

Current Transducer LTC 1000-SFC

 $I_{PN} = 1000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P Î _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ 24 V Max overload not measurable Measuring resistance		1000 0 \pm 2 10 / 10 $\mathbf{R}_{M \text{ min}}$		kA/ms
	with ± 15 V	@ $\pm 1000 A_{max}$	0	15	Ω
		@ ± 1200 A max	0	7	Ω
	with ± 24 V	@ ± 1000 A _{max}	0	50	Ω
		@ $\pm 2000 A_{max}$	0	7	Ω
I _{SN}	Secondary nominal r.m.s. current		200		m A
K _N	Conversion ratio		1:500	0	
v c	Supply voltage (± 5 %)		± 15	24	V
I _C	Current consumption		< 30 (@	±24V)-	+I _s mA
l _C V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		13.4 ²⁾		kV
m			1.5 ³⁾		kV
\mathbf{V}_{e}	R.m.s. voltage for partial discharge extinction		> 2.8 4)		kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ I _{PN} , T _A = 25°C		$< \pm 0.4$	%
e _	@ \mathbf{I}_{PN} , \mathbf{T}_{A} = - 40°C Linearity	+ 85°C	< ± 1 < 0.1	% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	· 40°C + 85°C	Max ± 0.5 ± 1	m A m A
t _r di/dt f	Response time ⁵⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		<1 > 100 DC 100	μs A/μs kHz

General data

$T_{\scriptscriptstyle \Delta}$	Ambient operating temperature	- 40 + 85	°C	
T _s	Ambient storage temperature	- 45 + 90	°C	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85°C	44	Ω	
m	Mass	800	g	
	Standards	EN50155 (01.1	EN50155 (01.12.20)	

Notes: 1) With a di/dt of > $5 \text{ A/}\mu\text{s}$

2) Between primary and secondary + shield

3) Between secondary and shield

4) Test carried out with a busbar Ø 40 mm centred in the through-hole

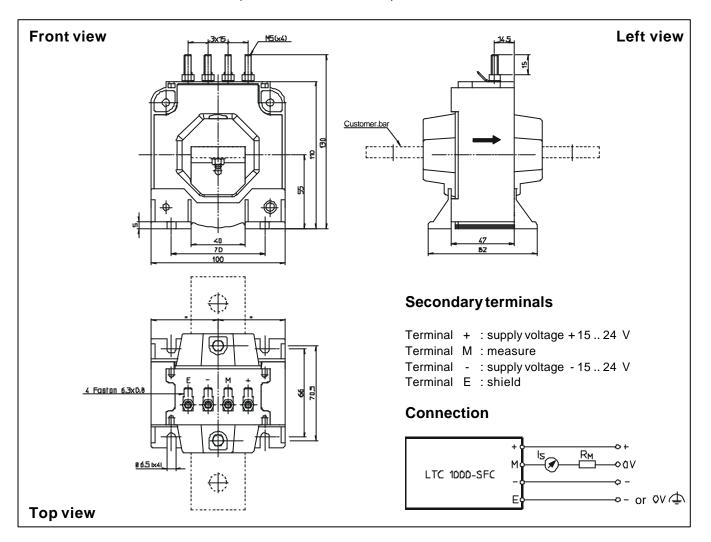
5) With a di/dt of 100 A/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Transducer delivered with feet and clamps
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

030528/0

Dimensions LTC 1000-SFC (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fixing the transducer

Fastening torque max

- Primary through-hole
- Connection of secondary Fastening torque max
- ± 1 mm
- 4 slots \varnothing 6.5 mm
- 4 screws M6
- 5 Nm
- Ø 42 mm

M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft. Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.