Jee Data Sheet

姓名 杨云鹤

zxwdzyyh@126.com

公司名称:香港众鑫微电子有限公司 地址:深圳市宝安区宝源路互联网产业 基地A区A栋209D 电话:0755-61591881-8026 手机:15999697406 QQ: 2692339384

We produce mixed-signal products for a better digital world!

Revision History

Version	Owner	Content	Date
Preliminary	Dsren	Initial Matrix Switch Datasheet creation	02/08/201
Preliminary	Nwang	Check package information	05/26/201
1.0	Xhguo	Update power consumption	05/28/201
1.1	Nwang	Update package information	05(30/201
1.2	Dsren	Update pin description	05/30/201
1.3	Dsren	Update pin23 and pin24 definition and pin diagram	07/07/201
1.4	N.Wang	Check package information	07/14/201
1.5	Xhguo	Update power consumption(add deep color info)	09/01/201
		AT THE AT THE ADD THE A	
		Update power consumption(add deep color info)	

Table of Contents

1. General Description	4
1.1. Features	4
1.2. Applications	
 1.1. Features. 1.2. Applications. 1.3. Absolute Maximum Ratings 	4
2. Functional Block Description	5
2. Functional Block Description 2.1. Application Diagram	5
2.2. Pin Configuration	6
2.3. Pin Descriptions	6
2.4. Typical Applications	10
2.5. Major Function Block Descriptions	10
2.6. VGA - ADC	10
 2.1. Application Diagram. 2.2. Pin Configuration	11
2.6.2. Sync Process	11
2.6.3. Embedded HDMI Receiver	11
2.7. Digital Audio Input/Output Interface	12
2.8. Two Wire Serial Bus Interface	12
 Packaging 3.1. ePad Enhancement 	13
3.1. ePad Enhancement	13
3.2. Package Dimensions	14
- AND	
e de	
A CHIL	
ill'	
off	
3.2. Package Dimensions	

1. General Description

The LT8522EX is Lontium's matrix switch chip that supports both two inputs(VGA and HDMI) and two outputs(VGA and HDMI) based on ClearEdge[™] technology. The HDMI input interface is compliant with the HDMI 1.4 (High Definition Multimedia Interface) specification. It can also support Dual-Mode DP with HDMI interface. For backward compatibility, this matrix switch also includes two high performance analog interfaces (VGA input and VGA output). It has two high quality digital audio interfaces (audio input and audio output) that support 8-channel audio.

The LT8522EX is offered in a 100-pin LQFP package, with operating temperature range of - 40° C-85 $^{\circ}$ C.

1.1. Features

- Direct interface to DVI 1.0 and HDMI V1.4 transmitter
- Support Dual-Mode DP on the same pins with HDMI
- Support resolution up to 4kx2k
- Multiple pixel formats: RGB 6/8/10/12 bit per component (bpc); YCbCr 422/444 8/10/12 bpc
- Compliance with DVI up to 1.65Gbps and HDMI V1.4 up to 3.4Gbps
- HDCP decryption and encryption
- On-chip VGA HDMI EDID shadows
- High input sensitivity, with differential input level down to 150mV
- Receiver side equalization up to 12dB
- Auto Loss of Signal detection
- High jitter tolerance up to 0.7UI
- External IIC slave configuration interface
- Master I2C interface for DDC connection simplifies board layout and lowers cost
- Embedded audio PCM and SRDIF TX and RX.
- Extensive power management for power savings
- Supports analogue video output up to UXGA and 1080p on chip DAC

1.2. Applications

- HD switch boxes
- HD source, Monitors and other applications

1.3. Absolute Maximum Ratings

Supply Voltage	VCC33	3.0V to 3.6V
A.	VCCA33	3.0V to 3.6V
onthe	PVCC33	3.0V to 3.6V
ON CONTRACT OF CONTRACT.	ADC_VCC	1.62V to 1.98V
		1.62V to 1.98V
	PVCC18	1.62V to 1.98V
	VDD	1.62V to 1.98V
		40°C to +85°C
Storage Temper	ature Range	40°C to +85°C

2. Functional Block Description

Figure 1 is functional block diagram of LT8522EX, and the block detail internal relationship is also shown in the diagram.

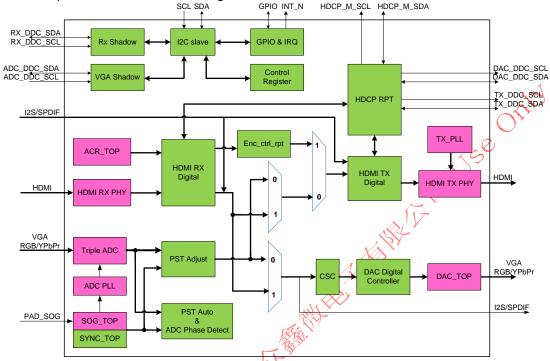
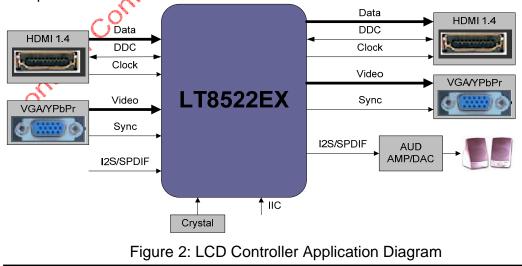
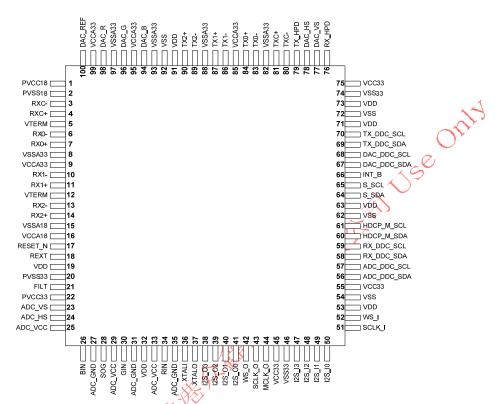



Figure 1: Functional Block Diagram

2.1. Application Diagram


Figure 2 is the normal application diagram of the matrix switch chip. In the chip it includes a triple ADC, a TMDS receiver and associated interfaces, a DAC, and a TMDS transmitter. It also includes two digital audio interfaces(a input and a output). The interface with DisplayPort can be realized through the TMDS interface by adding 500 ohm pull down resistor.

2.2. Pin Configuration

Figure 3 is the pin diagram of the LT8522EX matrix switch chip.

Lontium Semiconductor

Figure 3: Pin Diagram

2.3. Pin Descriptions

(I/O description: A=Analog, I=Input, O=Output, P=Power, G=Ground)

PIN			FUNCTION	NOTES		
HDMI RX Pins						
1	PVCC18	AP	Power supply pins for HDMI receiver PLL	1.8V		
2	PVS\$18	AG	Ground supply pins for HDMI receiver PLL			
3	RXC-	AI	HDMI receiver clock negative analog input			
4 <u>(1)</u>	RXC+	AI	HDMI receiver clock positive analog input			
5 0	VTERM	AP		3.3V		
6	RX0-	AI	HDMI receiver channel 0 negative analog input			
7	RX0+	AI	HDMI receiver channel 0 positive analog input			
8	VSSA33	AG	3.3V ground supply pins for HDMI Receiver			
9	VCCA33	AP	3.3V power supply pins for HDMI Receiver	3.3V		
10	RX1-	AI	HDMI receiver channel 1			

LT8522EX _datasheet _R1.5

Lontium Semiconductor

			negative analog input	
11	RX1+	AI	HDMI receiver channel 1	
			positive analog input	
12	VTERM	AP		3.3V
13	RX2-	AI	HDMI receiver channel 2	
			negative analog input	
14	RX2+	AI	HDMI receiver channel 2	
			positive analog input	
15	VSSA18	AG	1.8V ground supply pins for	
			HDMI receiver	1
16	VCCA18	AP	1.8V power supply pins for	1.8V
			HDMI receiver	O^{γ}
			Control Pins	0
17	RESET N	1	Global reset, active low	19
18	REXT	AIO	Bandgap Reference resistor	.6.04K
			And ADC PLL Pins	$\widehat{\boldsymbol{\lambda}}$
19	VDD	AP	Digital power supply pins for	1.8V
		<i>,</i> u	ADC PLL and HDMI RX	
20	PVSS33	AG	Ground supply pins for ADC	
20		, 0	PLL	
21	FILT	AIO	ADC PLL external filter	
22	PVCC33	AP	Power supply pins for ADC PLL	3.3V
23	ADC_VS	1	VGA vertical sync input	5V-tolerant,
20		•	VCA ventical sync input	internal pull-down
24	ADC_HS		VGA horizontal sync input	5V-tolerant,
27		•	Ver thome and a sync input	internal pull-down
25	ADC_VCC	AP	Power supply pins for ADC	1.8V
26	BIN	AI	VGA blue channel analog input	1101
27	ADC_GND	AG	Ground supply pins for ADC	
28	SOG	AI	SOG analog input	
29	ADC_VCC	AP	Power supply pins for ADC	1.8V
30	GIN	AI	VGA green channel analog	1.0 V
50		. 7.1	input	
31	ADC_GND	AG	Ground supply pins for ADC	
32	VDD	AP	Digital power supply pins for	1.8V
02		7.11	ADC	1.0 V
33	ADC_VCC	AP	Power supply pins for ADC	1.8V
34	RIN	AI	VGA red channel analog input	
35	ADC GND	AG	Ground supply pins for ADC	
			Crystal Pins	
36	XTALI	1	Crystal oscillator input	25MHZ
37 0	XTALO	0	Crystal oscillator output	
		U	Audio Pins	
20		0		
38	12S_03	0	I2S output	
39	12S_02	0	I2S output	
40	12S_01	0	I2S/SPDIF output	
41	12S_00	0	I2S output	
42	WS_O	0	I2S word select output	
43	SCLK_O	0	I2S serial clock output	
44	MCLK_O	0	I2S audio master clock output	0.01/
45	VCC33	Р	Power supply pins for IO	3.3V

46	VSS33	G	Ground supply pins for IO	
47	I2S_I3	Ι	I2S input	
48	12S_12	I	I2S input	
49	I2S_I1	I	I2S/SPDIF input	
50	12S 10		I2S input	
51	SCLK_I	-	I2S serial clock input	For Slave mode
52	WS_I	-	I2S word select input	
53	VDD	Р	Power supply pins for digital	1.8V
54	VSS	G	Ground supply pins for digital	
55	VCC33	P	Power supply pins for IO	3.3V
I			Control Pins	
56	ADC_DDC_SDA	10	ADC DDC data channel	5V-tolerant,
00	100_000_0011	10		internal pull-up
57	ADC_DDC_SCL	10	ADC DDC clock channel	5V-tolerant,
01	100_000_000	10		internal pull-up
58	RX DDC SDA	10	HDMI receiver DDC data	5V-tolerant,
			channel	internal pull-up
59	RX_DDC_SCL	10	HDMI receiver DDC clock	5V-tolerant,
			channel	internal pull-up
60	HDCP_M_SDA	10	Master I2C data channel	5V-tolerant
61	HDCP_M_SCL	10	Master I2C clock channel	5V-tolerant
62	VSS	G	Ground supply pins for digital	
63	VDD	P	Power supply pins for digital	1.8V
64	S SDA	10	Slave I2C data channel	5V-tolerant
65	S_SCL	10	Slave I2C clock channel	5V-tolerant
66	INT B	0	Chip interrupt output, active low	
67	DAC_DDC_SDA	10	DAC DDC data channel	5V-tolerant
68	DAC_DDC_SCL	10	DAC DDC clock channel	5V-tolerant
69	TX DDC SDA	10	HDMI transmitter DDC data	5V-tolerant,
			channel	internal pull-up
70	TX_DDC_SCL	10	HDMI transmitter DDC clock	5V-tolerant,
			channel	internal pull-up
71	VDD	Р	Power supply pins for digital	1.8V
72	VSS	G	Ground supply pins for digital	
73	VDD	P	Power supply pins for digital	1.8V
74	VSS33	G	Ground supply pins for IO	
75	VCC83	P	Power supply pins for IO	3.3V
76	RX HPD	0	HDMI receiver hot plug detect	5V-tolerant,
·		-	output	,
77	DAC_VS	0	VGA vertical sync output	
78	DAC_HS	0	VGA horizontal sync output	
79 🔿	TX_HPD		HDMI transmitter hot plug	
$\mathbf{\nabla}$	_		detect input	
			HDMI TX Pins	
80	TXC-	AO	HDMI transmitter clock negative	
			analog output	
81	TXC+	AO	HDMI transmitter clock positive	
			analog output	
82	VSSA33	AG	3.3V ground supply pins for	
			HDMI transmitter	
83	TX0-	AO	HDMI transmitter channel 0	
				1

			negative analog output	
84	TX0+	AO	HDMI transmitter channel 0	
			positive analog output	
85	VCCA33	AP	3.3V power supply pins for	3.3V
			HDMI transmitter	
86	TX1-	AO	HDMI transmitter channel 1	
			negative analog output	
87	TX1+	AO	HDMI transmitter channel 1	
			positive analog output	
88	VSSA33	AG	3.3V ground supply pins for	1
			HDMI transmitter	
89	TX2-	AO	HDMI transmitter channel 2	$()^{\mathbf{y}}$
			negative analog output	<i>Q</i> 1
90	TX2+	AO	HDMI transmitter channel 2	15
			positive analog output	
91	VDD	P	HDMI transmitter/TX PLL	
			Power supply	
92	VSS	G	HDMI transmitter/TX PLL 🔨 🏹	
			Ground supply	
			DAC Pins	
93	VSSA33	AG	3.3V ground supply pins for	
			DAC	
94	DAC_B	AO	VGA blue channel analog	
			output	
95	VCCA33	AP	3.3V power supply pins for DAC	3.3V
96	DAC_G	AO	VGA green channel analog	
			output	
97	VSSA33	AG	3.3V ground supply pins for	
			DAC	
98	DAC_R	AO	VGA red channel analog output	
99	VCCA33	AP	3.3V power supply pins for DAC	3.3V
100	DAC_REF	AI	DAC reference	
		<u></u>		

2.4. DC Specifications Under normal operating conditions unless otherwise specified

HDMI to VGA

Symbol	Description	Condition	Min	Тур	Max	Units	
11 juli	c Operating current	480P8bit	1.8V		62		mA
ON.			3.3V		100		mA
×			1.8V		85		mA
I _{CC}		720P8bit	3.3V		100		mA
		1000D0hit	1.8V		133		mA
		1080P8bit	3.3V		100		mA

VGA to HDMI

Symbol	Description	Conditions		Min	Тур	Max	Units
		640x480 8bit	1.8V		161		mA
			3.3V		94		mA
I _{cc} Operating cu	Operating ourrept	720P 8bit	1.8V		183		mA
	Operating current		3.3V		100		mA
		1080P 8bit	1.8V		216		mA
			3.3V		101	(mA

VGA to HDMI . HDMI to VGA

VGA to HDMI , HDMI to VGA						~ 9 ⁰	
Symbol	Description	Conditions		Min	Тур	Max	Units
	Operating ourrept	1080P 8bit	1.8V		343		mA
I _{CC}	Operating current		3.3V		202		mA

2.5. Typical Applications

Depend on the applications, it can have 2 different A/V sources: A HDMI receiver or A HDMI compatible Display Port reciever through tontium's Level-shifter chipset or adding 500 ohm pull down resistor; A VGA reciever. Depend on the applications, it can have 2 different video output: A HDMI transmitter; A VGA transmitter. Audio output can be either SPDIF or I2S. Customers can add or delete some of the components/functions depends on the market they are trying to serve.

2.6. Major Function Block Descriptions

A functional block diagram is illustrated as Figure 1. Each of the functional units shown is described in the following sections.

2.7. VGA - ADC

The analog-to-digital converter (ADC) transfers the input analog R/G/B video signals to digital output data with each 8-bit resolution. The maximum clock sample frequency is 165M. RIN/GIN/BIN are high-impedance input pins that accept the RED, GREEN, and BLUE channel graphics signals. They accommodate input signals ranging from 0.7V (p-p) full-scale. Signals should be AC-couple to these pins.

Please note that it is very important to follow the recommended layout guidelines for the circuit shown in the Figure 4.

Figure 4: Example ADC Signal Terminations

Position Auto Adjust 2.7.1.

Position auto adjust module is used to adjust the position of video picture vertically and horizontally. The module is made of two parts: RGB data start address counter part and position adjust part.

2.7.2. Sync Process

The LT8522EX has a sync processor block providing the capability of measuring the horizontal and vertical timing parameters of the input video source. This information may be used to determine the video format and to detect a change in the input timing.

Hsync /Vsync Frequency and Polarity Detection

SYNC_HCNT, the 16 bits hsync period counter counts the time of 32xhsync period, then loads the result into the SYNC HCNT. The output value will be [((REFCLKfreg 32)/Hfreg)], updated at posedge of vsync or negedge of vsync.

SYNC VCNT, the 11 bits vsync period counter counts the counter of hsync pulse between two vsync pulses, then loads the result into the SYNC VCNT. The output value will be [(VGA_V_TOTAL-1)], updated every vsync period.

The polarity functions detect the input hsync/vsync duty cycle. If the high pulse duration is longer than that of the low pulse, the negative polarity is asserted; otherwise, positive polarity is asserted.

2.7.3. **Embedded HDMI Receiver**

The embedded HDMI receiver is compliant with High Definition Multimedia Interface (HDMI) Specification 1.4. HDMI is unified digital video, audio, and control data over low-cost cables. LT8522EX HDMI RX can connect digital television, flat panel displays and project systems digitally to multimedia sources: DVD players, high definition set-top boxes, digital video tape recorders, and personal computers. Digital transmission, in turn, delivers an uncompromising multimedia experience. Inexpensive cables up to 20 meters and assure the widest range of interoperability against uncertain qualities of cheap cables from low-cost suppliers as the standard matures. The HDMI RX can receive and output up to eight digital audio channels at up to 192 kHz sampling rate, making it the leading component for integrated home theaters and high definition televisions. The device supports direct connections to a wide selection of audio DACs and decoders through industry standard I2S or S/PDIF interfaces.

HDMI RX Features:

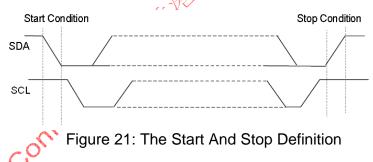
- Single channel HDMI receiver
- Compliant with HDMI 1.4, and DVI 1.0 specifications
 - Supporting pixel rates from 13.5MHz to 300MHz
 - TV resolutions: 480i, 576i, 480p, 576p, 720p, 1080i, 1080p up to 4kx2k

 - Video output interface supporting digital video standards such as:
 - 24-bit RGB/YCbCr 4:4:4
 - 16/20/24-bit YCbCr 4:2:2
- Bi-direction Color Space Conversion (CSC) between RGB and YCbCr color spaces
- Intelligent adaptive channel equalization supporting up to 20m cable at the highest video data rate
- Digital audio output interface supporting
 - I2S interface supporting, audio sample rate: 32~192 kHz ٠
 - sample size: 16~24 bits ٠
 - S/PDIF interface supporting PCM, Dolby Digital, DTS digital audio transmission ٠

using IEC60958 and IEC 61937

 automatic audio error detection for programmable soft mute, preventing annoying harsh automatic audio error detection for programmable soft mute, preventing annoying harsh output sound due to audio error or hot-unplug

2.8. Digital Audio Input/Output Interface


Audio data is applied to the internal DAC filters via the digital audio interface. Four interface formats are supported:

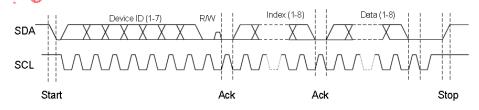
- I²S mode
- Right 16bit Justified mode
- Right 24bit Justified mode
- Left 24bit Justified mode

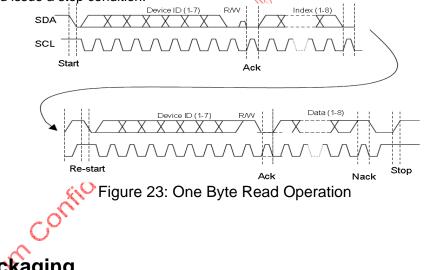
2.9. Two Wire Serial Bus Interface

The two wire serial bus interface is used to allow an external master to write control data, and read status from the LT8522EX registers. SCL is the serial clock and SDA is the serial data. Both lines are pulled high by resistors connected to VDD. ICs communicate on the bus by pulling SCL and SDA low through open drain outputs. In normal operation the master generates all clock pulses, but control of the SDA line alternates back and forth between the master and the slave. For both read and write, each byte is transferred MSB first, and the data bit is valid whenever SCL is high.

The LT8522EX is operated as a bus slave device. The most significant 7-bits are fixed. The 7-bit address field is concatenated with the read/write control bit to form the first byte transferred during a new transfer. If the read/write control bit is high the next byte will be read from the slave device. If it is low the next byte will be a write to the slave. When a bus master drives SDA from high to low, while SCL is high, this is defined to be a start condition (See Figure 21). All slaves on the bus listen to determine when a start condition has been asserted.

After a start condition, all slave devices listen for their device addresses. The host then sends a byte consisting of the 7-bit slave device ID and the R/W bit. This is shown in Figure 22. (For the LT8522EX, the next byte is normally the index to the LT8522EX registers and is a write to the LT8522EX therefore the first R/W bit is normally low.)




Figure 22: One Byte Write Operation

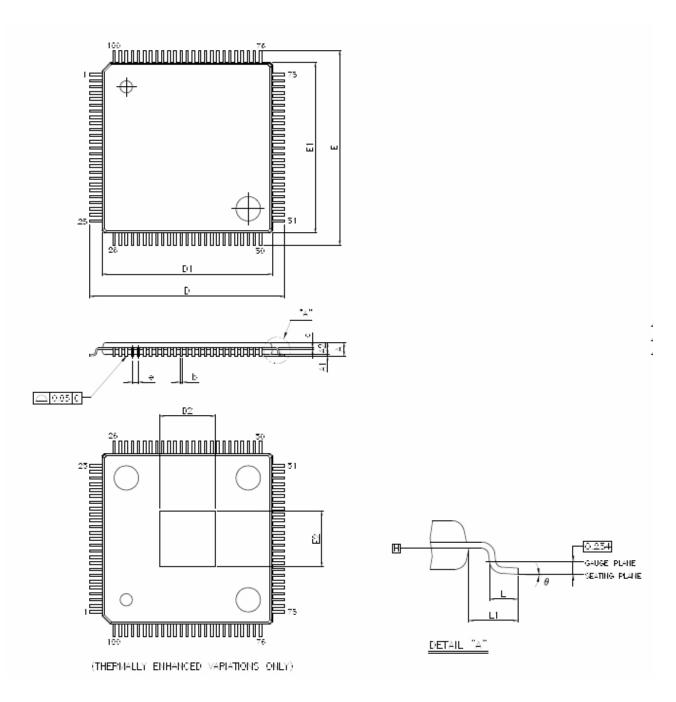
After transmitting the device address and the R/W bit, the master must release the SDA line while holding SCL low, and wait for an acknowledgement from the slave. If the address matches the device address of a slave, the slave will respond by driving the SDA line low to acknowledge the condition. The master will then continue with the next 8-bit transfer. If no device on the bus responds, the master transmits a stop condition and ends the cycle. Notice that a successful transfer always includes nine clock pulses.

To write to the internal register of theLT8522EX, the master sends another 8-bits of data, the LT8522EX loads this to the register pointed by the internal index register. The LT8522EX will acknowledge the 8-bit data transfer and automatically increment the index in preparation for the next data. The master can do multiple writes to the LT8522EX if they are in ascending sequential order. After each 8-bit transfer the LT8522EX will acknowledge the receipt of the 8-bits with an acknowledge pulse. To end all transfers to the LT8522EX the host will issue a stop condition.

A LT8522EX read cycle has two phases. The first phase is a write to the internal index register. The second phase is the read from the data register (See Figure 23). The host initiates the first phase by sending the start condition. It then sends the slave device ID together with a 0 in the R/W bit position. The index is then sent followed by either a stop condition or a second start condition. The second phase starts with the second start condition. The master then resends the same slave device ID with a 1 in the R/W bit position to indicate a read. The slave will transfer the contents of the desired register. The master remains in control of the clock. After transferring eight bits, the slave releases and the master takes control of the SDA line and acknowledges the receipt of data to the slave. To terminate the last transfer the master will issue a negative acknowledge (SDA is left high during a clock pulse) and issue a stop condition.

3. Packaging

3.1. ePad Enhancement


The LT8522EX is packaged in a 100-pin TQFP package with ePad.

The ePad does not need to be soldered to the PCB. The information in the following paragraphs is provided for applications which choose to solder the ePad to the PCB.

The ePad must not be electrically connected to any other voltage level except ground (GND). A clearance of at least 0.25mm should be designed on the PCB between the edge of the ePad and the inner edges of the lead pads to avoid any electrical shorts. Dimensions T1 and T2 define the maximum limit of ePad size. Protrusions from the edges of the ePad may vary slightly from one package assembler to another, but all are confined to within these maximum dimensions.

3.2. Package Dimensions

SYMBOLS	MIN.	NOM.	MAX.			
A			1.20			
A1	0.05		0.15			
A2	0.95	1.00	1.05			
b	0.17	0.22	0.27			
с	0.09	0.127	0.16			
D	. 1	6.00 BS	С			
D1	1	4.00 BS	С			
E	1	6.00 BS	С			
E1	1	4.00 BS	С			
е		0.50 BS	C			
L	0.45	0.58	0.75			
L1		1.00 REF	-			
θ	0*	3.5*	7*			
K- HELH- BEEL HULTE						
THERMALLY E	THERMALLY ENHANCED DIMENSIONS(SHOWN II					

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

THERMALLY ENHANCED DIMENSIONS(SHOWN IN MM)

	E2		2	D2		
	PAD SIZE	MIN.	MAX.	MIN.	MAX.	
6	230X23E	5.64	5.84	5.64	5.84	
Lontium Confi	× ·					
AN AN						
CON.						
\sim						
AND A						
of the						
\sim						

References

Standards Documents

The abbreviations shown in column one of Table 1 is used elsewhere in this Application Note. Please contact the responsible standards bodies here for more information on these specifications.

HDMI High-Definition Multimedia Interface Specification Version 1.3a, November 2006, HCTS High-Definition Multimedia Interface Compliance Test Specification Version 3a, November 2006.

HDCP High-bandwidth Digital Content Protection System Revision 1.3, December 2006. VESA Proposed VESA and Industry Standards and Guidelines for Computer Display

Monitor Timing Version 1.0, Revision 12p, Draft 3, October 2008.

CEA A DTV Profile for Uncompressed High Speed Digital Interfaces, July 2006.

DVI Digital Visual Interface, Revision 1.0, April 1999.

E-EDID Enhanced Extended Display Identification Data Standard, Revision 1, Feb 2000.

EDIDUG VESA EDID implementation Guide Version 1.0, June 2001

These documents are available from the following standards groups: ANSI/EIA/CEA Standards:

http://global.l.com, or by e-mail to global@l.com, or telephone at 800-854-7179.

VESA Standards:

http://www.vesa.org, or by telephone at 408-957-9270

DVI Standard:

http://www.ddwg.org or by e-mail to ddwg.if@intel.com .

HDCP Standard:

http://www.digital-co.com or by e-mail to info@digital-cp.com .

HDMI Standard:

http://www.hdmi.org or by e-mail to admin@hdmi.org .

Copyright © 2014 Lontium Semiconductor Corporation, All rights reserved.

Lontium Semiconductor Proprietary & Confidential

This document and the information it contains belong to Lontium Semiconductor. Any review, use, dissemination, distribution or copying of this document or its information outside the scope of a signed agreement with Lontium is strictly prohibited.

LONTIUM DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THOSE OF NONINFRINGEMENT, MERCHANTABILITY, TITLE AND FITNESS FOR A PARTICULAR PURPOSE. CUSTOMERS EXPRESSLY ASSUME THEIR OWN RISH IN RELYING ON THIS DOCUMENT.

LONTIUM PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN LIFE SUPPORT APPLIANCES, DEVICES OR SYSTEMS WHERE A MALFUNCTION OF A LONTIUM DEVICE COULD RESULT IN A PERSONAL INJURY OR LOSS OF LIFE.

Lontium assumes no responsibility for any errors in this document, and makes no commitment to update the information contained herein. Lontium reserves the right to change or discontinue this document and the products it describes at any time, without notice. Other than as set forth in a separate, signed, written agreement, Lontium grants the user of this document no right, title or interest in the document, the information it contains or the intellectual property in embodies.

Trademarks

Lontium[™] 龙迅[™] and ClearedEdge[™] is a registered trademark of Lontium Semiconductor.

All Other brand names, product names, trademarks, and registered trademarks contained herein are the property of their respective owners.

Visit our corporate web page at <u>www.lontiumsemi.com</u>