Current Transducer LTC 600-S

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).


Electrical data Primary nominal r.m.s. current 500 I_{PN} A 0 .. ± 1500 Ι_Ρ Î_Ρ Primary current, measuring range @ 24 V A Max overload not measurable 10/10 kA/ms R Measuring resistance ${\bf R}_{\rm M\,min}$ $\mathbf{R}_{\mathrm{Mmax}}$ @ ± 500 A _{max} 70 Ω with ± 15 V 0 @ ± 1200 A _{max} 0 5 Ω @ ± 500 A _{max} 150 with ± 24 V 0 Ω @ ± 1500 A max 0 20 Ω 100 mΑ Secondary nominal r.m.s. current I_{SN} \mathbf{K}_{N} 1:5000 Conversion ratio \mathbf{V}_{c} ± 15 .. 24 V Supply voltage $(\pm 5\%)$ Current consumption <30(@±24V)+1, mA I_c Accuracy - Dynamic performance data Overall accuracy @ $\mathbf{I}_{_{\mathrm{PN}}}$, $\mathbf{T}_{_{\mathrm{A}}}$ = 25°C < ± 0.7 % X_G @ I_{PN} , $T_{A} = -40^{\circ}C... + 85^{\circ}C$ < ± 1.6 % e Linearity < 0.1 %

ΨL	Emounty			70
			Max	
I _o	Offset current @ $I_P = 0$, $T_A = 25^{\circ}C$		± 0.5	mA
I _{OT}	Thermal drift of ${f I}_{ m o}$	- 40°C + 85°C	± 1	mA
t,	Response time $^{\scriptscriptstyle (1)}$ @ 90 % of ${f I}_{_{\sf PN}}$		< 1	μs
di/dt	di/dt accurately followed		> 100	A/µs
f	Frequency bandwidth (- 1 dB)		DC 100	kHz

General data

T	Ambient operating temperature	- 40 + 85	°C
T	Ambient storage temperature	- 45 + 90	°C
Ř _s	Secondary coil resistance @ $T_A = 85^{\circ}C$	44	Ω
m	Mass	750	g
	Standards	EN 50155 : 2001	

$I_{PN} = 500 \text{ A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application Domain

Traction

Note: ¹⁾ With a di/dt of 100 A/ μ s.

060613/3

Page 1/4

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

Current Transducer LTC 600-S

lso	Isolation characteristics				
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	13.4 ²⁾ 1.5 ³⁾	kV kV		
V _e	R.m.s. voltage for partial discharge extinction	> 2.8	kV		
		Min			
dCp	Creepage distance	66.70	mm		
dCl	Clearance distance	45.90	mm		
СТІ	Comparative Tracking Index (Group I)	600			

Notes : ²⁾ Between primary and secondary + shield

³⁾ Between secondary and shield.

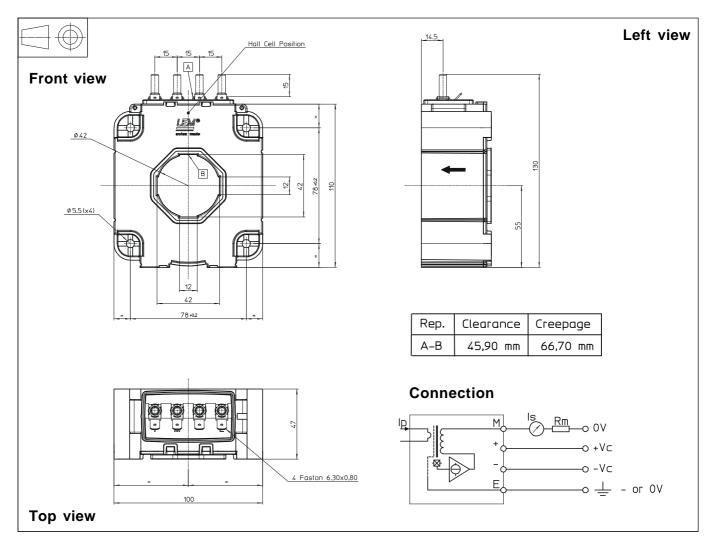
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

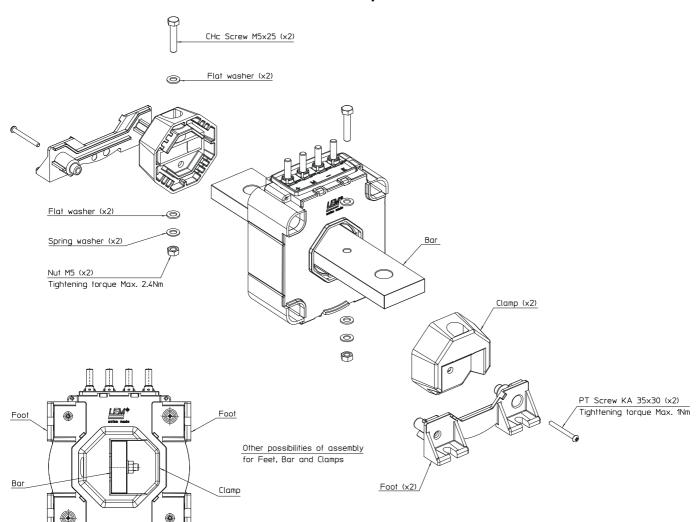

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LTC 600-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics


- General tolerance
- Fixing the transducer
- Fastening torque max
- Primary through-hole
- Connection of secondary Fastening torque max
- ± 1 mm
- 4 holes \varnothing 5.5 mm
- 4 screws M5
- 3.7 Nm
- \varnothing 42 mm
- M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft.
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

Page 3/4

LTC 600-S / Mechanical adaptation accessories

Line	Accessories	References
1	Busbar KIT _* (busbar : 210 x 40 x 12 mm)	93.34.61.100.0
2	Busbar KIT * (busbar : 185 x 40 x 8 mm)	93.34.61.102.0
3	Busbar KIT * (busbar : 285 x 36 x 12 mm)	93.34.61.103.0
4	Busbar KIT * (busbar : 260 x 36 x12 mm)	93.34.61.104.0
5	Busbar KIT * (busbar : 195 x 36 x 10 mm)	93.34.61.105.0
6	Busbar KIT $*$ (busbar : 36 mm \emptyset x 325 mm)	93.34.61.106.0
7	Busbar KIT* (busbar : 185 x 40 x 10 mm)	93.34.61.107.0
8	Busbar KIT * (busbar : 180 x 40 x 12 mm)	93.34.61.108.0
9	Busbar Fastening Kit (M5 x 25)**dedicated to busbars from lines 1 to 5 and lines 7, 8	93.34.61.200.0
10	Busbar Fastening Kit (M5 X 40)** dedicated	93.34.61.201.0
	to busbar from line 6	
11	Feet fixing Kit ***	93.34.63.100.0

- including all the necessary for its mounting such as screws, washers, nuts, 2 clamps, busbar.
- ** as with * but without the busbar.
- *** including screws and 2 feet.

*

R.m.s. voltage value for partial discharge extinction depends on the busbar. Refer to the datasheet of the corresponding product.

060613/3 Page 4/4

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.