**SAMSUNG TFT-LCD** 

# MODEL: LTA550HJ15-X

The Information described in this specification is for the first draft and can be changed without prior notice.

Samsung Display Co., LTD

MODEL LTA550HJ15-X Doc. No Page 1 / 30

### **SAMSUNG Confidential**

### **Contents**

| Revision History                                                                                                                                                         | (3)              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| General Description                                                                                                                                                      | (4)              |
| <ul><li>1. Absolute Maximum Ratings</li><li>1.1 Environmental Absolute Ratings</li><li>1.2 Electrical Absolute Ratings</li><li>1.3 The Others Absolute Ratings</li></ul> | (6)              |
| 2. Optical Characteristics                                                                                                                                               | (8)              |
| <ul><li>3. Electrical Characteristics</li><li>3.1 TFT LCD Module</li><li>3.2 Backlight Unit</li></ul>                                                                    | (13)             |
| 4. Block Diagram                                                                                                                                                         | ( 15 )           |
| 4.1 TFT LCD Module 4.2 Back Light                                                                                                                                        |                  |
| 5. Input Terminal Pin Assignment                                                                                                                                         | ( 16 )           |
| <ul><li>5.1 Input Signal &amp; Power</li><li>5.2 Input Signal &amp; Power _ 3D Mode Only BLU signal c</li><li>5.3 LVDS Interface</li></ul>                               | onnector         |
| 5.4 Input Signals, Basic display colors and Gray Scale                                                                                                                   | of Each Color    |
| 5.5 Pixel Format in the display                                                                                                                                          |                  |
| 6. Interface Timing                                                                                                                                                      | ( 22 )           |
| 6.1 The parameters of timing                                                                                                                                             |                  |
| 6.2 Timing diagrams of interface signal                                                                                                                                  |                  |
| 6.3 Characteristics of Input data of LVDS                                                                                                                                |                  |
| 6.4 The sequence of power on and off 7. 3D MODE GUIDE                                                                                                                    | (26)             |
| 8. Outline Dimension                                                                                                                                                     | (27)             |
| 9. Reliability Test                                                                                                                                                      | (28)             |
| 10.Marking & Others                                                                                                                                                      | (30)             |
| 11.General Precaution                                                                                                                                                    | (31)             |
| 11.1 Handling                                                                                                                                                            | ,                |
| 11.2 Storage                                                                                                                                                             |                  |
| 11.3 Operation                                                                                                                                                           |                  |
| 11.4 Guide for the Operation Condition                                                                                                                                   |                  |
| 11.5 Others                                                                                                                                                              |                  |
| 12. Special Precautions                                                                                                                                                  |                  |
| 13. APPENDIX                                                                                                                                                             | ( 35 )<br>( 36 ) |

 MODEL
 LTA550HJ15-X
 Doc. No
 Page
 2 / 30



### **General Description**

### Description

LTA550HJ15-0 is a color active matrix liquid crystal display (LCD) that uses amorphous silicon TFT(Thin Film Transistor) as switching components. This model is composed of a TFT LCD panel, a driver circuit, and a backlight unit. This 55.0" model has a resolution of 1920 x1080 pixels (16:9) can display up to

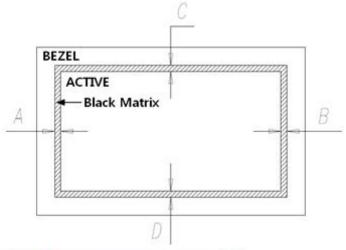
1.07Billion colors with the wide viewing angle of 89° or higher in all directions. This panel is intended to support applications by providing an excellent performance for the display products with a flat panel such as Home-alone Multimedia TFT-LCD TV and a High Definition TV.

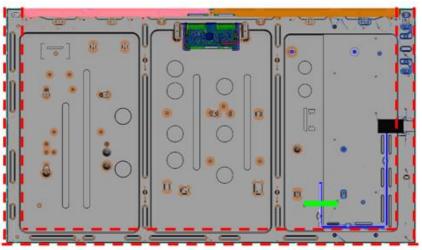
#### **General Information**

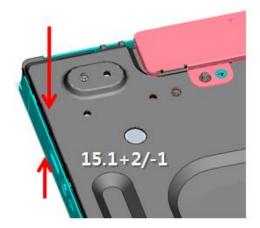
- High contrast ratio & aperture ratio with the wide color gamut
- SPVA(Patterned Vertical Align) mode
- Wide viewing angle (±178°)
- High speed response (with DCC circuit)
- Wide UXGA (1,920 x 1,080 pixels, 16:9)
- Edge LED (Light Emitted Diode) BLU
- 2D : 2ch LVDS 10bit Input interface
  - 3D: 2ch LVDS 10bit Input interface
- The interface (2pixel/clock) of LVDS serial interface

| Items               | Specification         | Unit              | Note   |
|---------------------|-----------------------|-------------------|--------|
| Module Size         | 1238.4(H) x 712.3(V)  | mm                | Max    |
| Wodule Size         | 17.1(D)               | mm                | Max    |
| Weight              | 17000                 | g                 | Тур    |
| Pixel Pitch         | 0.210 x 630           | mm                |        |
| Active Display Area | 1209.6 x 680.4        | mm                |        |
| Surface Treatment   | Anti-glare            |                   |        |
| Haze                | 2.0                   | %                 |        |
| Hardness            | Hard coating 2H       |                   |        |
| Display Colors      | 1.07B (8 bits+FRC)    | colors            |        |
| Number of Pixels    | 1920 x 1080           | pixel             | 16 : 9 |
| Pixel Arrangement   | RGB horizontal stripe |                   |        |
| Display Mode        | Normally Black        |                   |        |
| Luminous of Mileita | 350                   | 2                 | 2D     |
| Luminance of White  | 40                    | cd/m <sup>2</sup> | 3D     |

MODEL LTA550HJ15-X Doc. No Page 3 / 30





#### MECHANICAL INFORMATION


| Item         |               | Min.   | Тур.   | Max.   | Note |
|--------------|---------------|--------|--------|--------|------|
|              | Horizontal(H) | 1236.4 | 1237.4 | 1238.4 | mm   |
| Module size  | Vertical(V)   | 710.3  | 711.3  | 712.3  | mm   |
|              | Depth(D)      | 14.1   | 15.1   | 17.1   | mm   |
| Dozel Onen   | Horizontal(H) | 1216.6 | 1217.6 | 1218.6 | mm   |
| Bezel Open   | Vertical(V)   | 687.4  | 688.4  | 689.4  | mm   |
| Black Matrix | Horizontal(H) |        |        | 2.0    | mm   |
| Shift        | Vertical(V)   |        |        | 2.0    | (1)  |
| Weight       |               |        | 17000  | 17500  | g    |

NOTE (1) Measure the figure for **Black Matrix shift** to be recorded on the spec. with referring to the drawings.

- | A − B | ≤ Horizontal Spec
- $|C D| \le Vertical Spec$

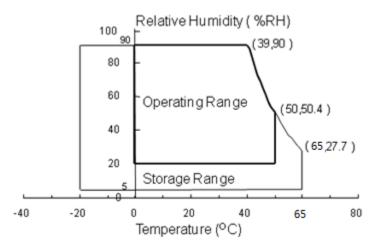






<Module Depth Measure Point>

MODEL LTA550HJ15-X Doc. No Page 4 / 30




#### 1. ABSOLUTE MAXIMUM RATINGS

#### 1.1 Environmental Absolute Ratings

| Item                                             | Symbol    | Min. | Max. | Unit | Note    |
|--------------------------------------------------|-----------|------|------|------|---------|
| Storage temperate (Temperature of glass surface) | TSTG      | -20  | 65   | °C   | (1)     |
| Operating temperate                              | TOPR      | 0    | 50   | °C   | (1)     |
| Humidity for storage                             | HSTG      | 5    | 90   | %RH  |         |
| Operating humidity                               | HOPR      | 20   | 90   | %RG  |         |
| Endurance on static electricity                  |           |      | 150  | V    | (5)     |
| Shook (non approxing)                            | Snop(X,Y) |      | 50   | G    | (2) (4) |
| Shock (non-operating)                            | Snop(Z)   | -    | 50   | 9    | (2),(4) |
| Vibration (non-operating)                        | Vnop      | -    | 1.5  | G    | (3),(4) |

No condensation



- Note (2) 11ms, half sine wave, one time for  $\pm X$ ,  $\pm Y$ ,  $\pm Z$  axis
- Note (3) 10 ~ 300 Hz, Swap rate for X, Y, Z axis one time\*
- Note (4) The fixture for the test of the vibration and shock, which holds the module to be tested shall be hard and rigid in order for the module not to be twisted or bent by the fixture.

Note (5) Keep the static electricity under 50V in Polarizer attaching process.(Open Cell)

MODEL LTA550HJ15-X Doc. No Page 5 / 30



#### 1.2 Electrical Absolute Ratings

#### (1) TFT LCD MODULE

| ltem                 | Symbol          | Min. | Тур. | Max. | Unit | Note |
|----------------------|-----------------|------|------|------|------|------|
| Power Supply Voltage | V <sub>DD</sub> | 10.8 | 12   | 13.2 | V    | (1)  |
| Dimming Control      | Vdim            | -    | -    | 5.25 | V    | (1)  |

Note (1) Within Ta (25  $\pm$  2 °C)

The permanent damage or defect to the device may occur if the panel is operated at the figure set, which exceeds a limit of maximum value stated in the former spec.

The functional operation should be limited to the conditions described above under normal operating conditions.

### (2) BACK-LIGHT UNIT

Ta (25  $\pm$  2 °C)

| Item                                   | Symbol  | Min. | Тур. | Max. | Unit | Note                    |
|----------------------------------------|---------|------|------|------|------|-------------------------|
| Input Supply<br>Voltage /<br>Converter | Vcc     | 22   | 24   | 26   | V    | Without converter       |
| LED Current (2D)                       | ILED,2D | 1    | 1    | 208  | mA   | per string<br>duty 100% |
| LED Current (3D)                       | ILED,3D |      | -    | 427  | mA   | per string<br>duty 25%  |

#### 1.3 The Others Absolute Ratings

#### STATIC ELECTRICITY PRESSURE RESISTANCE

| ltem              | Test Conditions                                           | Remark    |
|-------------------|-----------------------------------------------------------|-----------|
| CONTACT DISCHARGE | 150pF, 330 $\Omega$ , $\pm$ 10kV, 210points, 1 time/point | Operating |
| AIR DISCHARGE     | 150pF, 330 $\Omega$ , $\pm$ 20kV, 210points, 1 time/point | Operating |

 MODEL
 LTA550HJ15-X
 Doc. No
 Page
 6 / 30



### 2. Optical characteristics

The optical characteristics shall be measured in the dark room or the space surrounded by the similar ambient setting.

Measuring equipment: TOPCON RD-80S, TOPCON SR-3, ELDIM EZ-Contrast

| Item                      |            | Symbol           | Condition                              | Min.       | Тур.   | Max.                | Unit              | Note          |             |  |  |  |  |  |    |   |
|---------------------------|------------|------------------|----------------------------------------|------------|--------|---------------------|-------------------|---------------|-------------|--|--|--|--|--|----|---|
| Contrast r                |            | C/R              |                                        | 3000       | 5000   | -                   |                   | (1)<br>SR-3   |             |  |  |  |  |  |    |   |
| Response time             | G-to-G     | Tg               | @2D                                    | -          | 8      | 16                  | msec              | (3)<br>RD-80S |             |  |  |  |  |  |    |   |
| Luminance o               | of white   | Y <sub>L</sub>   | @2D                                    | 300        | 350    | 1                   | cd/m <sup>2</sup> | (4)           |             |  |  |  |  |  |    |   |
| (At the center of         | of screen) | 'L               | @3D                                    |            | 40     |                     | ca/m              | SR-3          |             |  |  |  |  |  |    |   |
|                           | Red        | Rx               |                                        |            | 0.640  |                     |                   |               |             |  |  |  |  |  |    |   |
|                           | Neu        | Ry               |                                        |            | 0.330  |                     |                   |               |             |  |  |  |  |  |    |   |
|                           | Green      | Gx               | Normal<br>qL,R=0                       |            | 0.300  |                     |                   |               |             |  |  |  |  |  |    |   |
| Chromaticity              | Green      | Gy               | qL,r\=0<br>qU,D=0                      | TYP.       | 0.600  | TYP.                |                   | (5),(6)       |             |  |  |  |  |  |    |   |
| (CIE 1931)                | Blue       | Bx               | Viewing                                | -0.03      | 0.150  | +0.03               |                   | SR-3          |             |  |  |  |  |  |    |   |
|                           | blue       | Ву               | Angle                                  |            | 0.060  |                     |                   |               |             |  |  |  |  |  |    |   |
|                           | White      | Wx               |                                        |            | 0.280  |                     |                   |               |             |  |  |  |  |  |    |   |
|                           | vviille    | Wy               |                                        |            | 0.290  |                     |                   |               |             |  |  |  |  |  |    |   |
| Color gar                 | mut        | -                |                                        |            | 70     | -                   | %                 | (5)           |             |  |  |  |  |  |    |   |
| Color Tempe               | erature    | -                |                                        | -          | 10,000 | -                   | К                 | SR-3          |             |  |  |  |  |  |    |   |
|                           | Hor.       | $q_{L}$          | - C/R > 10                             | - C/R > 10 |        |                     | 89                | -             |             |  |  |  |  |  |    |   |
| Viewing                   | 1101.      | $q_R$            |                                        |            |        | 89                  | -                 | Degree        | (6)<br>SR-3 |  |  |  |  |  |    |   |
| Angle                     | Ver.       | $q_U$            |                                        |            |        | <i>O/IX &gt; 10</i> | 0,1(2,10          | J 7717 10     |             |  |  |  |  |  | 89 | - |
|                           | VOI.       | $q_D$            |                                        |            | 89     | -                   |                   |               |             |  |  |  |  |  |    |   |
|                           |            |                  | Center<br>(W-B)                        |            | 3      | 5                   |                   |               |             |  |  |  |  |  |    |   |
| Crosstalk                 |            | Dsна             | Top/Bottom<br>(W-B @ 1/8<br>from edge) | -          |        | 8                   |                   | (7)           |             |  |  |  |  |  |    |   |
| Flicke                    |            | F                |                                        | -          | 15     | 20                  |                   | (8) RD-80S    |             |  |  |  |  |  |    |   |
| Flicke                    | I          |                  |                                        |            | 30     | 40                  |                   | (8), CA-210   |             |  |  |  |  |  |    |   |
| Gamm                      | a          | -                |                                        | 1.9        | 2.2    | 2.5                 |                   | SR-3          |             |  |  |  |  |  |    |   |
| Brightness ur<br>(9 Point |            | B <sub>uni</sub> |                                        | -          | -      | 25                  | %                 | (2)<br>SR-3   |             |  |  |  |  |  |    |   |

<sup>\*</sup> Ta = 25  $\pm$  2 °C, V<sub>DD</sub>=3.3V, fv= 60Hz, fDCLK = 148.5MHz, 2D Mode, IF = 145mA, IF = 100% duty

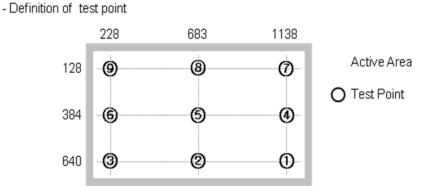
| MODEL LTA550HJ15-X | Doc. No |  | Page | 7 / 30 |
|--------------------|---------|--|------|--------|
|--------------------|---------|--|------|--------|

#### - Test equipment for setup

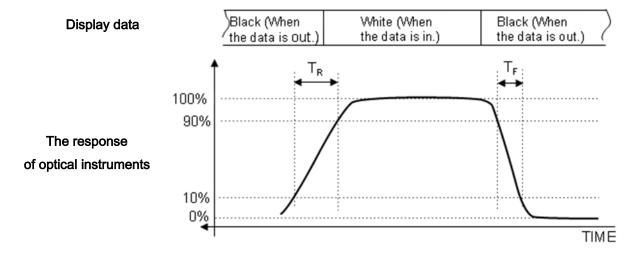
The measurement shall be executed under the condition including a stable, windless and dark room for 40min or 60min with lighting the back-light at the given temperature, which is suitable to stabilize the back-light. The module shall be measured at the center of screen.

The ideal temperature for setup is a value derived from the formula, Ta =  $25 \pm 2$  °C.

Note (1) Definition of Viewing angle : The range of Viewing angle ( $10 \le C/R$ ) : Ratio of gray max (Gmax) & gray min (Gmin) at the center point of the panel


$$C/R = \frac{G \max}{G \min}$$

Gmax: Luminance with all pixels white Gmin: Luminance with all pixels black


Note (2) Definition of brightness uniformity at 9 points (Test pattern: Full white)

$$Buni = 100* \frac{(B \max - B \min)}{B \max}$$

Bmax : Maximum brightness Bmin : Minimum brightness



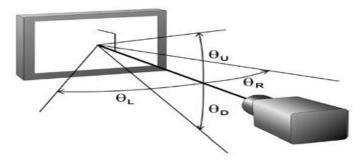
Note (3) Definition of response time: Sum of Tr, Tf



※ G-to-G: Average response time between the whole gray scale to the whole gray scale.

MODEL LTA550HJ15-X Doc. No Page 8 / 30

|       | Gray to Gray Response Time |           |            |            |            |             |             |             |             |             |      |  |
|-------|----------------------------|-----------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|------|--|
|       | Gray                       |           | End        |            |            |             |             |             |             |             |      |  |
|       | Oray                       | 0         | 31         | 63         | 95         | 127         | 159         | 191         | 223         | 255         |      |  |
|       | 0                          |           | Tr(0-31)   | Tr(0-63)   | Tr(0-95)   | Tr(0-127)   | Tr(0-159)   | Tr(0-191)   | Tr(0-223)   | Tr(0-255)   |      |  |
|       | 31                         | Tf(31-0)  |            | Tr(31-63)  | Tr(31-95)  | Tr(31-127)  | Tr(31-159)  | Tr(31-191)  | Tr(31-223)  | Tr(31-255)  |      |  |
|       | 63                         | Tf(63-0)  | Tf(63-31)  |            | Tr(63-95)  | Tr(63-127)  | Tr(63-159)  | Tr(63-191)  | Tr(63-223)  | Tr(63-255)  |      |  |
|       | 95                         | Tf(95-0)  | Tf(95-31)  | Tf(95-63)  |            | Tr(95-127)  | Tr(95-159)  | Tr(95-191)  | Tr(95-223)  | Tr(95-255)  | Ton  |  |
| Start | 127                        | Tf(127-0) | Tf(127-31) | Tf(127-63) | Tf(127-95) |             | Tr(127-159) | Tr(127-191) | Tr(127-223) | Tr(127-255) | 1011 |  |
|       | 159                        | Tf(159-0) | Tf(159-31) | Tf(159-63) | Tf(159-95) | Tf(159-127) |             | Tr(159-191) | Tr(159-223) | Tr(159-255) |      |  |
|       | 191                        | Tf(191-0) | Tf(191-31) | Tf(191-63) | Tf(191-95) | Tf(191-127) | Tf(191-159) |             | Tr(191-223) | Tr(191-255) |      |  |
|       | 223                        | Tf(223-0) | Tf(223-31) | Tf(223-63) | Tf(223-95) | Tf(223-127) | Tf(223-159) | Tf(223-191) |             | Tr(223-255) |      |  |
|       | 255                        | Tf(255-0) | Tf(255-31) | Tf(255-63) | Tf(255-95) | Tf(255-127) | Tf(255-159) | Tf(255-191) | Tf(255-223) |             |      |  |
|       | ·                          |           |            |            |            | Toff        |             |             |             |             |      |  |


T\*(X-Y): Response time from level of gray at X to level of gray at Y

#### The definition of response time = $\Sigma [T^*(X-Y)] / 72$

Note (4) The definition of luminance of white: The luminance of white at the center point ⑤

Note (5) The definition of chromaticity (CIE 1931)

The color coordinate of red, green, blue and white at the center point ⑤

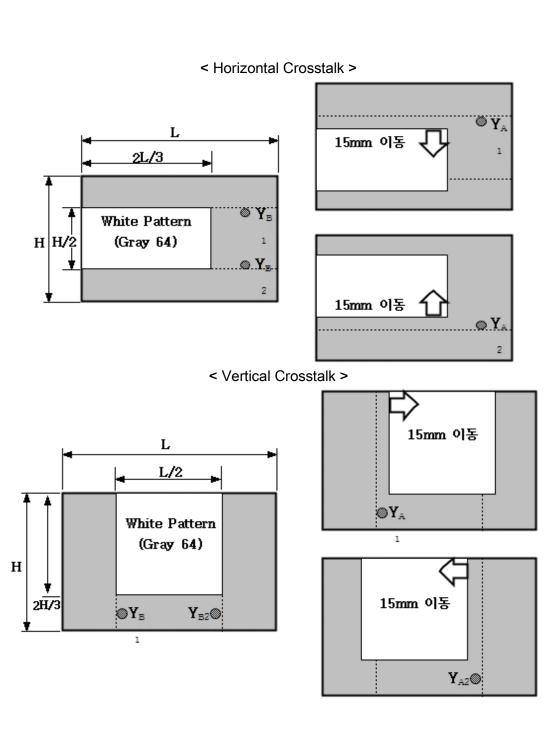


Note (6) Definition of viewing angle: The range of viewing angle (C/R ≥10)

#### NOTE (7)

► The definition of crosstalk; (Cross modulation) (DSHA): The phenomenon, which the level of contrast ratio is declined by the interference of signals in pixels.

Crosstalk Modulation Ratio (D<sub>SHA</sub>) = 
$$\frac{|Y_{normal} - Y_{abnormal}|}{Y_{normal}} \times 100(\%)$$

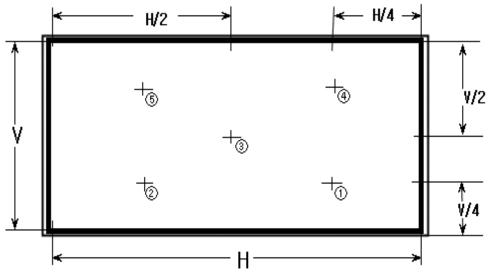

- \* Measure the size of background pattern at the interval of 4 grays with excluding the size of white rectangle within the range from gray 1 to gray 64.
- \* Measure the horizontal crosstalk and vertical crosstalk both.
- \* The maximum value among measured values can be defined as a crosstalk.

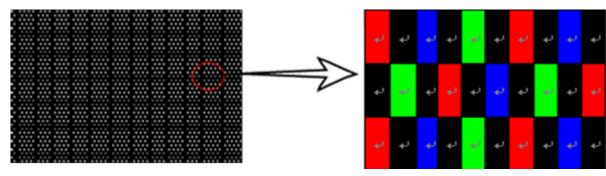
Reference: The color of rectangle for Gmin is black when the color of screen is white.

The color of rectangle for Gmax is white when the color of screen is black.

| MODEL LTA55 | 0HJ15-X Doc. No | Page | 9 / 30 |
|-------------|-----------------|------|--------|
|-------------|-----------------|------|--------|

\* Pattern to measure the crosstalk and points to be measured



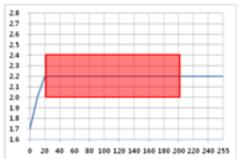


### **NOTE (8)**

- ► The definition of terminology, flicker: The phenomenon, which the pixels on the screen of LCD panel blink.
- 1) Calculate the value of crosstalk with observing the standard for measuring the flicker.
- 2) The points to be measured

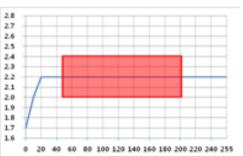
MODEL LTA550HJ15-X Doc. No Page 10 / 30

The pattern to measure the flicker






< Dot Inversion >


#### NOTE(9)

The local gamma

<TV> (20Gray ~ 200Gray)



<DID> (50Gray ~ 200Gray)



### Note(10)

ACC

- -. Allowed the difference of 15/1000 between any point's value in Wx color coordinate and in Wy color within the range between over 30 gray and under 255 gray. The crossing within the specific range of gray shall not be allowed.
- -. The one time crossing is allowed under the 30 G if the value of Wx's coordinate starts at a higher value than that of Wy 's coordinate at 0 gray.(If the crossing is over two time, it is N.G.)

MODEL LTA550HJ15-X Doc. No Page 11 / 30

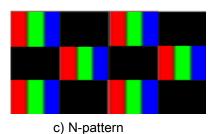


#### 3. Electrical characteristics

#### 3.1 TFT\_LCD Module

The connector to transmit a display data and a timing signal shall be connected.

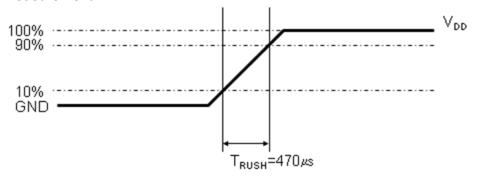
 $Ta = 25^{\circ}C \pm 2^{\circ}C$ 


| Item               |                   | Symbol            | Min.  | Тур.  | Max.  | Uı  | nit | Note    |         |
|--------------------|-------------------|-------------------|-------|-------|-------|-----|-----|---------|---------|
| Voltage            | e of power supply | V <sub>DD</sub>   | 10.8  | 12.0  | 13.2  | \   | V   | (1)     |         |
|                    | (a) Plank         |                   | -     | 500   | 550   | 2D  |     |         |         |
|                    | (a) Black         |                   | -     | 500   | 550   | 3D  |     |         |         |
| Current            | (b) White         | ı                 | -     | 470   | 520   | 2D  | mA  | (2) (2) |         |
| of power<br>supply | (b) writte        | 'DD               | DD    | -     | 470   | 520 | 3D  | ША      | (2),(3) |
|                    | (c) N-pattern     |                   | -     | 790   | 870   | 2D  |     |         |         |
|                    |                   |                   | -     | 1100  | 1220  | 3D  |     |         |         |
| Vsy                | nc frequency      | fV                | 48    | 60    | 62.5  | F   | łz  |         |         |
| Hsync frequency    |                   | f <sub>H</sub>    | 53    | 67.5  | 70    | kl  | Ηz  |         |         |
| Main frequency     |                   | f <sub>dclk</sub> | 130.0 | 148.5 | 160.0 | М   | Hz  |         |         |
| R                  | ush current       | IRUSH             | -     | -     | 3     | ,   | 4   | (4)     |         |

Note (1) The voltage for ripple shall be controlled under the range of fewer than 10% of  $V_{DD}$  voltage.

- (2)  $f_v$ =60Hz,  $f_{DOLK}$  =148.5MHz,  $V_{DD}$  = 12.0V, DC Current.
- (3) The pattern for checking the power dissipation (LCD module only)







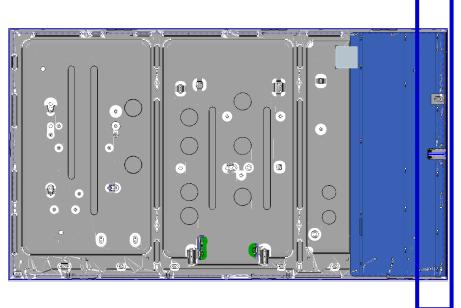

a) Black pattern

b) White pattern

(4) Conditions for measurement



The rush current, IRUSH can be measured when TRUSH, is 470 µs.


MODEL LTA550HJ15-X Doc. No Page 12 / 30

\* The temperature range for component of the some major part of operating module

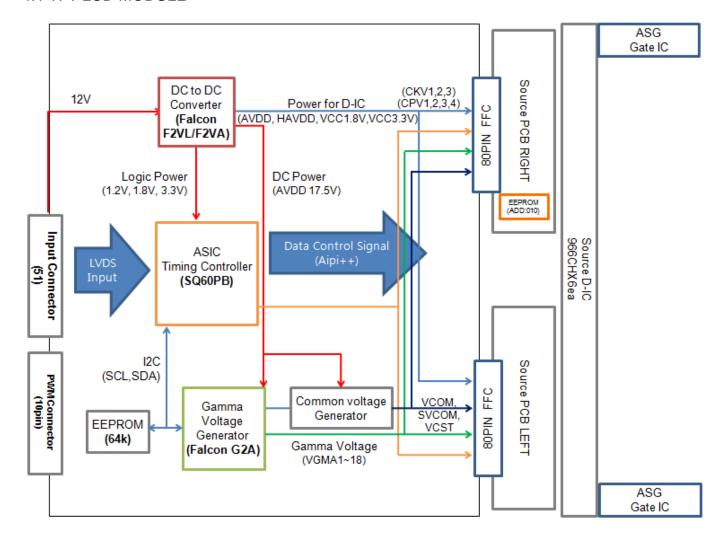
| Part              | Spec   | Ambient Operating Temperature | Junction Operating Temperature |
|-------------------|--------|-------------------------------|--------------------------------|
| Timing Controller | SQ60PB | -20°C ~ 70°C                  | 0°C ~ 125°C                    |

### 3.2 BACK-LIGHT UNIT

\* Back light unit is composed of 1-LED bar .(72 pcs of LEDs).



Ta=25℃


| Item                               | Symbol  | Min.   | Тур.     | Max.   | Unit       | Note                                                                    |
|------------------------------------|---------|--------|----------|--------|------------|-------------------------------------------------------------------------|
| LED Operating Temperature range    | Тор     | -20    | -        | 70     | $^{\circ}$ |                                                                         |
| LED Storage<br>Temperature range   | Tstg    | -30    | ı        | 85     | $^{\circ}$ | LED unit                                                                |
| LED Junction<br>Temperature        | Tj      | -      | -        | 130    | $^{\circ}$ |                                                                         |
| LED Forward Current                | IF      | 137.75 | 145      | 152.25 | mA         | Continuous Operation@String<br>(6String/PCB)<br>Operating Current 145mA |
|                                    | IFP     | -      | -        | 427    | mA         | 120Hz/duty25%                                                           |
| LED Forward Voltage                | VF      | 70.3   | 75.1     | 79.9   | V          | Continuous Operation @string (12LEDs @145mA/String)                     |
| _                                  | VFP     | -      | -        | 90.3   | V          | 120Hz/Duty25%                                                           |
| Thermal Resistance Junction to PCB | Rth, JS | -      | -        | 20     | K/W        |                                                                         |
| Power Consumption                  | Р       | 61.1   | 65.3     | 69.5   | W          |                                                                         |
| Operating Life Time                | Hr      |        | > 35,000 |        | Hour       | MTTF, 2D Only                                                           |
| LED Counts                         | Q       | -      | 72       | -      | EA         |                                                                         |

MODEL LTA550HJ15-X Doc. No Page 13 / 30



### 4. Block diagram

#### 4.1 TFT LCD MODULE



#### 4.2 Back Light

LED: W/O converter

MODEL LTA550HJ15-X Doc. No Page 14 / 30



### 5. The Pin assignment in the input terminal

5.1 Input Signal & Power

Connector: ISO50-C51B-C38 (UJU)

|     |            | INPUT CON                                     | INECTO | R PIN MAP |                                               |
|-----|------------|-----------------------------------------------|--------|-----------|-----------------------------------------------|
| PIN | SYMBOL     | Description                                   | PIN    | SYMBOL    | Description                                   |
| 1   | B_INT      | Bus release (3)                               | 27     | N.C       | Not Connect                                   |
| 2   | SCL_I      | I2C SCL                                       | 28     | Rx2[A]N   | 2 <sup>ND</sup> Pixel, A ch LVDS Signal -     |
| 3   | SDA_I      | I2C SDA                                       | 29     | Rx2[A]P   | 2 <sup>ND</sup> Pixel, A ch LVDS Signal +     |
| 4   | 3D_Format0 | 3D Format '0' signal (4)                      | 30     | Rx2[B]N   | 2 <sup>ND</sup> Pixel, B ch LVDS Signal -     |
| 5   | 3D_SYNC_O  | Shutter Glass sync<br>output signal (4)       | 31     | Rx2[B]P   | 2 <sup>ND</sup> Pixel, B ch LVDS Signal +     |
| 6   | 3D_Format1 | 3D Format '1' signal (2)                      | 32     | Rx2[C]N   | 2 <sup>ND</sup> Pixel, C ch LVDS Signal -     |
| 7   | LVDS_SEL   | LVDS Selection signal, Sequence               | 33     | Rx2[C]P   | 2 <sup>ND</sup> Pixel, C ch LVDS Signal +     |
| 8   | TEMP_SEL0  | Not Used                                      | 34     | GND       | Ground                                        |
| 9   | TEMP_SEL1  | Not Used                                      | 35     | Rx2CLK-   | 2 <sup>ND</sup> Pixel, LVDS Clock -           |
| 10  | N.C        | Not Connect                                   | 36     | Rx2CLK+   | 2 <sup>ND</sup> Pixel, LVDS Clock +           |
| 11  | GND        | Ground                                        | 37     | GND       | Ground                                        |
| 12  | Rx1[A]N    | 1 <sup>ST</sup> Pixel, A ch LVDS Signal -     | 38     | Rx2[D]N   | 2 <sup>ND</sup> Pixel, D ch LVDS Signal -     |
| 13  | Rx1[A]P    | 1 <sup>ST</sup> Pixel, A ch LVDS Signal +     | 39     | Rx2[D]P   | 2 <sup>ND</sup> Pixel, D ch LVDS Signal +     |
| 14  | Rx1[B]N    | 1 <sup>ST</sup> Pixel, B ch LVDS Signal -     | 40     | Rx2[E]N   | 2 <sup>ND</sup> Pixel, E ch LVDS Signal - (1) |
| 15  | Rx1[B]P    | 1 <sup>ST</sup> Pixel, B ch LVDS Signal +     | 41     | Rx2[E]P   | 2 <sup>ND</sup> Pixel, E ch LVDS Signal + (1) |
| 16  | Rx1[C]N    | 1 <sup>ST</sup> Pixel, C ch LVDS Signal -     | 42     | N.C       | Not Connect                                   |
| 17  | Rx1[C]P    | 1 <sup>ST</sup> Pixel, C ch LVDS Signal +     | 43     | N.C       | Not Connect                                   |
| 18  | GND        | Ground                                        | 44     | GND       | Ground                                        |
| 19  | Rx1CLK-    | 1 <sup>ST</sup> Pixel, LVDS Clock -           | 45     | GND       | Ground                                        |
| 20  | Rx1CLK+    | 1 <sup>ST</sup> Pixel, LVDS Clock +           | 46     | GND       | Ground                                        |
| 21  | GND        | Ground                                        | 47     | N.C       | Not Connect                                   |
| 22  | Rx1[D]N    | 1 <sup>ST</sup> Pixel, D ch LVDS Signal -     | 48     | 12V       | DC power supply                               |
| 23  | Rx1[D]P    | 1 <sup>ST</sup> Pixel, D ch LVDS Signal +     | 49     | 12V       | DC power supply                               |
| 24  | Rx1[E]N    | 1 <sup>ST</sup> Pixel, E ch LVDS Signal - (1) | 50     | 12V       | DC power supply                               |
| 25  | Rx1[E]P    | 1 <sup>ST</sup> Pixel, E ch LVDS Signal + (1) | 51     | 12V       | DC power supply                               |
| 26  | 3D_EN      | 3D_EN signal (4)                              |        |           |                                               |

#### Note(1):

- Input Mode 8Bit Setting & 8bit input AI, ==> E\_Chanel: Floating

- Input Mode 10bit Setting & 8bit input Al, ==> E\_Chanel : Keep Level '0'

(51 PIN) No.24 / No.40 : Pull Up(3.3V) with 10Kohm resist (51 PIN) No.25 / No.41 : Pull Down(GND) with 10Kohm resist

\* Level of LVDS signals are base on LVDS CHARACTERISTICS(7-12)

NOTE(2): 3D input format selection

- FORMATI[1:0]: 2'b0x = Line interleave, 2'b10 = side/side, 2'b11 = top/bottom

NOTE(3): WP, SCL\_I and SDA\_I shouldn't be communicated with I2C device whose output level is 5V

MODEL LTA550HJ15-X Doc. No Page 15 / 30



Note(4): FORMAT / 3D\_EN / 3D sync\_O

| Symbol    | Description        | Min  | Тур. | Max. | Unit. | Note |
|-----------|--------------------|------|------|------|-------|------|
| FORMAT[0] | Input High Voltage | 2.0  | -    | 3.6  | V     |      |
|           | Input Low Voltage  | -0.3 | -    | 0.8  | V     |      |
| FORMAT[1] | Input High Voltage | 2.0  | -    | 3.6  | V     |      |
|           | Input Low Voltage  | -0.3 | -    | 0.8  | V     |      |
| 3D_EN     | Input High Voltage | 2.0  | -    | 3.6  | V     |      |
|           | Input Low Voltage  | -0.3 | -    | 0.8  | V     |      |
| 3D Sync O | Input High Voltage | 2.4  | -    | -    | V     |      |
|           | Input Low Voltage  | -    | -    | 0.4  | V     |      |

### 5.2 Input Signal & Power \_ 3D Mode Only BLU signal connector

Part No.: 104091-1020 (MOLEX)

| Pin No. | Pin Name | Note |  |
|---------|----------|------|--|
| 1       | EXT_DIM  | (1)  |  |
| 2       | INT_DIM  |      |  |
| 3       | 3D_EN    |      |  |
| 4       | PWM-1    |      |  |
| 5       | PWM-2    |      |  |
| 6       | PWM-3    |      |  |
| 7       | PWM-4    |      |  |
| 8       | PWM-5    |      |  |
| 9       | PWM-6    |      |  |
| 10      | GND      |      |  |

NOTE(1): SDC applied serial 100ohm resister for prevent damage of T-con

5.2.1Scanning frequency: 120Hz

#### 5.2.2 High/Low voltage Specification

LTA550HJ15-X

**MODEL** 

| Characteristics     | Min        | Тур | Max      | Unit |
|---------------------|------------|-----|----------|------|
| VDD                 | 3.0        | 3.3 | 3.6      | V    |
| Output Low Voltage  |            |     | 0.4      | V    |
| (V_Sync/3D_EN)      | _          | 1   | 0.4      | V    |
| Output High Voltage | 2.4        |     |          | V    |
| (V_Sync/3D_EN)      | 2.4        | -   | -        | V    |
| Output Low Voltage  | 0          |     | 0.4      | V    |
| @PWM                | U          | -   | 0.4      | V    |
| Output Low Voltage  | VDD-0.2V   |     | VDD+0.2V | V    |
| @PWM                | V DD-0.2 V | -   | VDD+0.2V | V    |
|                     |            |     |          |      |

Page

16 / 30

Doc. No



### 5.2.3 EXT-DIM Signal

#### (1) 2D Mode

|                   |      | _     |      |                                |
|-------------------|------|-------|------|--------------------------------|
|                   | Min  | Тур   | Max  | Remarks                        |
| EXT-DIM Frequency | 95Hz | 100Hz | 1kHz |                                |
| EXT-DIM Duty      | 1%   |       | 100% | When EXT-DIM Duty is 1%, T-Con |
|                   | 1 70 | -     | 100% | Output Duty is 0.78%.          |

### (2) 3D Mode

|                   | Min  | Тур   | Remarks |                                            |
|-------------------|------|-------|---------|--------------------------------------------|
| EXT-DIM Frequency | 95Hz | 100Hz | 1kHz    | EXT-DIM: High (Recommendation) for 3D Mode |
| EXT-DI Duty       | 1%   | -     | 100%    |                                            |

Caution: EXT-DIM should be high or EXT-DIM Frequency is higher than 50Hz for 3D mode.

Otherwise, there would be abnormal display for 3D mode.

MODEL LTA550HJ15-X Doc. No Page 17 / 30





### 5.3 LVDS Interface

- LVDS Receiver : T-CON

- Data Format(JEIDA, NORMAL)

LVDS OPTION( input : pin9 ) : IF THIS PIN : LOW (GND)  $\,\rightarrow\,$  JEIDA LVDS FORMAT

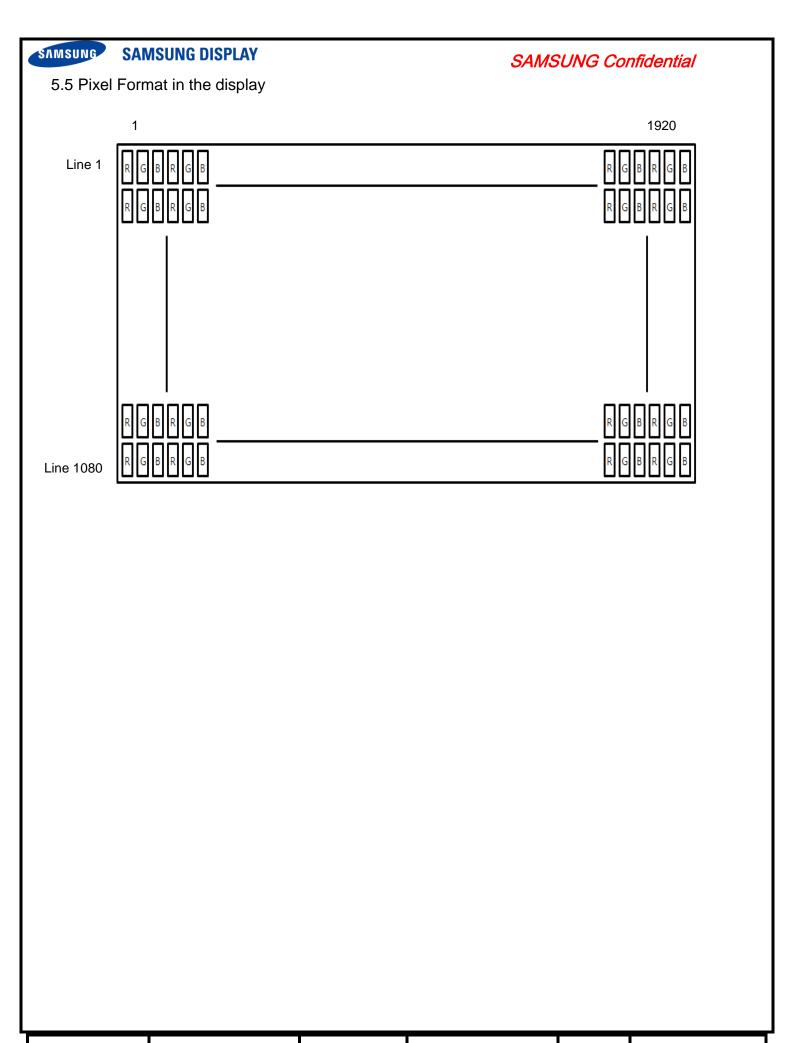
OTHERWISE : HIGH (3.3V) OR OPEN(NC)  $\rightarrow$  NORMAL NS LVDS FORMAT

| 差動信號        | LVDS pin     | JEIDA     | Normal    |
|-------------|--------------|-----------|-----------|
|             | TxIN/RxOUT0  | R4        | R0        |
|             | TxIN/RxOUT1  | R5        | R1        |
|             | TxIN/RxOUT2  | R6        | R2        |
| TxOUT/RxIN0 | TxIN/RxOUT3  | R7        | R3        |
|             | TxIN/RxOUT4  | R8        | R4        |
|             | TxIN/RxOUT6  | R9        | R5        |
|             | TxIN/RxOUT7  | G4        | G0        |
|             | TxIN/RxOUT8  | G5        | G1        |
|             | TxIN/RxOUT9  | G6        | G2        |
|             | TxIN/RxOUT12 | G7        | G3        |
| TxOUT/RxIN1 | TxIN/RxOUT13 | G8        | G4        |
|             | TxIN/RxOUT14 | G9        | G5        |
|             | TxIN/RxOUT15 | B4        | В0        |
|             | TxIN/RxOUT18 | B5        | B1        |
|             | TxIN/RxOUT19 | B6        | B2        |
|             | TxIN/RxOUT20 | В7        | В3        |
|             | TxIN/RxOUT21 | В8        | B4        |
| TxOUT/RxIN2 | TxIN/RxOUT22 | В9        | B5        |
|             | TxIN/RxOUT24 | HSYNC     | HSYNC     |
|             | TxIN/RxOUT25 | VSYNC     | VSYNC     |
|             | TxIN/RxOUT26 | DEN       | DEN       |
|             | TxIN/RxOUT27 | R2        | R6        |
|             | TxIN/RxOUT5  | R3        | R7        |
|             | TxIN/RxOUT10 | G2        | G6        |
| TxOUT/RxIN3 | TxIN/RxOUT11 | G3        | G7        |
|             | TxIN/RxOUT16 | B2        | B6        |
|             | TxIN/RxOUT17 | В3        | В7        |
|             | TxIN/RxOUT23 | RESERVED  | RESERVED  |
|             | TxIN/RxOUT28 | <u>R0</u> | <u>R8</u> |
|             | TxIN/RxOUT29 | <u>R1</u> | <u>R9</u> |
|             | TxIN/RxOUT30 | <u>G0</u> | <u>G8</u> |
| TxOUT/RxIN4 | TxIN/RxOUT31 | <u>G1</u> | <u>G9</u> |
|             | TxIN/RxOUT32 | <u>B0</u> | <u>B8</u> |
|             | TxIN/RxOUT33 | <u>B1</u> | <u>B9</u> |
|             | TxIN/RxOUT34 | RESERVED  | RESERVED  |

|  | MODEL | LTA550HJ15-X | Doc. No |  | Page | 18 / 30 |
|--|-------|--------------|---------|--|------|---------|
|--|-------|--------------|---------|--|------|---------|



#### SAMSUNG Confidential


5.4 Input Signals, Basic display colors and Gray Scale of Each Color

| 3.41          | nput Sig     | Па       | 15, | De | ISIC | <u>; u</u> | isp | iay | / C | OIC       | 015       | <u>an</u> | <u>u c</u> |    |    | <u> 5С</u><br>ТА S |     |    | <u> </u> | <u>acı</u> | 1 C       | OIC | <u> </u> |    |          |          |    |          |    |           |               |                |
|---------------|--------------|----------|-----|----|------|------------|-----|-----|-----|-----------|-----------|-----------|------------|----|----|--------------------|-----|----|----------|------------|-----------|-----|----------|----|----------|----------|----|----------|----|-----------|---------------|----------------|
| COLOR         | DISPLAY      |          |     |    |      | RI         | ED  |     |     |           |           |           |            |    |    | GRI                | EEN | l  |          |            |           | ]   |          |    |          | BL       | UE |          |    |           |               | GRAY<br>SCALE  |
|               |              | R0       | R1  | R2 | R3   | R4         | R5  | R6  | R7  | <u>R8</u> | <u>R9</u> | G0        | G1         | G2 | G3 | G4                 | G5  | G6 | G7       | <u>G8</u>  | <u>G9</u> | В0  | В1       | B2 | ВЗ       | B4       | B5 | В6       | В7 | <u>B8</u> | <u>B9</u>     | LEVEL          |
|               | BLACK        | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | 0         | 0             | -              |
|               | BLUE         | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 1   | 1        | 1  | 1        | 1        | 1  | 1        | 1  | 1         | <u>1</u>      | Ξ.             |
|               | GREEN        | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 1         | 1          | 1  | 1  | 1                  | 1   | 1  | 1        | <u>1</u>   | <u>1</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | <u>0</u>      | Ξ              |
| BASIC         | CYAN         | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 1         | 1          | 1  | 1  | 1                  | 1   | 1  | 1        | <u>1</u>   | <u>1</u>  | 1   | 1        | 1  | 1        | 1        | 1  | 1        | 1  | 1         | <u>1</u>      | Ξ              |
| COLOR         | RED          | 1        | 1   | 1  | 1    | 1          | 1   | 1   | 1   | <u>1</u>  | <u>1</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | <u>0</u>      | =              |
|               | MAGENTA      | 1        | 1   | 1  | 1    | 1          | 1   | 1   | 1   | <u>1</u>  | <u>1</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 1   | 1        | 1  | 1        | 1        | 1  | 1        | 1  | 1         | <u>1</u>      | Ξ              |
|               | YELLOW       | 1        | 1   | 1  | 1    | 1          | 1   | 1   | 1   | <u>1</u>  | <u>1</u>  | 1         | 1          | 1  | 1  | 1                  | 1   | 1  | 1        | <u>1</u>   | <u>1</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | <u>0</u>      | <u>-</u>       |
|               | WHITE        | 1        | 1   | 1  | 1    | 1          | 1   | 1   | 1   | <u>1</u>  | 1         | 1         | 1          | 1  | 1  | 1                  | 1   | 1  | 1        | <u>1</u>   | <u>1</u>  | 1   | 1        | 1  | 1        | 1        | 1  | 1        | 1  | <u>1</u>  | 1             | =              |
|               | BLACK        | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | <u>0</u>      | <u>R0</u>      |
|               |              | 1        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | <u>0</u>      | <u>R1</u>      |
|               | DARK         | 0        | 1   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | <u>0</u>      | <u>R2</u>      |
| GRAY<br>SCALE | I            | Ŀ        | :   | :  | :    | :          | :   | :   | :   | ÷         | <u>:</u>  | :         | :          | :  | :  | :                  | :   | :  | :        | ÷          | :         | :   | :        | :  | :        | :        | :  | :        | :  | <u>:</u>  | Ξ             | <u>R3~</u>     |
| OF RED        |              | :        | :   | :  | :    | :          | :   | :   | :   | :         | Ė         | :         | :          | :  | :  | :                  | :   | :  | :        | Ξ          | ÷         | :   | :        | :  | :        | :        | :  | :        | :  | <u>:</u>  | :             | R1020          |
|               | ↓<br>LIGHT   | 1        | 0   | 1  | 1    | 1          | 1   | 1   | 1   | <u>1</u>  | 1         | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | <u>0</u>      | <u>R1021</u>   |
|               |              | 0        | 1   | 1  | 1    | 1          | 1   | 1   | 1   | 1         | 1         | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | <u>0</u>      | <u>R1022</u>   |
|               | RED          | 1        | 1   | 1  | 1    | 1          | 1   | 1   | 1   | 1         | 1         | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | 0             | R1023          |
|               | BLACK        | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | 0             | <u>G0</u>      |
|               |              | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 1         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | 0             | <u>G1</u>      |
| GRAY          | DARK<br>↑    | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 1          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | 0             | <u>G2</u>      |
| SCALE         | !            | :        | :   | :  | :    | :          | :   | :   | :   | :         | <u>:</u>  | :         | :          | :  | :  | :                  | :   | :  | :        | Ξ          | ÷         | :   | :        | :  | :        | :        | :  | :        | :  | <u>:</u>  | :             | <u>G3~</u>     |
| OF<br>GREEN   | <u> </u>     | :        | :   | :  | :    | :          | :   | :   | :   | <u>:</u>  | <u>:</u>  | :         | :          | :  | :  | :                  | :   | :  | :        | ÷          | ÷         | :   | :        | :  | :        | :        | :  | :        | :  | <u>:</u>  | ÷             | <u>G1020</u>   |
| GREEN         | LIGHT        | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 1         | 0          | 1  | 1  | 1                  | 1   | 1  | 1        | <u>1</u>   | 1         | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | 0         | 0             | <u>G1021</u>   |
|               |              | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 1          | 1  | 1  | 1                  | 1   | 1  | 1        | 1          | 1         | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | 0             | <u>G1022</u>   |
|               | GREEN        | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 1         | 1          | 1  | 1  | 1                  | 1   | 1  | 1        | <u>1</u>   | <u>1</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | 0         | <u>0</u>      | <u>G1023</u>   |
|               | BLACK        | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 0   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | 0             | <u>B0</u>      |
|               | DARK         | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | 0          | <u>0</u>  | 1   | 0        | 0  | 0        | 0        | 0  | 0        | 0  | <u>0</u>  | 0             | <u>B1</u>      |
| GRAY          | DARK<br>↑    | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | 0         | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | 0          | <u>0</u>  | 0   | 1        | 0  | 0        | 0        | 0  | 0        | 0  | 0         | <u>0</u>      | <u>B2</u>      |
| SCALE         |              | <u>:</u> | :   | :  | :    | :          | •   | :   | :   | :         | i         | :         | :          | :  | :  | :                  | :   | :  | :        | =          | Ξ         | :   | :        | :  | :        | :        | :  | :        | :  | :         | -             | <u>B3~</u>     |
| OF<br>BLUE    | $\downarrow$ | :        | :   | :  | :    | :          | :   | :   | :   | <u>:</u>  | <u>:</u>  | :         | :          | :  | :  | :                  | :   | :  | :        | <u>:</u>   | <u>:</u>  | :   | :        | :  | :        | :        | :  | :        | :  | <u>:</u>  | :             | B1020          |
|               | LIGHT        | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | 0         | 0         | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | 0          | 0         | 1   |          | 1  | 1        | 1        | 1  | 1        | 1  | 1         | 1             | B1021          |
|               | BLUE         | 0        | 0   | 0  | 0    | 0          | 0   | 0   | 0   | <u>0</u>  | <u>0</u>  | 0         | 0          | 0  | 0  | 0                  | 0   | 0  | 0        | <u>0</u>   | <u>0</u>  | 1   |          | 1  | 1        | 1        | 1  | 1        | 1  | 1<br>1    | <u>1</u><br>1 | B1022<br>B1023 |
|               | DLUL         | Ŭ        | ٦   | J  | J    | J          | J   | J   | J   | ⊻         | ⊻         | Ŭ         | J          | J  | J  | J                  | J   | J  | J        | ⊻          | ⊻         | Ľ   | Ľ        | L' | <u>'</u> | <u>'</u> |    | <u>'</u> | Ľ  | <u> </u>  |               | <u>D 1023</u>  |

Note 1) Definition of gray: Rn: Red gray, Gn: Green gray, Bn: Blue gray (n=gray level)

Note 2) Input signal: 0 =Low level voltage, 1=High level voltage

MODEL LTA550HJ15-X Doc. No Page 19 / 30



### 6. Interface timing

6.1 The parameters of timing (DE mode)

| SIGNAL                  | ITEM                        | SMBOL            | MIN. | TYP.  | MAX.  | Unit   | NOTE |
|-------------------------|-----------------------------|------------------|------|-------|-------|--------|------|
| Clock                   |                             | 1/T <sub>C</sub> | 130  | 148.5 | 160.0 | MHz    | -    |
| Hsync                   | Frequency                   | F <sub>H</sub>   | 53   | 67.5  | 70    | KHz    | -    |
| Vsync                   |                             | $F_v$            | 48   | 60    | 62    | Hz     | -    |
| Term for the vertical   | Active<br>display<br>period | $T_{VD}$         | _    | 1080  | _     | Lines  | -    |
| display                 | Total vertical              | T <sub>v</sub>   | 1095 | 1125  | 1160  | Lines  | -    |
| Term for the horizontal | Active<br>display<br>period | T <sub>HD</sub>  | _    | 1920  | -     | Clocks | -    |
| display                 | Total<br>Horizontal         | T <sub>H</sub>   | 2100 | 2200  | 2350  | clocks | -    |

Note) The signals of Hsync and Vsync must be inputted even though this T-con is operated at DE mode.

- (1) Test Point: TTL controls signal and CLK at LVDS Tx at the input terminal of system.
- (2) Internal VDD = 3.3V
- (3) The spread spectrum
  - The limit of spread spectrum's range of SET in which the LCD module is assembled should be within  $~\pm~3~\%$
  - Frequency for modulation :  $30 \text{KHz} \sim 150 \text{KHz}$

| Parameter         |                                    | Symbol                 |     | Value | 11. 14 | N. I |      |
|-------------------|------------------------------------|------------------------|-----|-------|--------|------|------|
|                   |                                    |                        | Min | Тур   | Max    | Unit | Note |
| CMOS<br>Interface | Input High<br>Threshold<br>Voltage | V <sub>IH</sub> (High) | 2.5 | _     | 3.3    | V    |      |
|                   | Input Low<br>Threshold<br>Voltage  | V <sub>IL</sub> (Low)  | 0   | _     | 0.5    | V    |      |

MODEL LTA550HJ15-X Doc. No Page 21 / 30

6.2 Timing diagrams of interface signal (Only DE mode)

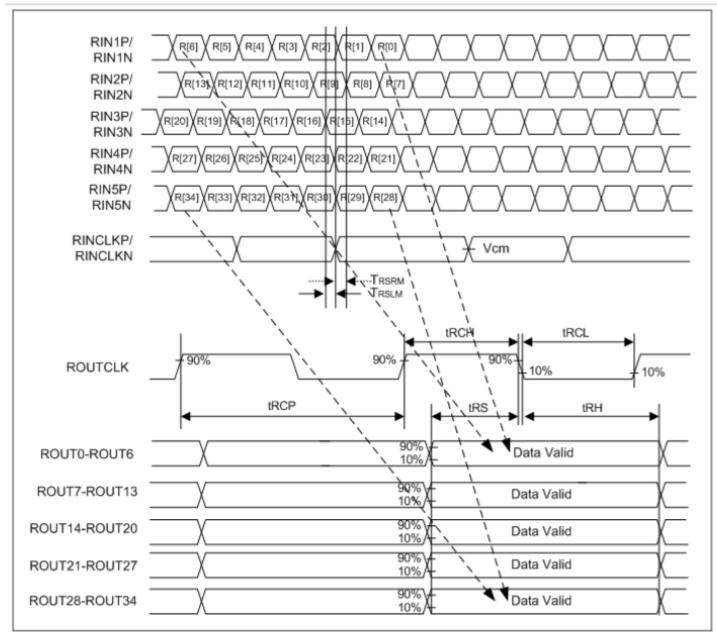



Figure 6. Timing diagram of LVDS input/output operation

MODEL LTA550HJ15-X Doc. No Page 22 / 30



#### 6.3 Characteristics of Input data of LVDS

(1) DC Specification

Table 8. LVDS receiver DC characteristics

| Characteristics            | Symbol          | Condition | Min. | Тур. | Max. | Unit |
|----------------------------|-----------------|-----------|------|------|------|------|
| IO Supply Voltage          | VDD33_LVDS      |           | 3.0  | 3.3  | 3.6  | V    |
| Core Supply Voltage        | VDD12_LVDS      |           | 1.1  | 1.2  | 1.3  | V    |
| Color Depth                |                 |           |      | 8/10 |      | bit  |
| Input Common Mode Voltage  | $V_{\text{CM}}$ |           | 0.3  |      | 1.8  | V    |
| Differential Input Voltage | $ V_{\rm ID} $  |           | 100  | 350  | 600  | mV   |

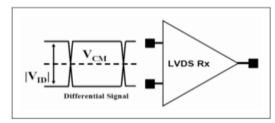



Figure 3. Definition of LVDS receiver DC characteristics

#### (2) AC Specification

Table 9. LVDS receiver AC characteristics

| Symbol            | Characteristics               | Min. | Typ. | Max. | Unit |
|-------------------|-------------------------------|------|------|------|------|
| F <sub>IN</sub>   | Input Clock Frequency (= 1/T) |      |      | 90   | MHz  |
| t <sub>RCP</sub>  | Output Clock period           |      |      | 40   | ns   |
| t <sub>RSRM</sub> | Input Data position           |      |      | +400 | ps   |
| $t_{RSLM}$        | Input Data position           | -400 |      |      | ps   |
| t <sub>RPLL</sub> | Lock Time                     |      |      | 100  | μsec |
| t <sub>duty</sub> | Rx Output Clock Duty Ratio    | 45   | 50   | 55   | %    |

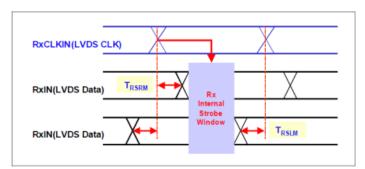



Figure 4. Timing diagram of LVDS receiver skew margin

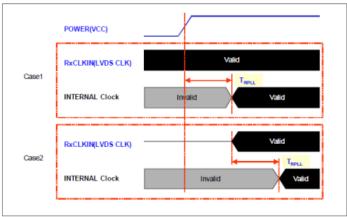
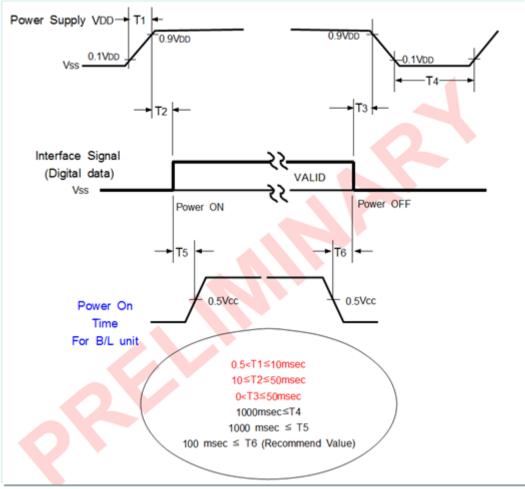



Figure 5. Timing diagram of LVDS receiver operation


MODEL LTA550HJ15-X Doc. No Page 23 / 30



#### 6.4 The sequence of power on and off

To prevent the LCD module from being latched up or being operated at the DC.

The order to turn the power on and off should be same as shown in the diagram below.



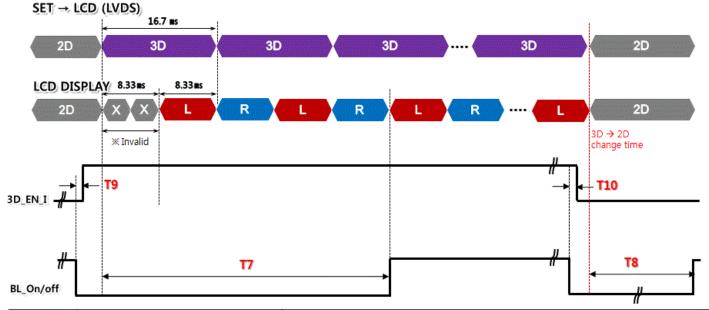
- T1: The time, during which the level of VDD is rising from 10% to 90%.
- T2: The change for the time, during which the VDD starts rising the level above 90% until the valid data of signal started coming in.
- T3 : The change for the time, during which the valid data of signal starts coming out until the 0.9VDD falling Level
- T4: The time, during which level VDD falls below 10% until the next VDD starts rising exceed 10%.
- T5: The time, during which the valid data starts coming in until the power of B/L on time exceed 50%.
- T6 : The time, during which the level of B/L's power falls below 50% until the valid data of signal starts coming out.
- The inputted V<sub>DD</sub> 's value for supply voltage, BLU, and signal to the external system of the module shall be computed in observance of the former mentioned value.
- The method to apply the voltage to the lamp within the range, which the LCD operates. When the back-light is turned on before the LCD is operated or the power of LCD is turned off before the back-light is turned off, the abnormal display on the screen may be shown momentarily.
- Please keep the level of input signal low or keep the level of impedance high when the V<sub>DD</sub> is off.
- The value shall be measured after the module has been fully discharged between the periods when the power is on and off during the T4.



#### 7 3D MODE GUIDE

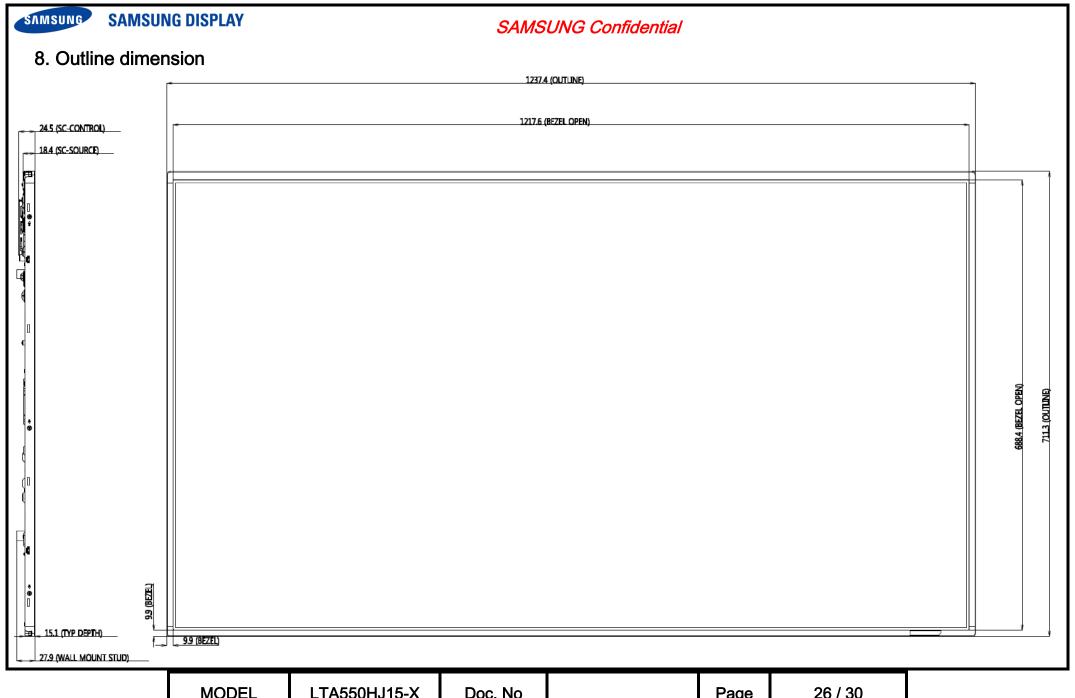
#### 7.1 3D INPUT SOURCE DEFINITION

For the 3D operating of the Model,


- 3D drive Source of the 60Hz line interleave or side/side or top/bottom method must be input.
- 3D operating cannot support 3D drive Source of another Format.

#### 7.2 INPUT PIN DEFINITION

| PIN Number | PIN                        | Definition                                                                                              |
|------------|----------------------------|---------------------------------------------------------------------------------------------------------|
| 26         | 3D_EN                      | If Voltage Level of 3D_EN signal is high(3.3V), 3D MODE operate                                         |
| 5          | 3D_SYNC_O                  | This Pin is L/R Sync output signal of Shutter Glass                                                     |
| 4, 6       | 3D_Format 0<br>3D_Format 1 | 3D input format selection  FORMATI[1:0]: 2'b0x = Line interleave, 2'b10 = side/side  2'b11 = top/bottom |


#### 7.3 3D TIMING (Recommendation)

#### <3D signal Timing (Recommendation)>



| Timing    | Spec (ms) |     |     | Description                                                                       |  |
|-----------|-----------|-----|-----|-----------------------------------------------------------------------------------|--|
|           | Min.      | Typ | Max | × 1 frame (=8.33ms / 120Hz)                                                       |  |
| <b>T7</b> | ≥ 42      |     |     | Backlight should be on after 5 frame when 3D signal input from SET                |  |
| Т8        | ≥ 34      |     |     | Backlight should be off after 4 frame when 3D signal change to 2D signal from SET |  |
| Т9        | ≥0        |     |     |                                                                                   |  |
| T10       | ≥0        |     |     |                                                                                   |  |
| FORMAT    |           |     |     | if you need to change format data, Backlight should be off.                       |  |

MODEL LTA550HJ15-X Doc. No Page 25 / 30



LTA550HJ15-X **MODEL** Doc. No Page 26 / 30





### 9. Reliability test

| Items to be evaluated                                                     | Condition for the evaluation                                                                                                                                                                                                                                                                                                                                 | Quantity  | Standard for evaluation            |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------|
|                                                                           | 50 ℃                                                                                                                                                                                                                                                                                                                                                         | 4         |                                    |
| HTOL                                                                      | 60 ℃                                                                                                                                                                                                                                                                                                                                                         | 8         |                                    |
| LTOL                                                                      | <b>−</b> 5℃                                                                                                                                                                                                                                                                                                                                                  | 4         |                                    |
| ТНВ                                                                       | Evaluate the whole cell in the panel when examining the panel, which is over 32" at 50°C and 90 %RH.*                                                                                                                                                                                                                                                        | 10        |                                    |
| Margin on the operation of ASG at a low temperature. (Optional)           | Check the temperature when the noise occurs under the conditions, the max. frequency and between the -40°C and 25°C.                                                                                                                                                                                                                                         | Each cell | Applied to products with ASG only. |
| Margin on the<br>operation of ASG at a<br>high<br>temperature. (Optional) | Examine the panel operated under the conditions, the min. frequency and the 60°C for 96hrs.                                                                                                                                                                                                                                                                  | Each cell | Applied to products with ASG only. |
| Residual image at a<br>normal temp.                                       | Repeat the exam. to examine the mosaic pattern(9"*10") of panel at 25 $^{\circ}$ C for 12hrs followed by the exam for the rolling pattern at 25 $^{\circ}$ C for 12hrs three times.                                                                                                                                                                          | 8         |                                    |
| New decompression                                                         | Examine the panel, which is in the temp. range of - $40^{\circ}$ C to $50^{\circ}$ C between the 0m(0ft) and 13,700m(45,000ft) for 72 and half hrs.                                                                                                                                                                                                          | 4         |                                    |
| нтѕ                                                                       | Store at the 70 ℃.                                                                                                                                                                                                                                                                                                                                           | 4         |                                    |
| LTS                                                                       | Store at the −25 °C.                                                                                                                                                                                                                                                                                                                                         | 4         |                                    |
| Evaluation for the panel on the <b>pallet</b>                             | Dropping(20cm)->Set the temp. and humidity(-30°C~60°C / 40°C~90%RH)->Pressurizing-> Vibrating(Vibrate the panel within the frequency range between 5hz and 200hz for 2hrs at the sine wave of 1.05 g.)->Dropping(20cm)                                                                                                                                       | 1 Pallet  |                                    |
| Vibration                                                                 | Vibrate the panel within the frequency range between 10hz and 300hz for 10min at the sine wave at 1.5G Vibrate the panel in the direction of X, Y, and Z axis for 30min.                                                                                                                                                                                     | 3         |                                    |
| Shock                                                                     | If the screen size of panel is below 40", drop the panel with applying the 50G one time toward the direction of $\pm$ X, Y, and Z axis from the spot where the panel is placed respectively for 11msec. ( $\pm$ XYZ), If the screen size is 46", apply the 40G for $\pm$ X and Y axis or the 30G for $\pm$ Z. If the screen size is over 52", apply the 30G. | 3         |                                    |
| TSS                                                                       | Test the TV between the -20°C and 65°C 440 times. Test the DID between the -20°C and 65°C 220 times.                                                                                                                                                                                                                                                         | 4         |                                    |
| WHTS                                                                      | Store the module at 60 $^\circ\mathrm{C}$ and 75 $^\circ\mathrm{RH}.$                                                                                                                                                                                                                                                                                        | 4         |                                    |
| TS                                                                        | Execute the exam for TV at -20°C for 30 min. and at 60°C for 30min 100 times. / Execute the exam for the DID at -20°C for 30 min. and at 60°C for 30min 200 times.                                                                                                                                                                                           | 4         |                                    |
| Dust                                                                      | Execute the test to observe the status of falling dust for 5 min. after spraying the dust in the air for 5 sec. at a normal temperature and normal humidity for 5 hrs.                                                                                                                                                                                       | 2         |                                    |

**MODEL** LTA550HJ15-X Doc. No Page 27 / 30

|                         | Turn the panel on and off at the interval of 10 min.<br>Execute the test for the DID for 10hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                       |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------|
| Twist                   | Examine the 52"-sized module by pushing the one point of panel by 10 degrees forward and backward with fixing other three points for 0.9s 500 times respectively., Examine the 46"-sized module by pushing the one point of panel by 10 degrees forward and backward with fixing other three points for 0.7s 500 times respectively. Examine the 40"-sized module by pushing the one point of panel by 20 degrees forward and backward with fixing other three points for 0.85s 250 times respectively. Examine the 32"-sized module by pushing the one point of panel by 20 degrees forward and backward with fixing other three points for 0.7s 250 times respectively. Examine the 26"-sized module by pushing the one point of panel by 20 degrees forward and backward with fixing other three points for 0.6s 250 times respectively. | 4 |                                                       |
| Noise                   | Noise occurred when the frame of instrument is expanded as the operating module emits the heat.: Max 50dB (Below the 10 times when the level of sound is over 36dB.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 |                                                       |
| Noise                   | Noise from machine : Under the 23dB on average.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 |                                                       |
| The new compound stress | Repeat the exam, which stresses the panel under the temp. range of -20°C to 60°C and the humidity range of 0%RH to 90%RH two times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 |                                                       |
|                         | Shoot the ESD with the measuring gun, which is operated at ±10 kV to the 210 points with contacting the panel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 |                                                       |
| ESD                     | Shoot the ESD with the measuring gun, which is operated at $\pm 20~\mathrm{kV}$ to the 210 points without contacting the panel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 |                                                       |
|                         | Input pin for inverter and converter (optional): Apply $\pm$ 15kV three times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 | Only for the attached part of inverter and converter. |

#### [ Criteria on evaluation]

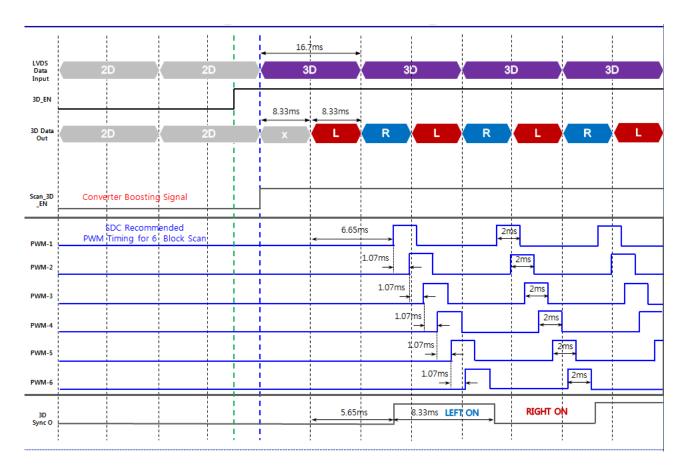
The components of product, which may affect to the function of display shall not be changed when the display quality test is executed under the normal operating condition.

- \* HTOL/ LTOL: The operating at the high and low temperature\*
- \* THB : The slant of temperature and humidity
- \* HTS/LTS: The storage at the high and low temperature
- \* WHTS: The storage condition at the high temperature with the high humidity

MODEL LTA550HJ15-X Doc. No Page 28 / 30



## 10. Special precautions


|     | Operal pro                                |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Component                                 | Expected cause                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1   | Upholding part for panel                  | Prevent the panel from breaking by assigning gaps between the panel and the upholding part for panel on the drawing for the upholding part for panel.  Refer to the (a), (b), (c) of 3-1 for the design of BLU.                                                                                                                                                                                                                      |
| 2   | The shape of the upholding part for panel | Design the upholding part for panel to fit to the panel appropriately when designing the BLU since the shape of the upholding part for panel may damage the panel.  Refer to the (a), (b), (c) of 3-1 for the design of BLU.                                                                                                                                                                                                         |
| 3   | The edge of upholding part for panel      | Design the edge of panel to have a sufficient space with the upholding part for panel when designing the BLU since the edge of the upholding part for panel may damage the panel when assembling the panel and BLU. Refer to the (a), (b), (c) of 3-1 for the design of BLU.                                                                                                                                                         |
| 4   | Upholding part for panel                  | Place the upholding part for the panel in order for the shape of mold, which contacts with the panel not to interfere with the area of panel.  Refer to the (a), (b), (c) of 3-1 for the design of BLU.                                                                                                                                                                                                                              |
| 5   | Drive IC                                  | Design the BLU in order for the COF not to contain the lead crack resulted from the tensioned COF created when the product is twisted if the space between the D-IC COF and the middle mold isn't sufficient.  Refer to the (a), (b), (c),(d),(e),(f), and (g)of 3-2 for the design of BLU.                                                                                                                                          |
| 6   | Drive IC                                  | Design the BLU in order for the product not to contain the lead crack resulted from the tensioned COF caused under the condition, which the product is twisted by fixing the source PCB.  Refer to the (a), (b), (c),(d),(e),(f), and (g)of 3-2 for the design of BLU.                                                                                                                                                               |
| 7   | IC<br>component                           | The temperature of each part of product suggested by our company and the second vendor shall meet the standard of temperature, which is recommended not to be exceeded by our company when the product is affected under the various temperature ranges.  Apply over 1mm long separation distance stated in the safety standard between the electric part and each conductor. (Apply the rated separation distance when insulating.) |
| 8   | Thermal pad                               | Apply the thermal pad in a designated size to the product as a measure to lower the temperature of heat in order for each part to use the rated temperature.                                                                                                                                                                                                                                                                         |
| 9   | POL                                       | The surrounding area of the POL shall be treated with an electrification treatment since the external ESD may cause a phenomenon, which the POL is coming off.  In addition, the GND portion of source PBA shall be grounded.                                                                                                                                                                                                        |
| 10  | РВА                                       | The GND portion of each PBA shall be contacted with the GND portion of BLU.  Refer to the (a) and (b) of 3-3 for the design of BLU.                                                                                                                                                                                                                                                                                                  |
| 11  | Circuit                                   | The standardized approval from the client is required since the EMI is executed by a client.  Our company can only measure the reference since the client measures the BLU.                                                                                                                                                                                                                                                          |
| 12  | The height of component                   | Design the BLU with considering the maximum height of parts, which our company suggests.                                                                                                                                                                                                                                                                                                                                             |
| 13  | Between the FFC and the C-PBA             | Design the instrument with considering the length between the FFC and the control PBA. (The marginal minimum length of 5mm or 8mm is required.)                                                                                                                                                                                                                                                                                      |
| 14  | Panel                                     | The surface temperature of panel shall be maintained within 0°C and 45°C when the external ambient temperature is at 25°C. (Design the BLU with considering the increase of the temperature in the panel by the LED, CCFL, and etc.)                                                                                                                                                                                                 |
| 15  | Aging                                     | Recommend to age for over 1 hour at least in the state, which the product is driving initially to stabilize the characteristic of the initial TFT.                                                                                                                                                                                                                                                                                   |
| 16  | The attachment of gasket                  | The additional confirmation by our company is required If the attachment of gasket to the S-PBA of our company is required.(To fix the S-PBA or the EMI)                                                                                                                                                                                                                                                                             |
| 17  | Drive IC                                  | Design the top chassis and the driver IC to be contacted by placing the shape of emboss inside the top chassis as a measure to prevent the driver IC from heating. The size of emboss shall be designed in larger size than the size of IC inside the film of the driver IC.  Refer to the (a), (b), (c),(d),(e),(f), and (g)of 3-2 for the design of BLU.                                                                           |
| 18  | The prohibited bandwidth                  | Design the BLU in order for the BLU not to interfere with the area, where the control PBA and the source PBA are located densely according to the drawing for the BLU from our company.                                                                                                                                                                                                                                              |
| 19  | S-PBA                                     | The material, which contacts with the bottom side of S-PBA which has a pattern shall be non-conducting material or shall be insulated.                                                                                                                                                                                                                                                                                               |

LTA550HJ15-X Doc. No **MODEL** Page 29 / 30



#### 11. APPENDIX

#### <3D Mode Scanning Timing (Recommendation)>



MODEL LTA550HJ15-X Doc. No Page 30 / 30