SAM	ELECTRONICS		Appr	oval		
Cus	stomer : GA		DATE : 16. Mar. 2010			
Μ	MSUNG TFT-LCL ODEL : L1	FA320AF	P08-W	<u>n.</u>		
		2	APPROVAED BY	DATE		
Γ	Customer's A	pproval				
	Customer's A	DATE	PREPARED BY Sunok.SONG	16.Mar.2010 DATE 16.Mar.2010		
	SIGNATURE	DATE LCD Bus	Jeong min Heo PREPARED BY Sunok.SONG	16.Mar.2010 DATE		

Revision History				(3)			
General Description				(4)			
General Information				(4)			
1. Absolute Maximum Ratings							
2. Optical Characteristics							
 3. Electrical Characteristics (1 3.1 TFT LCD Module 3.2 Back Light Unit 3.3 Inverter Input Condition & Specification 3.4. Inverter input pin configuration 3.5. Inverter Input Power Sequence 							
 4. Input Circuit Pin Assignment 4.1. Input Signal 4.2 LVDS Interface 4.3 Input Signals, Basic Disp 		nd Gray Scale of Each Color		(15)			
5. Interface Timing 5.1 Timing Parameters (DE o 5.2 Timing Diagrams of inter 5.3 Power ON/OFF Sequence	only mode) face Signal			(19)			
6. Outline Dimension				(22)			
7. Reliability test				(24)			
8. Packing				(25)			
9. Marking & Others				(26)			
10. General Precaution (27) 10.1 Handling 10.2 Storage 10.3 Operation 10.4 Operation Condition Guide 10.5 Others							
MODEL LTA320AP08	Doc. No	06-000-S-100316	Page	2/29			

Revisio				
Date	Rev. No	Page	Summa	ary
Mar 16, 2010	000	all	First is:	sued

General Description

Description

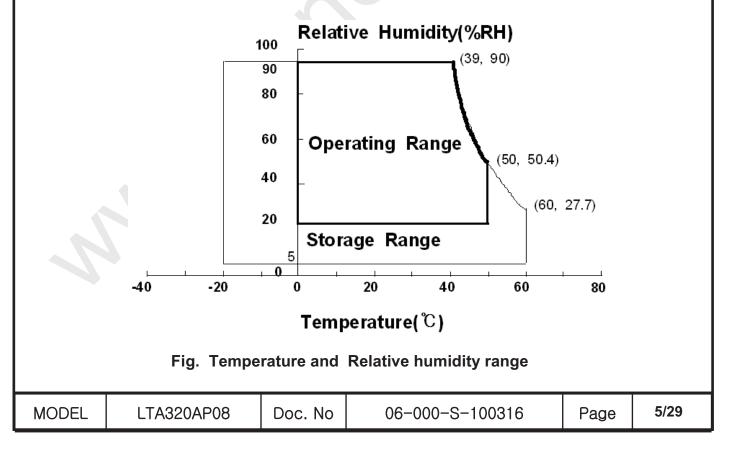
LTA320AP08 is a color active matrix liquid crystal display (LCD) that uses amorphous silicon TFT(Thin Film Transistor) as switching components. This model is composed of a TFT LCD panel, a driver circuit and a back light unit. The resolution of a 32.0" is 1366 x 768 and this model can display up to 16.7 million colors with wide viewing angle of 89° or higher in all directions. This panel is intended to support applications to provide a excellent performance for Flat Panel Display such as Home-alone Multimedia TFT-LCD TV and High Definition TV.

Features

- RoHS compliance (Pb-free)
- High contrast & aperture ratio with wide color gamut
- PVA(Patterned Vertical Align) mode
- Wide viewing angle (±178°)
- High speed response
- HD resolution (16:9)
- Low Power consumption
- U-Type 4 CCFLs (Cold Cathode Fluorescent Lamp)
- Sync Format: DE (Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface (1pixel/clock)

	Items	Spec	cification	Unit	Note	9
	adula Ciza	760.0(H _{TYP}) x 450.0(V _{TYP})			±1.0m	າm
IVI	odule Size	50.	- mm -	With Inv	erter	
	Weight	510	0 (max)	g	With Inv	erter
F	Pixel Pitch	0.51075(H) x 0.51075(W)	mm		
Active	e Display Area	697.6845(H	H) x 392.256(V)	mm		
Surfa	ice Treatment	Haze 7%, Ha	ard-Coating (3H)	-		
Dis	play Colors	8 bit	:, 16.7M	colors		
Num	ber of Pixels	136	pixel			
Pixel	Arrangement	RGB Hor	-			
Dis	splay Mode	Norm	-			
Lumin	ance of White	400	cd/m ²			
				• • • • •		
MODEL	LTA320AP0	8 Doc. No	06-000-S-100316		Page	4/29

General Information


1. Absolute Maximum Ratings

If the condition exceeds maximum ratings, it can cause malfunction or unrecoverable damage to the device.

Item		Symbol	Min.	Max.	Unit	Note
Power Suppl	Vdd	10.8	13.2	V	(1)	
Storage terr	Storage temperature		-20	65	°C	(2)
Glass surface	Center	T _{OPR}	0	50	°C	(2) (5)
temperature (Operation)	T. Uniformity	∆T	-	10	C°	(2),(5)
Shock (non -	Shock (non - operating)		-	50	G	(3)
Vibration (non	- operating)	S _{nop} V _{nop}	-	1.5	G	(4)

Note (1) Ta= 25 \pm 2 °C, V_DD =12V

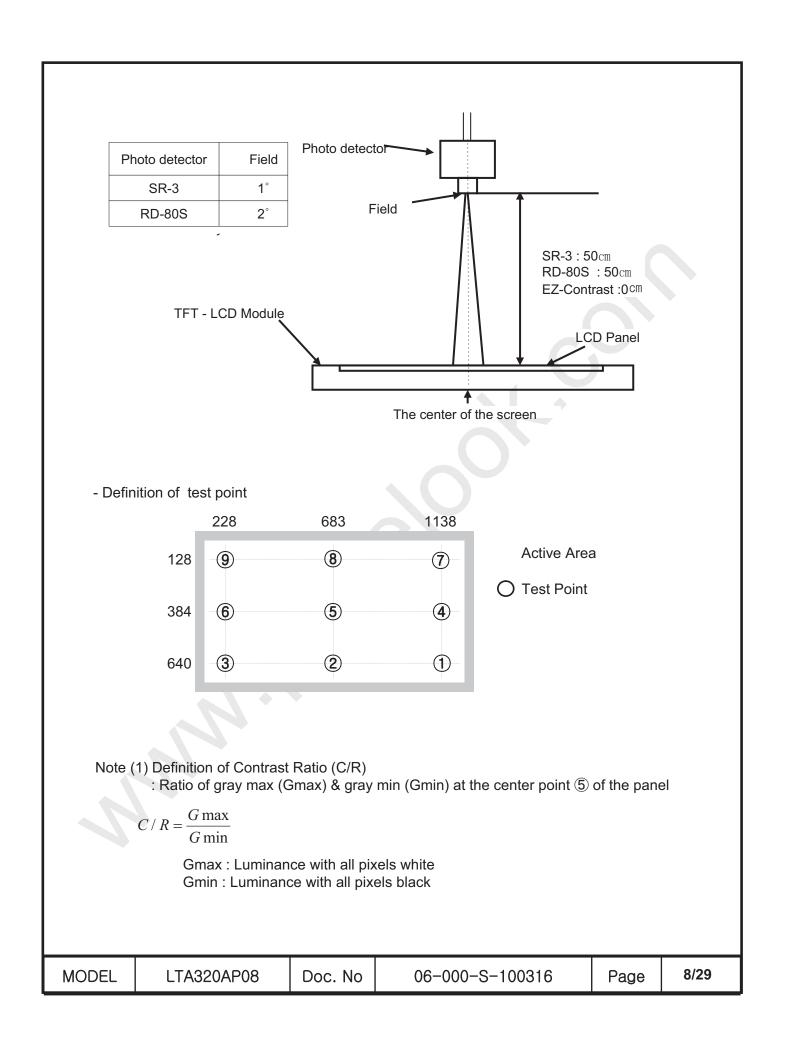
- (2) Temperature and relative humidity range are shown in the figure below.
 - a. 90 % RH Max. (Ta \leq 39 °C)
 - b. Relative Humidity is 90% or less. (Ta > 39 $^{\circ}$ C)
 - c. No condensation
- (3) 20ms, sine wave, one time for $~\pm X,~\pm Y,~\pm Z$ axis
- (4) 10-300 Hz, Sweep rate 11min, 30min for X,Y,Z axis

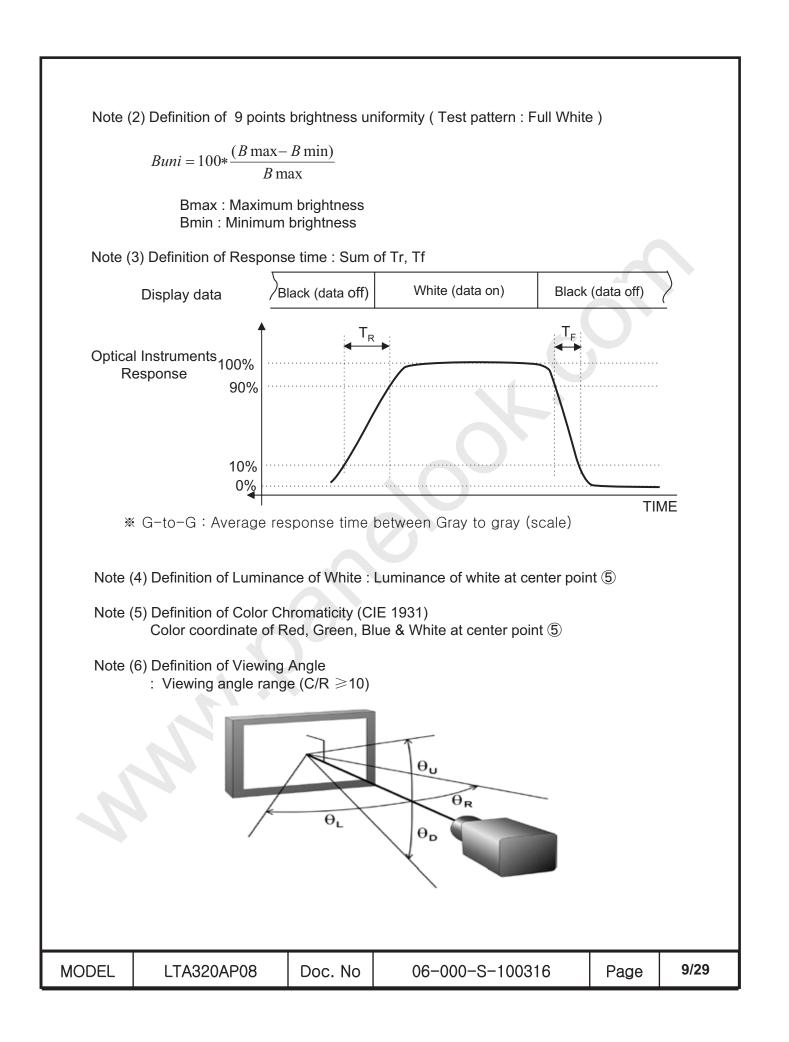
(5) [Definition of test point 5mi	m			
	5mm)	(2)		
		LCD Mod	ule (Active)		
)			
	riangle T should be less the set of t	han 10 \mathcal{C} (\triangle	$T = T_{OPR} - T_{MAX})$		
	Topp : Tempera	ature of the ce	nter of the glass surface (Test po	int 5)	
	T1~ T4 : Temper	ature of each	edge of the glass surface		
	T _{MAX} :The high	nest temperat	ure of the glass surface		
MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	6/29

2. Optical Characteristics

The optical characteristics should be measured in a dark room or equivalent. Measuring equipment : TOPCON RD-80S, TOPCON SR-3, ELDIM EZ-Contrast

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio (Center of screen)		C/R		-	5000	-		(1) SR-3
Response Time	G-to-G (Avg)	Тg		-	8	16	msec	(3) RD-80S
Luminance of s		Υ _L	Normal	350	400	-	cd/m ²	(4) SR-3
	Ded	Rx	θ L,R =0		0.640	_		
	Red	Ry	θ U,D =0		0.340			
	Orean	Gx	Viewing		0.300			
Color	Green	Gy	Angle	TYP.	0.600	TYP.		(5),(6)
Chromaticity (CIE 1931)	Dhue	Bx		-0.03	0.150	+0.03		SR-3
, , , , , , , , , , , , , , , , , , ,	Blue	Ву			0.060			
	White	Wx		$\langle \langle \rangle$	0.280			
	vvnite	Wy			0.290			
Color Ga	mut	-			72	-	%	(5) SR-3
Color Temp	erature	-		-	10,000	-	К	(5) SR-3
	ller	θ		79	89	-		
Viewing	Hor.	θ _R	C/R≥10	79	89	-	Dograa	(6)
Angle	Vor	θυ	U/R≤10	79	89	-	Degree	EZ-Contrast
	Ver.	θ		79	89	-		
Brightness Un (9 Poin		B _{uni}		-	-	25	%	(2) SR-3


- Test Equipment Setup


The measurement should be executed in a stable, windless and dark room between 40min and 60min after lighting the back light at $25 \pm 2^{\circ}$ C for stabilization of the back light. This should be measured in the center of screen.

Environment condition : Ta $\,$ = 25 \pm 2 $^{\circ}C$

MODEL LTA320AP08 Doc. No 06-000-S-100316 Pag	7/29
--	------

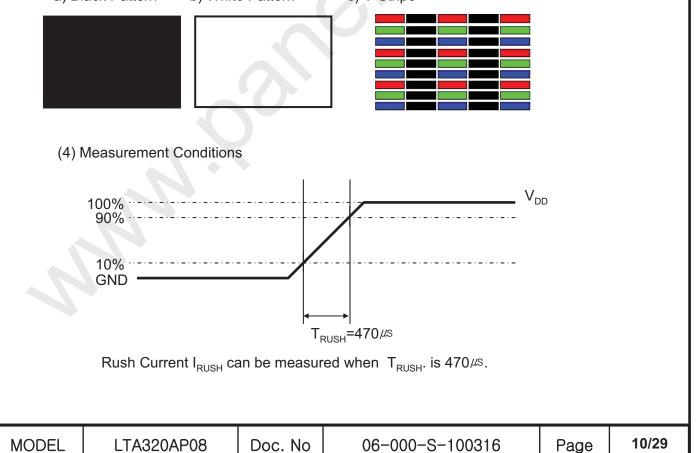
 $\langle p \rangle$

 $\langle P \rangle$

3. Electrical Characteristics

3.1 TFT LCD Module

The connector for display data & timing signal should be connected.


Ta = $25^{\circ}C \pm 2^{\circ}C$

	Item		Min.	Тур.	Max.	Unit	Note
Voltage of Power Supply		V_{DD}	10.8	12.0	13.2	V	(1)
Current	(a) Black		250	450	650	mA	
of Power	(b) White	I _{DD}	250	450	650	mA	(2),(3)
Supply	(c) V-Stripe		500	700	900	mA	
Vs	ync Frequency	f _v	48	60	66	Hz	
Hs	Hsync Frequency		44	48	53	kHz	
Ma	Main Frequency		72	78	85	MHz	
F	Rush Current	I _{RUSH}	-	-	4	А	(4)

Note (1) The ripple voltage should be controlled under 10% of V_{DD} .

- (2) fv= 60 Hz, fDCLK = 78 MHz, V_{DD} = 12.0V, DC Current.
- (3) Power dissipation check pattern (LCD Module only)

a) Black Pattern b) White Pattern c) V-Stripe

	k light unit cor thode Fluores			FLs		Ta=25 ±	2°C
	Lips B	oard		LCD Module	e		2
							3
	Item	Symbo	ol Min.	Typ.	Max.	Unit	
Operati	Item ing Life Time	Symbo Hr	ol Min. -	Тур. 50000	Max.	Unit Hour	4
	ing Life Time 1) It is defined a	Hr as the tim	- ne to take unti		- reduces to 5	Hour	4 Note (1)

		5
4	ρ	ì
	V	2
	-	

3.3	Inverter	Input	Condition	&	Specification
-----	----------	-------	-----------	---	---------------

Items	Symbol	Conditions	Sp	pecificatio	ns	Unit	Note
nems	Symbol	Conditions	Min.	Тур.	Max.	Onit	Note
Input Voltage	Vin	-	22.5	25	27.5	Vdc	Ta=25 ±2 °C
Input Current	lin	Vin=24.0V Vdim=3.3V Ta=25℃	-	-	4.3	A	(1) (2)
Frequency	F _{LAMP}	Vin=24.0 V	61	63	65	kHz	
Backlight	ON	Vin=24.0 V	2.4	-	5.25	Vdc	-
On/Off	OFF	Vin=24.0 V	-0.3	-	0.8	Vuc	-
	V_{High}		2.4		5.25		
External PWM	V_Low		-0.3		0.4	Vdc	
Dimming Control	F _{EXT.PWM}	Vin=24, Dim=100%	156	166	176	Hz	(3),(4)
	D _{pwm}		15	-	100	%	

Note) Power Consumption is measured when 450[cd/m²] of luminance which is the typical luminance. Lamp Current is measured at the point before Lamp.

(1) Max Value of the Power Consumption is measured during initial turn-on time* of the backlight.

(2) Max Value of the Power Consumption is measured after 60 min warm-up.

(3) When EX-DIM(Pin 14) is used, DIM(Pin13) has to be open or connected to ground.

(4) EX-PWM Frequency is selected not to interfere the Waterfall & Acoustic Noise.

* Initial turn-on time : From 0sec to 60min after turn-on

L						
	MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	12/29

(2) Lamp frequency which may produce interference with horizontal synchronous frequency may cause line flow on the display. Therefore lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference.

(3) Life time (Hr) is defined as the time when brightness of a lamp unit itself becomes 50% or less than its original value at the condition of Ta = $25\pm2^{\circ}$ C and I_L = 6.5 mArms

(4) Designing a system inverter intended to have better display performance, power efficiency and lamp reliability.

They would help increase the lamp lifetime and reduce leakage current.

- a. The measurement should be done at typical lamp current.
- b. The asymmetry rate of the inverter waveform should be less than 10%.
- c. The distortion rate of the waveform should be $\sqrt{2}$ with $\pm 10\%$ tolerance.
 - Inverter output waveform had better be more similar to ideal sine wave.

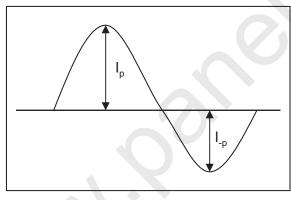


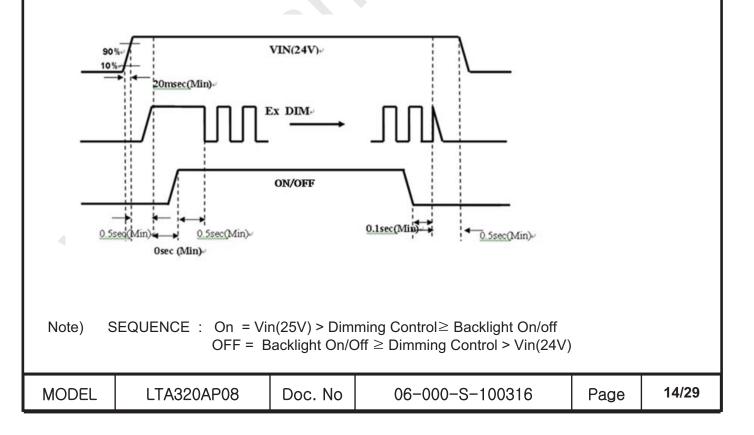
Fig. Wave form of the inverter

Asymmetry rate

$$\frac{|I_{\rm p}-I_{\rm -p}|}{I_{\rm rms}} \times 100$$

Distortion rate

$$\left|\frac{I_{\rm p}}{I_{rms}}\right|$$
 or $\left|\frac{I_{-\rm p}}{I_{rms}}\right|$


(5) If an inverter has shutdown function, it should keep its output for over 1 second even if the lamp connector is open. Otherwise the lamps may not be turned on.

MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	13/29

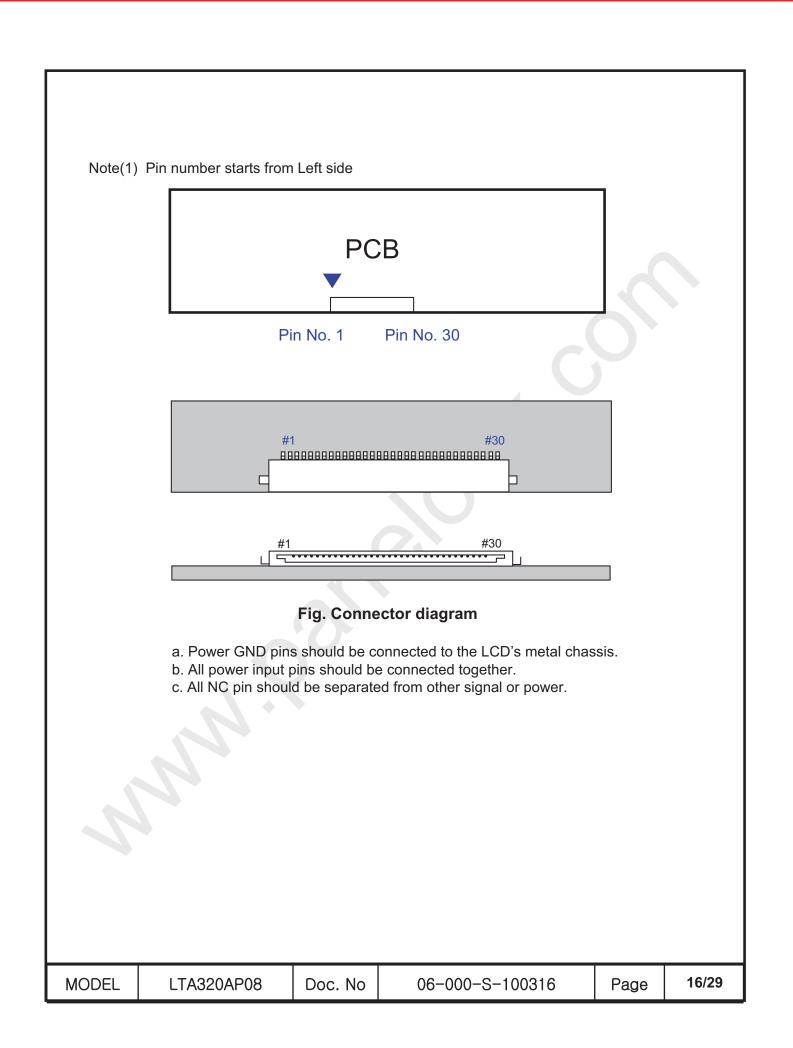
3.4. Inverter input pin configuration (Connector : 20022WR-14AML→ Yeon-HO)

PIN NO	SYMBOL	FUNCTION
1	Vin	
2	Vin	
3	Vin	Power Supply(25V)
4	Vin	
5	Vin	
6	GND	
7	GND	
8	GND	Ground
9	GND	
10	GND	
11	Error out	Error out (Normal: GND, Abnormal: open collector)
12	ENA	Enable (Backlight on ~ off)
13	NC	Not use
14	Ext. Dim	External PWM dimming signal(Pulse)

3.5. Inverter Input Power Sequence

4. Input Circuit Pin Assignment

4.1. Input Signal


Connector : 196260-30041 → P-TWO

PIN No.	Description	PIN No.	Description
1	N.C	16	GND
2	N.C	17	LV3_N_I
3	N.C	18	LV3_P_I
4	GND	19	GND
5	LV0_N_I	20	NC
6	LV0_P_I	21	JEIDA/NORMAL
7	GND	22	WPN
8	LV1_N_I	23	NC
9	LV1_P_I	24	NC
10	GND	25	GND
11	LV2_N_I	26	
12	LV2_P_I	27	
13	GND	28	12V
14	LVCLK_N_I	29]
15	LVCLK_P_I	30	

Note1) No Connection: This PINS are only used for SAMSUNG internal using. Note2) LVDS OPTION : If this PIN is HIGH (3.3 V) \rightarrow Normal LVDS format LOW (GND) \rightarrow JEIDA LVDS format SEQUENCE : On = VDD(T1) \rightarrow LVDS Option \rightarrow Interface Signal(T2) OFF = Interface Signal(T3) \rightarrow LVDS Option \rightarrow VDD

MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	15/29

 $\langle p \rangle$

4.2 LVDS Interface

- LVDS Receiver : Tcon (merged)

- Data Format (JEIDA & Normal)

		LVDS pin		JEIDA -DATA	VESA -D		
		TxIN/RxOUT	0	R2	R0		
		TxIN/RxOUT	1	R3	R1		
		TxIN/RxOUT	2	R4	R2		
TxC	OUT/RxIN0	TxIN/RxOUT	3	R5	R3		
		TxIN/RxOUT	4	R6	R4		
		TxIN/RxOUT	6	R7	R5		
		TxIN/RxOUT	7	G2	G0		
		TxIN/RxOUT	8	G3	G1		
		TxIN/RxOUT	9	G4	G2		
		TxIN/RxOUT1	2	G5	G3		
TxC	OUT/RxIN1	TxIN/RxOUT1	3	G6	G4		
		TxIN/RxOUT1	4	G7	G5		
		TxIN/RxOUT1	5	B2	B0		
		TxIN/RxOUT1	8	В3	B1		
		TxIN/RxOUT1	9	B4	B2		
		TxIN/RxOUT2	20	B5	B3		
		TxIN/RxOUT2	21	B6	B4		
TxC	OUT/RxIN2	TxIN/RxOUT2	22	B7	B5		
		TxIN/RxOUT2	24	HSYNC	HSYNC		
		TxIN/RxOUT2	25	VSYNC	VSYNC		
		TxIN/RxOUT2	26	DEN	DEN		
		TxIN/RxOUT2	27	R0	R6		
		TxIN/RxOUT	5	R1	R7		
		TxIN/RxOUT1	0	G0	G6		
Tx	OUT/RxIN3	TxIN/RxOUT1	1	G1	G7		
		TxIN/RxOUT1	6	B0	B6		
		TxIN/RxOUT1	7	B1	B7		
		TxIN/RxOUT2	23	RESERVED	RESERV	'ED	
IODEL	LTA320AP08	Doc. No	06	-000-S-100316	Page	17/	

ris 🔗

	DISPLAY											DA	ATA S		۹L											GRAY
COLOR	(8bit)					ED							GR								BL	-				SCALE LEVEL
	51.4.01/	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B3	B4	B5	B6	B7	
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
ŀ	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
BASIC COLOR	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
-	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
ŀ	MAGENTA YELLOW	1	1	1	1	1	1	1	1	1	0	0	1	1	0	0	0	1 0	1	1	1	1	1	1	1	-
ŀ	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	1	0	-
\rightarrow	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- R0
ŀ	BLACK	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
	DADY	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
GRAY	DARK ↑	:	:	:	:		:	0		:	:			:	:	0		:			:	:	:		0	
SCALE OF		· :	•	•	•	·	•			•	•	•	•	•	•				· ·	:	•	•	·			R3~ R252
RED	LIGHT	· 1	0	•	•	•	1	1	1		0		0			0	0	0					0	0	0	R253
		0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R254
ŀ	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
ł	DEACK	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0 G1
	D A DI A	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1 G2
GRAY	DARK ↑	:	:	:	:		:	0	0	:				:	:	0	0		:	:	:	:	:	0	0	
SCALE OF		· :	•	•	•	•	•			•	:	•	•	•	•			•	•	:	•	:	•			G3~ G252
GREEN	↓ LIGHT	0		0				0	0		0					1	1						0	0	0	G253
		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G254
ŀ	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	B0
ŀ		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	B1
	DARK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	B2
GRAY SCALE	↑		:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			B3~
OF			:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			B252
BLUE	LIGHT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	B253
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	B254
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B255

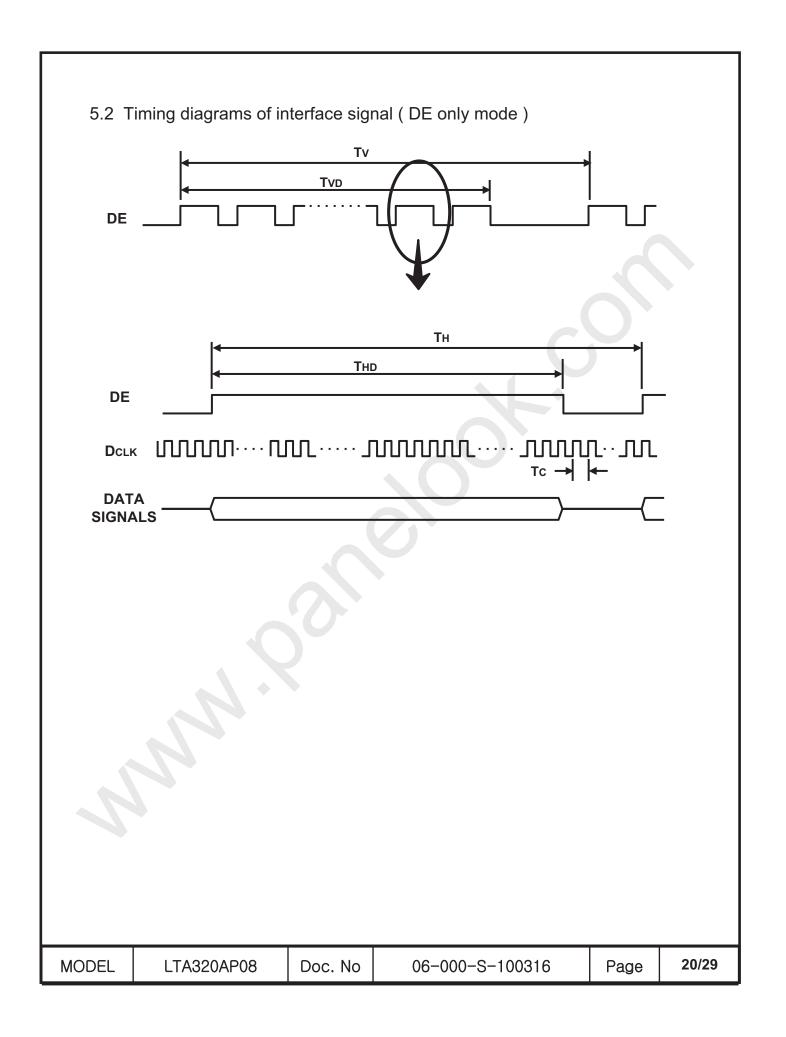
4.3 Input Signals, Basic Display Colors and Gray Scale of Each Color

 $\langle P \rangle$

5. Interface Timing

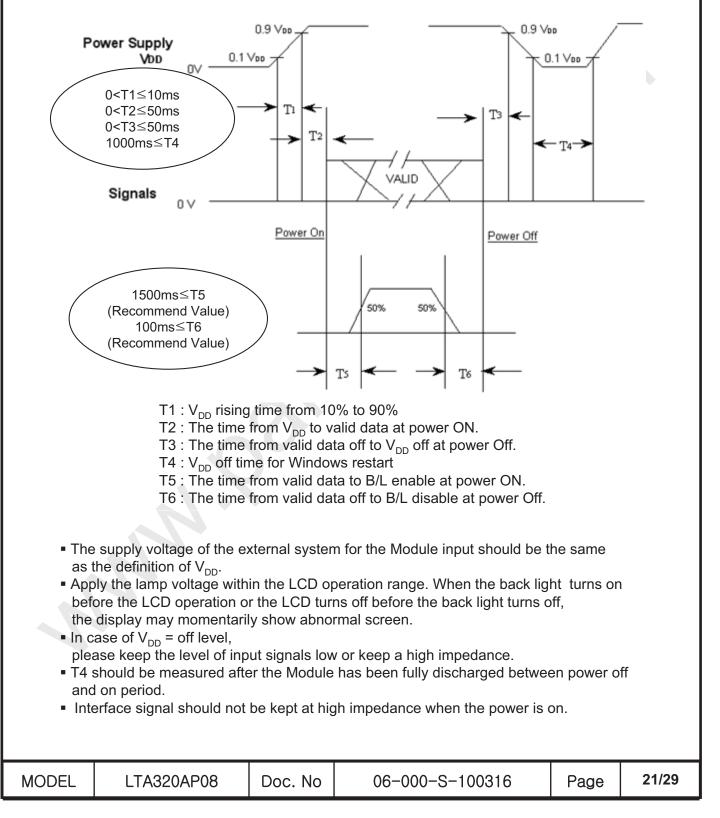
5.1 Timing Parameters (DE only mode)

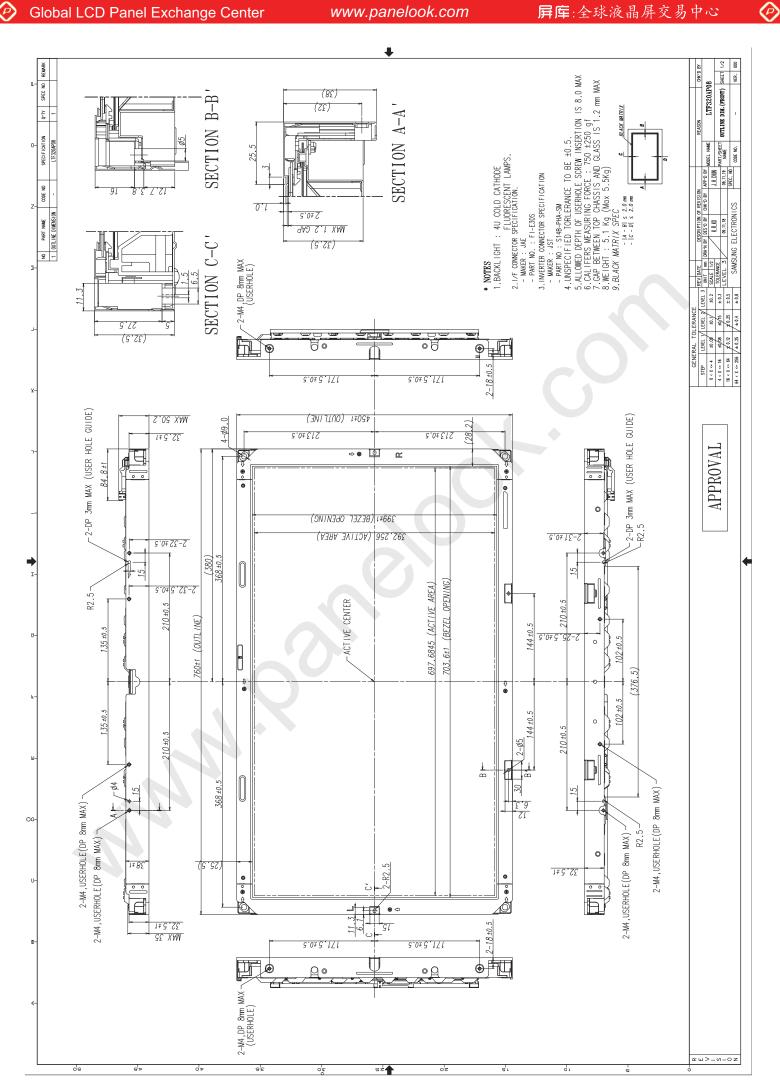
SIGNAL	ITEM	SYMBOL	MIN.	TYP.	MAX.	Unit	NOTE
Clock		1/T _c	72	78	85	MHz	-
Hsync	Frequency	F _H	44	48	53	KHz	-
Vsync	-	F _v	48	60	66	Hz	-
Vertical	Active Display Period	T _{VD}	-	768	-	Lines	-
Display Term	Vertical Total	T _v	776	802	1200	Lines	-
Horizontal	Active Display Period	T _{HD}	-	1366	-	Clocks	-
Display Term	Horizontal Total	Т _н	1460	1624	2000	clocks	-

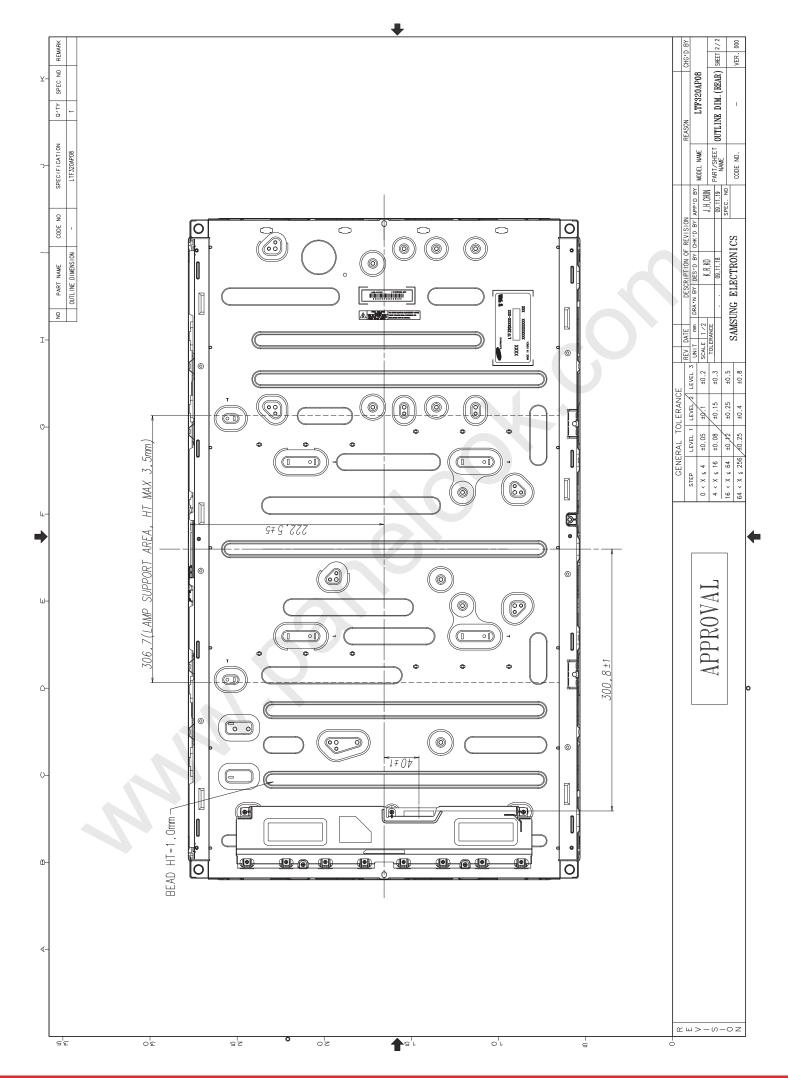

Note) This product is DE only mode. The input of Hsync & Vsync signal does not have an effect on normal operation.

(1) Test Point : TTL control signal and CLK at LVDS Tx input terminal in system

(2) Internal VDD = 3.3V


MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	19/29


 $\langle \! \! \rangle$


5.3 Power ON/OFF Sequence

To prevent a latch-up or DC operation of the LCD Module, the power on/off sequence should be as the diagram below.

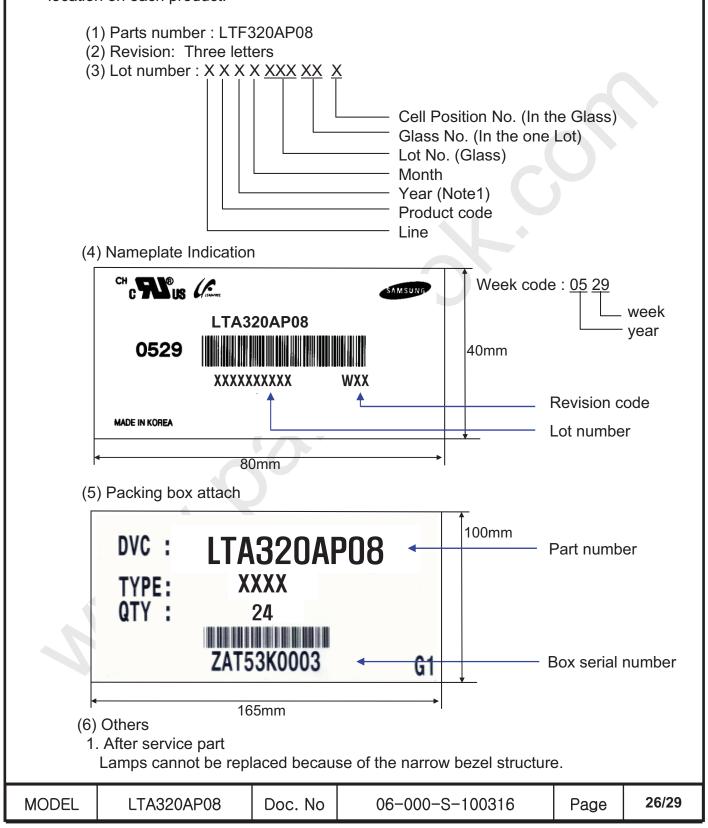
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

\bigotimes

7. Reliability Test

ltem	Test condition	Quantity
Temperature Step stress	-20 $^\circ\!\mathrm{C}\sim$ 60 $^\circ\!\mathrm{C}$, 10Cycle, 80hr	4EA
HTOL	50 °C operation,1000hr	8EA
LTOL	0°Coperation, 1000hr	4EA
LTOL 2	-20 $^\circ\!\!\!\mathrm{C}$, -10 $^\circ\!\!\!\mathrm{C}$ Each condition over 5hr off, over 1hr on	4EA
HTS	70 ℃ storage, 500hr	4EA
LTS	-30 ℃storage, 500hr	4EA
THB	40 °C / 95%RH, 30sec On / Off, 500hr operation	4EA
WHTS	60℃ / 75%RH, 500hr	4EA
Thermal Shock	-20 °C (30min) ~ 60 °C (30min) storage, 200cycle	4EA
ALTITUDE	-10 ℃ ~ 45 ℃, 0 ~ 40,000fit , 18hr	2EA
ESD	contact : ±8 kV ,150 pF/330 Ω ,200Point,1 time/Point (operation) non-contact : ±15 kV,150 pF/330 Ω ,200Point,1 time/Point (operation) Inverter input pin : ±15 kV,150 pF/330 Ω , 3 times/Pin	3EA
Vibration	10~300Hz/1.5G/10minSR, XYZ, 30min/axis	3EA
Shock	11msec, ±XYZ 1time/axis ~15Kg 50G, 11msec 15Kg ~ 20Kg ±XY 40G ±Z 30G, 11msec 20Kg ~ 30G, 11msec	3EA
Noise	On 90 min / Off 90 min	2 EA
Dust	5hr on/off (yellow earth 5sec spread / 5 min precipitation)	2 EA
Short term Image sticking	25~50℃ Mosaic pattern (9*10) 12hr fix	8 EA
Long term Image sticking	50℃ Mosaic pattern (9*10) 504hr fix	4 EA
PALLET Vibration	1.05 Grms, Random, Z axis 1Hr	1PALLET(24EA
PALLET Drop	20cm, 4Edge(Bottom), 1Face(Bottom)	1PALLET(24EA


HIS/LIS	: High/Low Temperature Storage
**** WHTS	: Wet High Temperature Storage

MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	24/29

8. PAC	KING			
(1) Pa Co	cking Fo	fiberboard bo		ated cardboard as shock absorber
	acking Pallet Box			→ Direction be able to open it
С	ushion-Fo	oam		
L	CD Modu	le		
C	ushion-Fo	oam		
L	CD Modu	le III		
	ushion-Fo			
Pa	allet-Plas			
Pa	allet-Plas acking Sp	tic Constant	cification	Remark
Pa 8.2 Pa	allet-Plas acking Sp n	tic Decification Spec	cification king-Pallet Box	1. 6.5kg/LCD(24ea) 2. 3.5kg/Cushion-SET(4ea)
Pa 8.2 Pa Iten	allet-Plas icking Sp n cking	tic Decification Spec 24ea / (Pac	2	 1. 6.5kg/LCD(24ea) 2. 3.5kg/Cushion-SET(4ea) 3. 8.8kg/Packing-Pallet Box(1ea) (1137×972×1025) 5. Cushion Material : EPS
Pa 8.2 Pa Iten	allet-Plas icking Sp n cking et	tic Decification Spec 24ea / (Pack 1Box	king-Pallet Box	 1. 6.5kg/LCD(24ea) 2. 3.5kg/Cushion-SET(4ea) 3. 8.8kg/Packing-Pallet Box(1ea) (1137×972×1025) 5. Cushion Material : EPS 6. Packing Pallet Box Material : DW4 1.Pallet weight = 8kg
Pa 8.2 Pa Iten LCD Pa Palle	allet-Plas	tic Decification Spec 24ea / (Pack 1Box Ve	king-Pallet Box x / Pallet	 1. 6.5kg/LCD(24ea) 2. 3.5kg/Cushion-SET(4ea) 3. 8.8kg/Packing-Pallet Box(1ea) (1137×972×1025) 5. Cushion Material : EPS 6. Packing Pallet Box Material : DW4 1.Pallet weight = 8kg 2. 191kg/Pallet , Total : 199kg/Pallet
Packing D	allet-Plas	tic Decification Spec 24ea / (Pack 1Box Ve H x V	king-Pallet Box x / Pallet ertical	1. 6.5kg/LCD(24ea) 2. 3.5kg/Cushion-SET(4ea) 3. 8.8kg/Packing-Pallet Box(1ea) (1137×972×1025) 5. Cushion Material : EPS 6. Packing Pallet Box Material : DW4 1.Pallet weight = 8kg 2. 191kg/Pallet , Total : 199kg/Pallet 1150 x 985 x 1161

9. MARKING & OTHERS

A nameplate bearing followed by is affixed to a shipped product at the specified location on each product.

10. General Precautions

10.1 Handling

- (a) When the Module is assembled, it should be attached to the system firmly using all mounting holes. Be careful not to twist and bend the Module.
- (b) Because the inverter use high voltage, it should be disconnected from power before it is assembled or disassembled.
- (c) Refrain from strong mechanical shock and / or any force to the Module. In addition to damage, this may cause improper operation or damage to the Module and CCFL back light.
- (d) Note that polarizers are very fragile and could be damage easily. Do not press or scratch the surface harder than a HB pencil lead.
- (e) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, staining or discoloration may occur.
- (f) If the surface of the polarizer is dirty, clean it using absorbent cotton or soft cloth.
- (g) Desirable cleaners are water, IPA(Isopropyl Alcohol) or Hexane. Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (h) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away with soap thoroughly.
- (i) Protect the module from Electrostatic discharge. Otherwise the ASIC IC or Semiconductor would be damaged.
- (j) Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (k) Do not disassemble the Module.
- (I) Do not disassemble shield case of inverter & LVDS board.
- (m) Do not connect N.C pins. (Samsung internal use only)
- (n) Protection film for polarizer on the Module should be slowly peeled off just before use so that the electrostatic charge can be minimized. Must put on antistatic glove while handle a module
- (o) Pins of I/F connector should not be touched directly with bare hands.

MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	27/29

 \bigotimes

10.2 Storage

- (a) Do not leave the Module in high temperature, and high humidity for a long time. It is highly recommended to store the Module with temperature from 0 to 35° C and relative humidity of less than 70%.
- (b) Do not store the TFT-LCD Module in direct sunlight.
- (c) The Module should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light in storing.

10.3 Operation

- (a) Do not connect or disconnect the Module in the "Power On" condition.
- (b) Power supply should always be turned on/off by the "Power on/off sequence"
- (c) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference should be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (d) The cable between the back light connector and its inverter power supply should be connected directly with a minimized length. A longer cable between the back light and the inverter may cause lower luminance of lamp(CCFT) and may require higher startup voltage(Vs).
- 10.4 Operation Condition Guide
 - (a) The LCD product should be operated under normal conditions. Normal condition is defined as below;
 - Temperature : 20±15℃
 - Humidity : 55±20%
 - Display pattern : continually changing pattern (Not stationary)
 - (b) If the product will be used in extreme conditions such as high temperature, humidity, display patterns or operation time etc.., It is strongly recommended to contact SEC for Application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at Airports, Transit Stations, Banks, Stock market, and Controlling systems.

MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	28/29
-------	------------	---------	-----------------	------	-------

$\langle p \rangle$

10.5 Others

- (a) Ultra-violet ray filter is necessary for outdoor operation.
- (b) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (c) Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on)
 Otherwise the Medule may be demaged.

Otherwise the Module may be damaged.

- (d) If the Module keeps displaying the same pattern for a long period of time, the image may be "sticked" to the screen. To avoid image sticking, it is recommended to use a screen saver.
- (e) This Module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.
- (f) Please contact SEC in advance when you display the same pattern for a long time.

MODEL	LTA320AP08	Doc. No	06-000-S-100316	Page	29/29