Current Transducer LTC 600-T

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

CE

I _{PN} I _P Î _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ 24 V Max overload not measurable Measuring resistance		500 0 ± 150 10 / 10 R_{M min} R	A 0 A kA/ms
	with \pm 15 V with \pm 24 V	@ $\pm 500 \text{ A}_{max}$ @ $\pm 1200 \text{ A}_{max}$ @ $\pm 500 \text{ A}_{max}$ @ $\pm 1500 \text{ A}_{max}$	0 7 0 0 1	70 Ω 5 Ω 50 Ω 20 Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		100 1 : 5000 ± 15 2 ⁴ < 30 (@±2 ⁴ 13.4 ¹⁾ 1.5 ²)	
V _e	R.m.s. voltage for partial discharge extinction		> 2.8	k V
Accuracy - Dynamic performance data				
Х _G е	Overall accuracy @ I _{PN} , @ I _{PN} , Linearity error	$\mathbf{T}_{A} = 25^{\circ}\text{C}$ $\mathbf{T}_{A} = -40^{\circ}\text{C}+85^{\circ}\text{C}$	< ± 0.7 < ± 1.6 < 0.1	% %
I _o I _{ot}	Offset current @ $\mathbf{I}_{p} = 0$, \mathbf{T}_{p} Thermal drift of \mathbf{I}_{o}	₂ = 25°C - 40°C + 85°C	Max ± 0.5 ± 1	m A m A
t _, di/dt f	Response time ³⁾ @ 90 % di/dt accurately followed Frequency bandwidth (- 1		< 1 > 100 DC 100	μs A/μs kHz
General data				
T _A T _S R _S m	Ambient operating temper Ambient storage tempera Secondary coil resistanc Mass Standards	ature	- 40 + 8 - 45 + 9 44 1270 EN 50155	

Notes : 1) Between primary and secondary + shield

²⁾ Between secondary and shield

 $^{3)}$ With a di/dt of 100 A/µs.

Closed loop (compensation

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Railway equipment.

Advantages

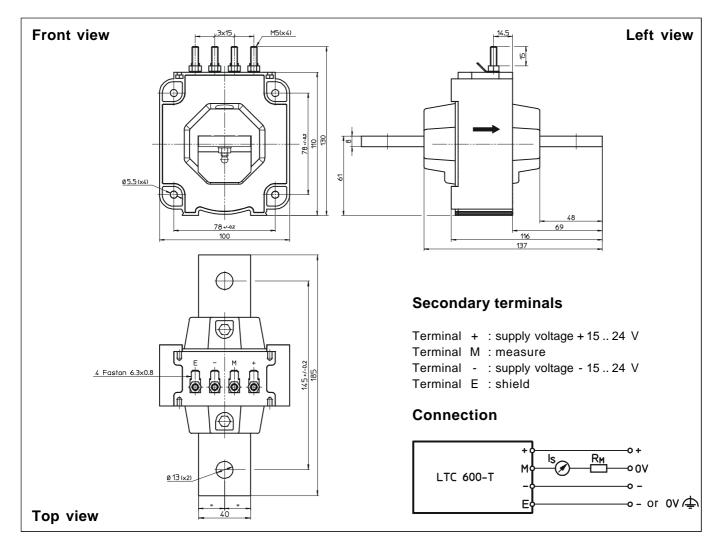
I_{PN}

=

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


040430/2

LEM

500 A

ions

Dimensions LTC 600-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fixing the transducer

Recommended fastening torque

• Connection of secondary Recommended fastening torque ± 1 mm 2 holes Ø 13 mm or by the primary bar 2 steel screws M12 24.5 Nm M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft. Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.