

输入30V耐压具有OVP功能1.0A线性锂电池充电芯片SOT23-5L封装

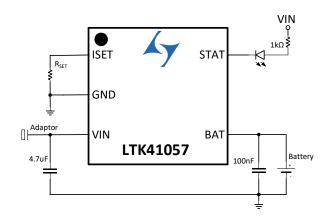
特征

- 完整的单节锂离子或聚合物电池充电器
- 输入电源端口最高耐压可达30V
- 输入电源电压6.8V时芯片0VP
- 无需外接二极管做反向阻断
- 高达1000mA的可编程充电电流
- 恒定电流/恒定电压模式,有温度自适应可实现充电速率最大化
- 精度达到±1%的预设充电电压
- 自动再充电
- 充电状态双输出显示
- C/10充电终止
- 2.9V涓流充电
- 电池温度监测功能
- BAT反接保护
- 采用5引脚S0T23封装

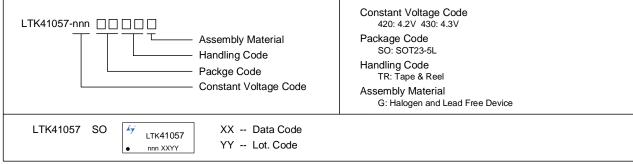
应 用

- 电子烟
- PAD
- 数码相机
- GPS便携式设备
- 各种充电器

说明


LTK41057是一款输入耐压高达30V,集成过压保护 (0VP),可达1A充电电流的单节锂离子电池充电器,其 采用恒定电流和恒定电压结合的充电策略,同时具有温度 自适应,充电电压自适应等功能。当输入电压超过0VP阈值(通常为6.8V)时,充电器将关闭,以防止过高的电压对电池伤害。LTK41057采用了内部衬底控制,有效防止电池能量倒灌的同时,不需要外部隔离二极管。

充电电流和充电终止(EOC)电流是可编程的外部电阻 设置。当电池电压低于通常的2.9V时,充电器通常以20% 的编程充电电流预充电池。当充电器进入快速充电阶段, STAT引脚提供开漏极输出,只是充电进行中。内部自动温 度适应功能保护充电器免受任何热故障的影响。


充电指示引脚(STAT)允许简单的接口到微处理器或 LED。当未连接适配器或禁用时,充电器从电池中吸取的 漏电流小于1uA。

LTK41057采用绿色S0T23-5L封装,额定工作温度范围为-40℃至+85℃。

典型应用图

封装订购信息

注: LTKCHIP 保留作出更改以改善可靠性或可制造性,并建议客户在下订单前参考最新版本的相关资料。

管脚顶视图

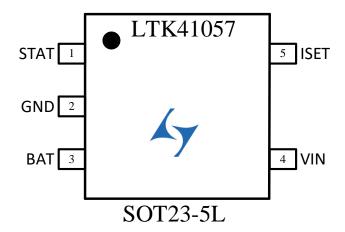


图1 LTK41057管脚顶视图

管脚定义

编号	管脚名	管脚说明			
1	STAT	开漏级输出,指示电池充电进行中;			
2	GND	芯片地。			
3	BAT	电池正端。外接0.1uF电容,尽量靠近芯片引脚。			
4	充电输入电压端。外接1uF电容,尽量靠近引脚;为了更安全 热插拔,建议串联0.7欧姆电阻后,再进芯片;				
5	ISET	恒流充电电流设置端。外接电阻设置充电电流。			

模块功能框图

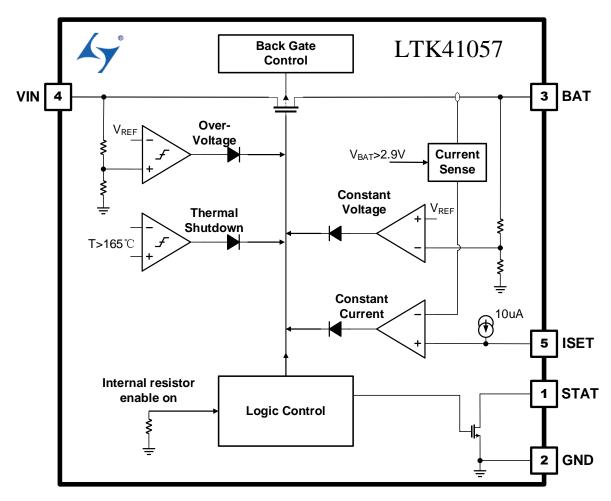


图 2 LTK41057模块功能框图

极限条件 (注1)

Symbol	Parameter	Rating	Unit	
$V_{\rm IN}$	输入电压 (VIN to GND)	-0.3 to 30V		
V _{BAT}	电池引脚电压	-0.3 to 9V	V	
1/0	ISET, STAT	-0.3 to 6V		
I _{CHG}	最大充电电流		1.2	A
P_d	最大功率损耗	SOT23-5L	300	mW
PTR	封装热阻 JA	S0T23-5L	280	°C/W
T_{J}	结温范围	-40 to +150		
$T_{ ext{STG}}$	存储温度范围		-40 to +150	o.C
$T_{ ext{SDR}}$	最大焊接温度	260		

注1. 绝对最大额定值是指设备的寿命可能收到损坏的值,在绝对最大额定条件下有可能会引起芯片的永久性损伤

推荐工作条件

Symbol	Parameter	Min.	Max.	Unit
$V_{\scriptscriptstyle DD}$	输入电压	4. 5	7.0	V
T_{A}	环境温度范围	-40	85	°C
T_{J}	结温范围	-40	125	

电气特性

 V_{IN} =5.0V, V_{BAT} =3.7V, T_{A} = 25°C

符号	参 数	测试条件	最小	典型	最大	单位
$V_{\text{DD_MAX}}$	最高输入电压				30	V
$V_{ ext{DD}}$	工作电压			6.8	7	V
$I_{ ext{CHG}}$	恒流充电电流范围		100		1000	mA
V	欠压锁定	V _{IN} 升高		3. 0		- V
$V_{\scriptscriptstyle UVLO}$		V _{IN} 降低		2.8		
V	过压保护阈值	V _{IN} 升高	6. 10	6.80	7. 26	V
$V_{\scriptscriptstyle OVP}$		V _{IN} 降低		6.60		
$I_{ ext{STDBY}}$	电池端引脚电流	充电使能关闭或者浮空			1	uA
I_{SHDN}	输入静态电流	充电使能关闭		200		uA
$I_{ ext{QVIN}}$	输入关闭电流	充电使能开启		270		uA
$V_{\scriptscriptstyle CV}$	恒压充电电压值	ICHG=20mA	4. 152	4. 2	4. 248	V
$I_{\scriptscriptstyle SET}$	ISET引脚输出电流			10		uA
$I_{\scriptscriptstyle TRK}$	预充电电流	V _{ISET} =0. 5V		100		mA
I_{TERM}	终止电流检测	V _{ISET} =0. 5V		50		mA
V	预充电切换阈值	V _{BAT} 升高		2.8		V
$V_{ t FC}$		V _{BAT} 降低		2.6		V
V_{RECHG}	重新充电阈值	V _{BAT} 降低		4.05		V
I_{SINK}	充电指示灯电流能力			10		mA

应用说明

LTK41057 是一款输入耐压高达 30V,集成过压保护(OVP),可达 1A 充电电流的单节锂离子电池充电器,其采用恒定电流和恒定电压结合的充电策略,同时具有温度自适应,充电电压自适应等功能。当输入电压超过 0VP 阈值(通常为 6.8V)时,充电器将关闭,以防止过高的电压对电池伤害。LTK41057 采用了内部衬底控制,有效防止电池能量倒灌的同时,不需要外部隔离二极管。

充电周期

当 VIN 电压接入后,芯片判断电压高于 UVLO 阈值,LTK41057 启动充电周期。芯片首先从 ISET 引脚输出一个固定电流,根据外接 1%精度的电阻阻值,设定恒流充电值。此时,如果 VBAT 引脚电压小于 2.9V,则充电器进入涓流充电模式。在这种模式下,充电电流会降低到设定值的近 20%;当 VBAT 引脚电压上升到 2.9V以上时,充电器切换到恒流模式,充电电流恢复到设定值。当达到电池电压解接近 4.2V 时,LTK41057 进入恒压模式,充电电流开始减小,直至降至预设值的 10%,结束此充电周期。

充电电流的设定

恒流充电电流可通过设置外置精密电阻的阻值来设定。ISET 引脚源固定输出 10uA 电流,在外置电阻上产生压降,该电压对应的充电电流约为 1 欧姆等效电阻,即 1V 电压对应 1A 充电电流。ISET 外电阻的电阻值选择如下:

 $R_{SET} = I_{CHG} * 1\Omega/10uA$

充电终止的设定

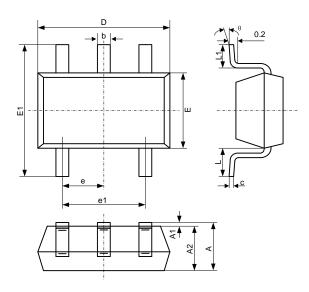
LTK41057 在充电过程中一直监测 ISET 管脚电压。当电池电压接近恒压充电阈值,且充电电流降至设定值的 10%时,充电器判断电池充满,然后终止充电周期。充电电流停止, LTK41057 进入待机模式,输入电源电流降至 200uA。

充电状态指示(STAT 和 STDBY)

充电状态有两种不同的状态,一种是充电进行中,另一种是充电满电。STAT 引脚在充电进行中状态下拉低,在充电满充状态下变为高阻抗。

充电温度自适应

内置温度监测,对充电器芯片温度进行监测。确保一旦芯片温度升高,且持续升高,可降低设定充电电流值,从而防止温度进一步升高,对电池充电造成安全隐患,确保充电过程安全运行。


Automatic Recharge

在当前充电周期结束后,LTK41057 持续监测 VBAT 引脚电压,当电池电压降到 4.05V 以下时开始新的充电周期,从而保持电池充满电状态。

封装信息

S0T23-5L

SYMBOL	DIMENSION IN MILLIMETERS		DIMENSION IN INCHES		
	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 TYP		0.037 TYP		
e1	1.800	2.000	0.071	0.079	
L	0.700 REF		0.028 REF		
L1	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	