

ELECTRONICS

Approval

TO : Fujitsu DATE : June. 24, 2011

SAMSUNG TFT-LCD MODEL NO. : LTN101AL01-F01

NOTE : Extension code [-F01] → LTN101AL01-F Surface type [Glare]

Any Modification of Spec is not allowed without SEC' permission.

Rev.No

APPROVED BY :

Juho Park

PREPARED BY : Application Engineering group, LCD Sales & Marketing Team

Application engineering part, Mobile Division Samsung Electronics Co., Ltd.

Samsung Confidential

Doc.No.	
D 0010.	

Page

CONTENTS

Revision History	(3)
General Description	
 Absolute Maximum Ratings Absolute Ratings of environment Electrical Absolute Ratings 	
2. Optical Characteristics	(8)
 3. Electrical Characteristics 3.1 TFT LCD Module 3.2 Backlight Unit 3.3 LED Driver 	(11)
 4. Block Diagram 4.1 TFT LCD Module 4.2 LED Placement Structure 	(14)
 Input Terminal Pin Assignment Input Signal & Power LVDS Interface Timing Diagrams of LVDS For Transmitting Input Signals, Basic Display Colors and Gray Pixel format 	• Scale of Each Color.
 6. Interface Timing 6.1 Timing Parameters 6.2 Timing Diagrams of interface Signal 6.3 Power ON/OFF Sequence 	(21)
7. Outline Dimension	
8. Packing	
9. Markings & Others	
10. General Precautions	(29)
Samsung Confidential	

REVISION HISTORY

Approval

Date	Revision No.	Page	Summary
Oct. 15, 2010	P00	All	. The preliminary specification of LTN101AL01-X01 model was issued first.
Nov. 12. 2010	P01	p. 14	LED placement structure was removed.
Nov. 15. 2010	P02	р. 6 р. 13	Weight was changed from 185g max to 165g max. LED string structure was changed from VF X 9LEDs to VF x 6LEDs
Nov. 18. 2010	P03	p. 7 p. 14 p. 15 p.17~ 19 p. 22 p. 26 p. 27 p. 28	 BLU driving voltage was updated. LED placement structure was updated. User connector was changed from I-PEX 35pin to DDK 45pin. Input connector was changed from I-PEX 40pin to DDK 45pin. LVDS characteristics was updated as 8bit base. Power sequence and Timing parameters were updated as w/o LED Driver. Acceptance number of pilling and carton size were updated. Packing material, Markings and others were updated.
Dec. 1. 2010	P04	p. 5 p. 11 p. 13 p. 15 ~16	Typo was corrected. [Pixel pitch 0.1695(H) x 0.0.1695(V) → 0.1695(H) x 0.1695(V) LVDS interface voltage was changed from 3.3V to 3.6V. Current of power supply were changed as PLS type. [AS-IS] White, Mosaic, V.stripe (max pattern) [TO-CE] White (max pattern), black, mosaic Voltage of power supply was updated. LED driver specification was removed due to without LED driver. Pin assignment was updated.
Dec. 7. 2010	P05	p. 7 p. 11 p. 13	Vcc was changed from 3.3V to 3.6V Vdd was changed from 2.5V to 3.6V VBLU was removed. Min. & Max. of main frequency was updated. LED array voltage was changed from 26.1V to 17.4V.
Dec. 23. 2010	P06	p. 6 p. 7 p. 15~ 16	Weight was changed from Max. 165g to Typ. 145g & Max. 155g. Vcc and Vdd were changed from 3.6V to 3.3V. Input terminal PIN assignment was updated.
Dec. 27. 2010 Samsung Co	P07 nfidential	p. 5 p. 11	The comment 'Onboard EEDID chip ' was removed. 3.6V LVDS Interface was changed to 3.3V LVDS Interface. Voltage of Power Supply was changed from 3.6V to 3.3V. The pictures of current of power supply was updated.

Doc.No. LTN101AL01-F01 Rev.No 04-A00-S-110624 Page 3 /	30
--	----

REVISION HISTORY

Approval

Date	Revision No.	Page		Summary		
Dec. 27. 201	0 P07	p. 15 ~ 16	Pin	assignment was updated as Fujitsu's request		
Jan. 14. 201	1 P08	p. 11 p. 25		of main frequency was changed from 63.84M ne dimension was updated.	1Hz to 64	.07MHz.
Jan. 27. 201	1 P09	p. 11 p. 21 p. 25	Min	of main frequency was changed from 64.07M of one line scanning time and frame frequenc ne dimension was updated as Fujitsu's reque	y were up	
Apr. 14. 201	1 P10	p. 25 p. 27,28		ne dimension was updated with tapes. ing and Others was updated as Fujitsu label.		
May. 4. 201	1 P11	p. 18 p. 25	JEID	ng Diagrams of LVDS For Transmission was A mode to NS mode. ne dimension was updated.	changed	from
May. 18. 201	1 P12	p. 27 p. 28		su P/N was changed from CA51010-0157A1 abel was updated.	to CA510	10-0157.
May. 20. 201	1 P13	p. 25	Outli	ne dimension was updated.		
May. 24. 201	1 P14	p. 25	Outli	ne dimension was updated.		
June. 9. 201	1 P15	p. 25	Outli	ne dimension was updated.		
June. 14. 20'	11 P16	p. 15		nector was changed from 'I-PEX 20455-04 valent ' to 'I-PEX 20455-040E-02R only'	40E-02R	or
June. 24. 20'	11 A00	p. 6 p. 8	and 149.	of Horizontal outline was changed from 229.8 typ. Of Vertical outline was changed from 14 37mm. r Chromaticity was updated.		
Samsung	Confidential					
Doc.No.	LTN101AL01-F	01 Re	v.No	04-A00-S-110624	Page	4 / 30

GENERAL DESCRIPTION

DESCRIPTION

LTN101AL01 is a color active matrix TFT (Thin Film Transistor) liquid crystal display (LCD) that uses amorphous silicon TFT as switching devices. This model is composed of a TFT LCD panel, a driver circuit and a backlight unit. The resolution of a 10.1" contains 1280 x 800 pixels and can display up to 16,777,216 colors. 6 O'clock direction is the optimum viewing angle.

FEATURES

- High contrast ratio
- WXGA (1280 x 800 pixels) resolution
- Low power consumption
- Fast Response
- DE (Data enable) only mode
- 3.3V LVDS Interface
- Green product (RoHS compliant)

APPLICATIONS

- Notebook PC
- If the usage of this product is not for PC application, but for others, please contact SEC

GENERAL INFORMATION

Item	Specification	Unit	Note
Display area	216.96(H) x 135.60(V) (10.1" diagonal)	mm	
Driver element	a-Si TFT active matrix		
Display colors	16,777,216	colors	6bit +FRC
Number of pixel	1280 x 800	pixel	
Pixel arrangement	RGB vertical stripe		
Pixel pitch	0.1695(H) x 0.1695(V)	mm	TYP
Display Mode	Normally black, PLS mode		
Surface treatment	Glare		

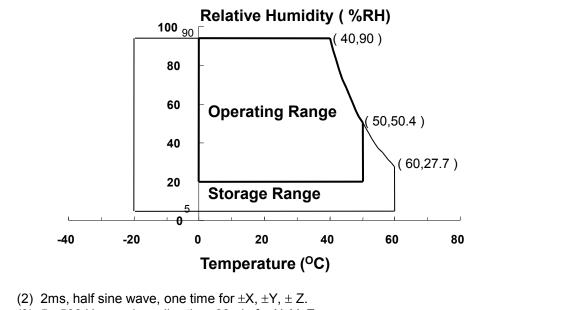
Doc.No. LTN101AL01-F01 Rev.No	04-A00-S-110624	Page	5 / 30	
-------------------------------	-----------------	------	--------	--

Mechanical Information

	ltem	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	229.12	229.62	230.12	mm	Without floogoo
Module size	Vertical (V)	149.37	149.87	150.37	mm	Without flanges
5120	Depth (D)	-	-	5.4	mm	(1)
	Weight	-	145	155	g	

Note (1) Measurement condition of outline dimension

. Equipment : Bernier Calipers


. Push Force : 600g ·f (minimum)

1. ABSOLUTE MAXIMUM RATINGS

1.1 ENVIRONMENTAL ABSOLUTE RATINGS

Item	Symbol	Min.	Max.	Unit	Note
Storage temperate	TSTG	-20	60	°C	(1)
Operating temperate (Temperature of glass surface)	TOPR	0	50	°C	(1)
Shock (non-operating)	Snop	-	240	G	(2),(4)
Vibration (non-operating)	Vnop	-	2.41	G	(3),(4)

Note (1) Temperature and relative humidity range are shown in the figure below. 95 % RH Max. (40 °C \ge Ta) Maximum wet - bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation

- (3) 5 500 Hz, random vibration, 30min for X, Y, Z.
- (4) At testing Vibration and Shock, the fixture in holding the Module to be tested have to be hard and rigid enough so that the Module would not be twisted or bent by the fixture.

Samsun	g Confidential				
Doc.No.	LTN101AL01-F01	Rev.No	04-A00-S-110624	Page	6 / 30

1.2 ELECTRICAL ABSOLUTE RATINGS

(1) TFT LCD MODULE

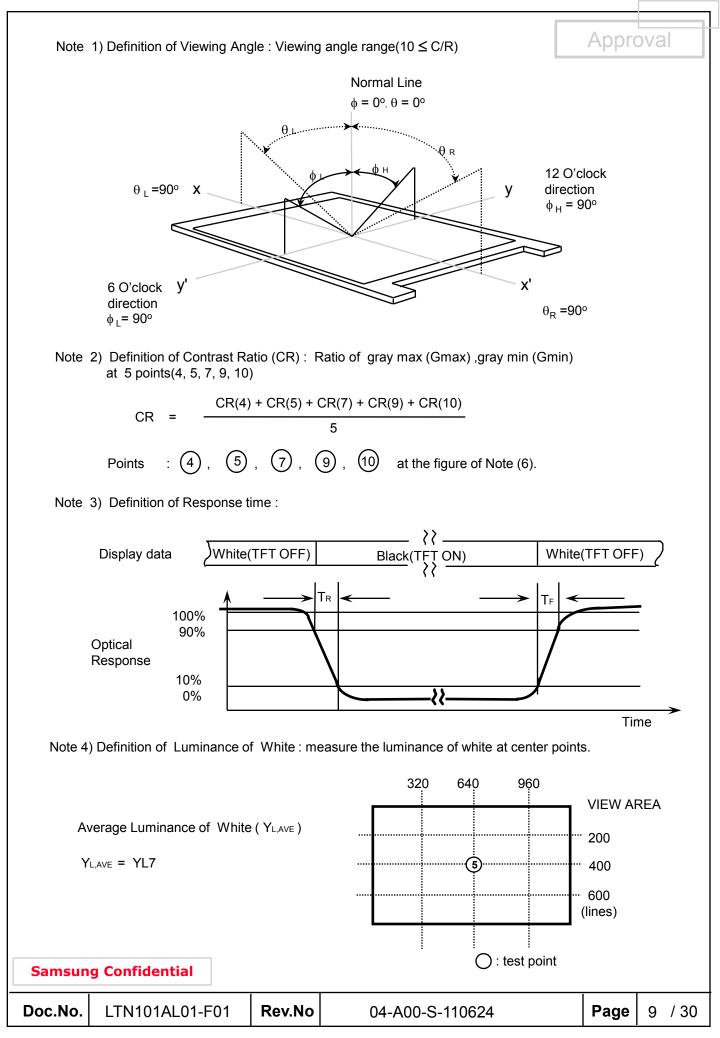
(Vcc =3.3V, Vss = GND = 0V, VDD = 3.3V)

Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	Vdd	Vdd - 0.3	V _{DD} + 0.3	V	(1)
Logic Input Voltage	Vin	Vdd - 0.3	V _{DD} + 0.3	V	(1)

Note (1) Within Ta (25 \pm 2 $^\circ C$)

Samsung Confidential

Doc.No.	LTN101AL01-F01	Rev.No	04-A00-S-110624	Page	7 / 30	
---------	----------------	--------	-----------------	------	--------	--


2. OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in a dark room or equivalent state with the methods shown in Note (5). Measuring equipment : TOPCON SR-3

ltem		Symbol	Condition	Min.	Тур.	Мах	Unit	Note
Contrast F (5 Point		CR		400	500	-	-	(1), (2), (5)
Response Time at Ta (Rising + Falling) Average Luminance of White (Center 1p)		Тят		-	30	-	msec	(1), (3)
		Yl,ave	Normal	340	400	-	cd/m²	l∟=23.0mA (1), (4)
	Ded	Rx	Viewing	0.551	0.581	0.611		
	Red	Ry	Angle ∳ = 0	0.311	0.341	0.371	- - -	
Color Chromaticity	Green	Gx	$\Theta = 0$	0.321	0.351	0.381		
		Gy		0.553	0.583	0.613		(1), (5) SR-3
(CIE)	Blue	Bx		0.121	0.151	0.181		
	Dide	By		0.081	0.111	0.141		
	White	Wx		0.283	0.313	0.343		
	· · · · · · ·	WY		0.299	0.329	0.359		
	Hor.	θι		-	80			
Viewing		Өн	CR ≥ 10	-	80		Degrees	(1), (5)
Angle	Ver.	фн	At center	-	80			SR-3
		φL		-	80			
Color Gamut 13 Points White Variation		CG			45		%	
		δL		-	-	1.7	-	(6)

* Ta = 25 ± 2 °C, V_{DD}=3.3V, fv= 60Hz, f_{DCLK} = 68.94MHz, IL = 23.0 mA

Doc.No.	LTN101AL01-F01	Rev.No	04-A00-S-110624	Page	8 / 30
---------	----------------	--------	-----------------	------	--------

Note 5) After stabilizing and leaving the panel alone at a given temperature for 30 min, the measurement should be executed. Measurement should be executed in a stable, windless and dark room. 30 min after lighting the backlight. This should be measured in the center of screen. LED current: 23.0mA Environment condition : Ta = $25 \pm 2 \circ C$ Photo-detector (TOPCON SR-3) Field = 2° 50 cm **TFT-LCD** module LCD panel Center of the screen [Optical characteristics measurement setup] Note 6) Definition of 13 points white variation (δ L), CR variation(CVER) [(1) ~ (3)] Maximum luminance of 13 points δl = Minimum luminance of 13 points 10mm 10mm 341 683 1024 10mm 192 6 384 : test point 576

10mm

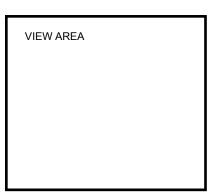
Samsung Confidential

(lines)

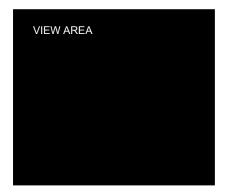
3. ELECTRICAL CHARACTERISTICS

Approval

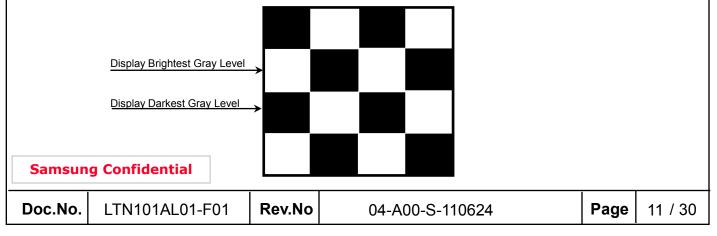
3.1 TFT LCD MODULE

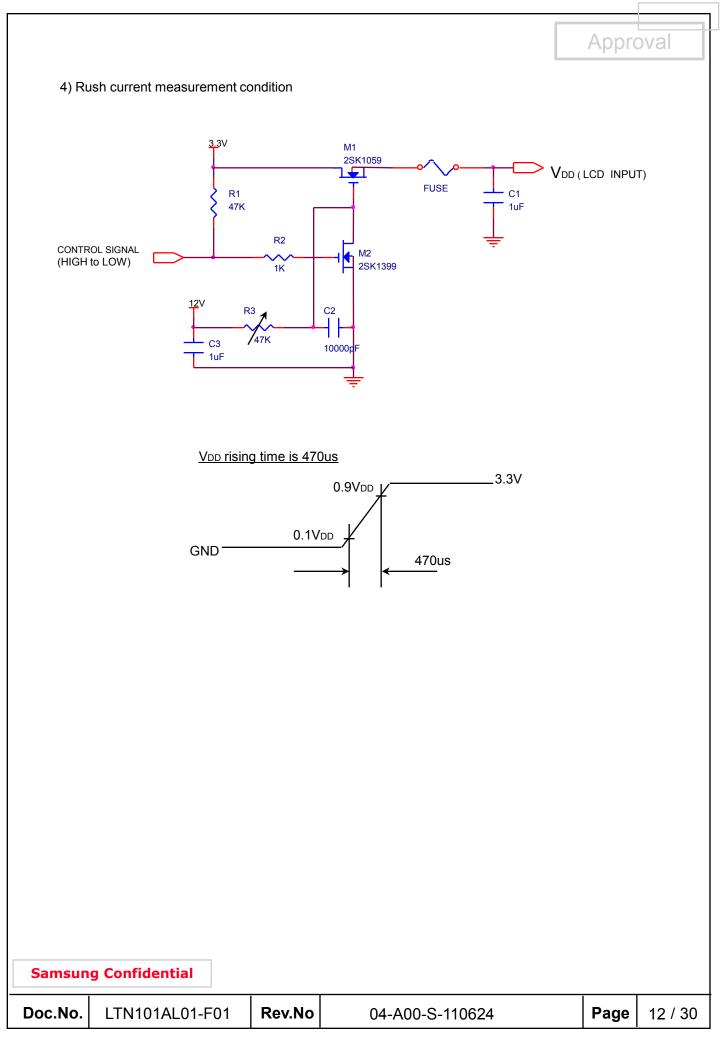

							Ta= 25 ± 2°C
ltem		Symbol	Min.	Тур.	Max.	Unit	Note
Voltage of Power Supply		Vdd	3.0	3.3	3.6	V	
Differential Input	High	Vih	-	-	+100	mV	V _{CM} = +1.2V
Voltage for LVDS Receiver Threshold	Low	VIL	-100	-	-	mV	
Vsync Frequency		fv	-	60	-	Hz	
Hsync Freque	ncy	fн	-	48.96	-	KHz	
Main Frequer	ісу	fdclk	66.11	68.94	74.97	MHz	
Rush Currei	nt	Irush	-	-	1.5	А	(4)
	White		-	280	310	mA	(2),(3)*a
Current of Power Supply	Black	ldd	-	210	-	mA	(2),(3)*b
	Mosaic		-	260		mA	(2),(3)*c

Note (1) Display data pins and timing signal pins should be connected.(GND = 0V)


(2) $f_V = 60Hz$, $f_{DCLK} = 68.94MHZ$, $V_{DD} = 3.3V$, DC Current.

(3) Power dissipation pattern


*a) White Pattern



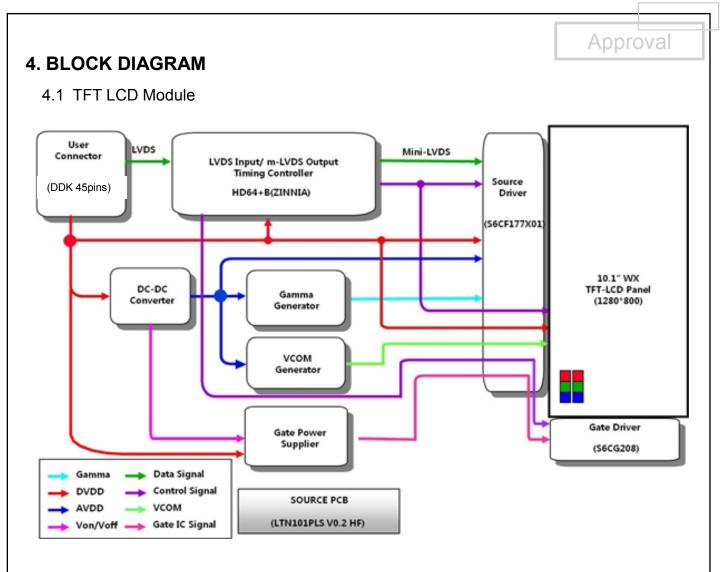
*b) Black Pattern

*C) Mosaic Pattern

3.2 BACK-LIGHT UNIT

Ta= $25 \pm 2 \circ C$

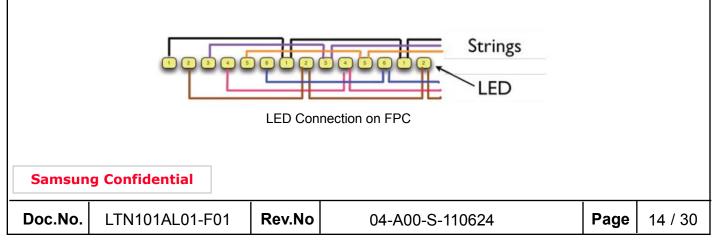
Item	Symbol	Min.	Тур.	Max.	Unit	Note
LED Forward Current	IF	-	23	-	mA	
LED Forward Voltage	VF	2.8	2.9	3.0	V	
LED Array Voltage	VP	-	17.4	-	V	VF X 6LEDs
Power Consumption	Р	-	2.40	2.5	W	IF X VF X 36LEDs
Operating Life Time	Hr	10000	-	-	Hour	(1)


Note (1) Life time (Hr) of LEDs can be defined as the time in which it continues to operate under the condition Ta= 25 ± 2 °C and IF = 25.5 mArms until one of the following event occurs.

1. When the brightness becomes 50% or lower than the original.

3.3 LED Driver (w/o driver)

Samsung C	Confidential
-----------	--------------


Doc.No.	LTN101AL01-F01	Rev.No	04-A00-S-110624	Page	13 / 30	
---------	----------------	--------	-----------------	------	---------	--

4.2 LED placement structure

String	LED1	LED2	LED3	LED4	LED5	LED6
1	1	7	13	19	25	31
2	2	8	14	20	26	32
3	3	9	15	21	27	33
4	4	10	16	22	28	34
5	5	11	17	23	29	35
6	6	12	18	24	30	36

LED Assignments on FPC String

5. INPUT TERMINAL PIN ASSIGNMENT

5.1. Input Signal & Power (LVDS, Connector : I-PEX 20455-040E-02R only)

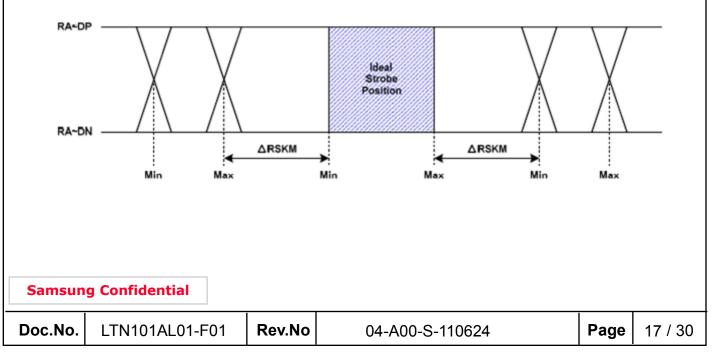
No.	Symbol	Function	Polarity	Remarks
1	GND	Ground		
2	AVDD	Power Supply 3.3V (typical)		
3	AVDD	Power Supply 3.3V (typical)		
4	DVDD	DDC 3.3V power		
5	WPN	Writing Protection Pin (SEC's use)		
6	SCL	DDC Clock		
7	SDA	DDC Data		
8	RIN0-	LVDS differential data input	Negative	
9	RIN0+	LVDS differential data input	Positive	
10	GND	Ground		
11	RIN1-	LVDS differential data input	Negative	
12	RIN1+	LVDS differential data input	Positive	
13	GND	Ground		
14	RIN2-	LVDS differential data input	Negative	
15	RIN2+	LVDS differential data input	Positive	
16	GND	Ground		
17	CLK-	LVDS differential clock input	Negative	
18	CLK+	LVDS differential clock input	Positive	
19	GND	Ground		
20	RIN3-	LVDS differential data input	Negative	
21	RIN3+	LVDS differential data input	Positive	
22	GND	Ground		
23	NC	No Connection		
24	NC	No Connection		
25	GND	Ground		
26	NC	No Connection		
27	NC	No Connection		
28	FB1	Feedback 1		
29	FB2	Feedback 2		
30	FB3	Feedback 3		

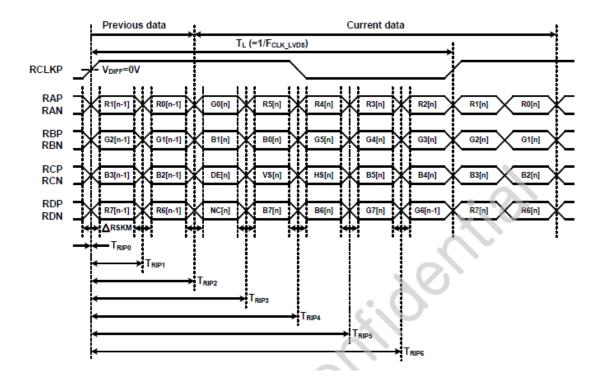
Samsung Confidential

Rev.No

No.	Symbol	Function	Polarity	Remarks
31	FB4	Feedback 4		
32	FB5	Feedback 5		
33	FB6	Feedback 6		
34	NC	No Connection		
35	VBL+	LED VCC		
36	VBL+	LED VCC		
37	VBL+	LED VCC		
38	VBL+	LED VCC		
39	VBL+	LED VCC		
40	VBL+	LED VCC		

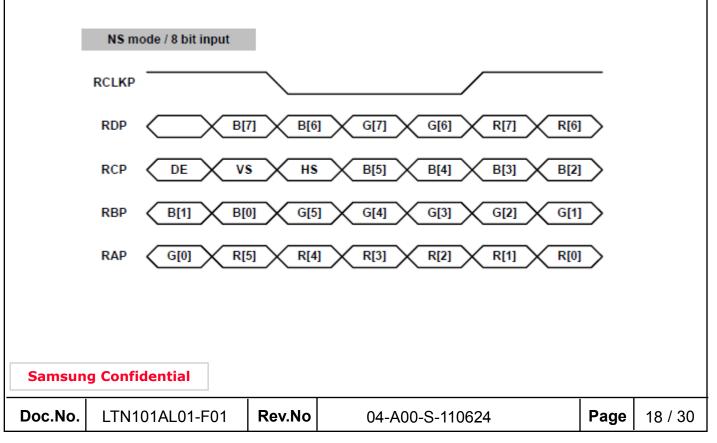
5.2 LVDS Interface

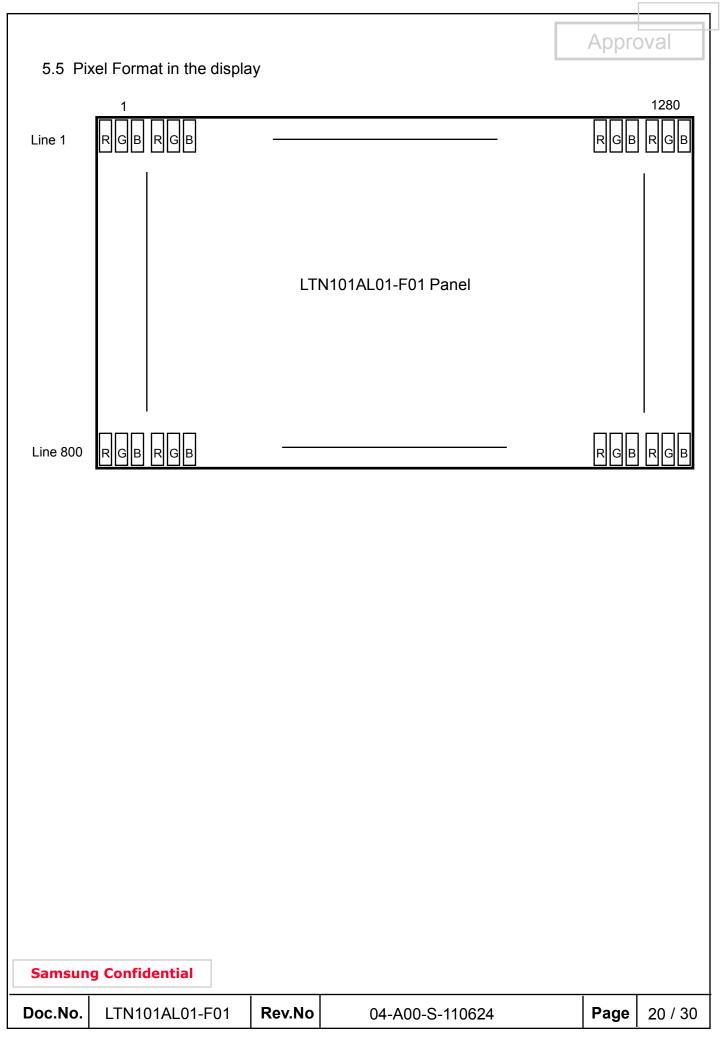

5.2.1 LVDS DC characteristic


ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
LVDS Differential Voltage	[VID]	100	-	400	mV	
Input Common Mode	M	0.6	0.8	1.0		
Voltage	V _{CM}	0.8	1.2	1.4	V	

5.2.2 LVDS AC characteristic

ITEM		SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
LVDS input clock frequency		FCLK_LVDS	20		90	MHz	
RIN skew	$90MHz > F_{CLK_LVDS} \geq 65MHz$	△RSKM	-400	0	400	ps	(1),(2)
margin	$\begin{array}{l} \text{65MHz} > \text{F}_{\text{CLK_LVDS}} \\ \text{20MHz} \end{array} \geq$		-600	0	600	ps	(1),(2)
	Modulating frequency of LVDS input clock during SSCG		-	-	300	KHz	
Maximum deviation of LVDS input clock during SSCG		Fclk_dev	-	-	± 3	%	

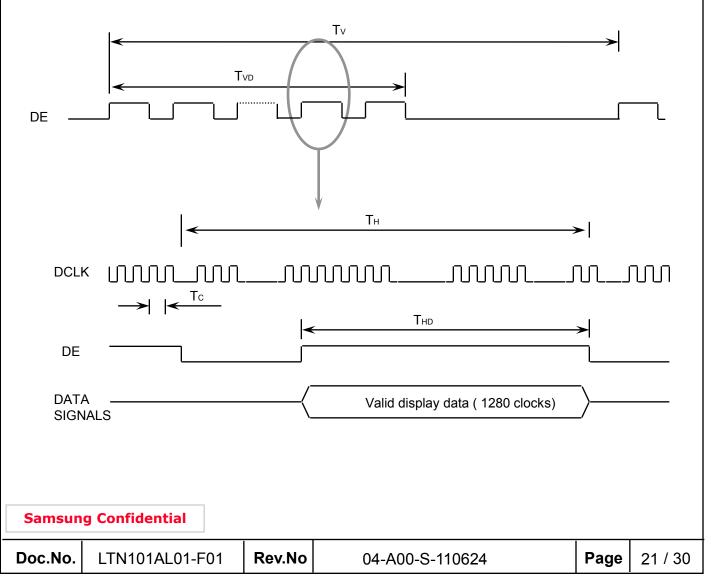

Note (1) : LVDS Input Skew (Strobe) Margin


Note (2): LVDS Input Timing Diagram

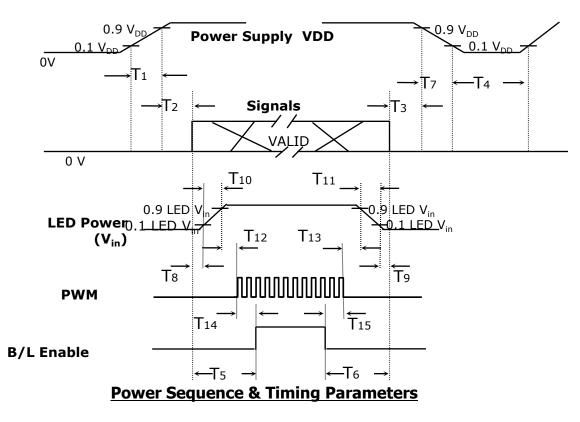
5.3 Timing Diagrams of LVDS For Transmission

Data Signal Gray I Red Blue Display Green Scale R0 R1 R2 R3 R4 R5 R6 **R**7 G5 G6 G7 GŨ G1 G2 G3 G4 BO Β1 Β2 BЗ Β4 B5 B6 Β7 Level Black _ Blue _ Green _ Cyan _ Basic Colors Red _ Magenta _ Yellow -White _ Black R0 Dark R1 ↑ R2 Gray : : : : : : : : : : : : : : : : : : Scale R3~R252 Of : : : : Red ψ R253 R254 Light R255 Red Black GO Dark G1 ↑ G2 Gray : : : : Scale G3~G252 Of : ÷ Green ψ G253 G254 Light G255 Green BO Black B1 Dark ↑ B2 Gray : : : : : Scale B3~B252 Of : : : : Blue Ŷ B253 B254 Light B255 Blue Note 1) Definition of gray : Rn: Red gray, Gn: Green gray, Bn: Blue gray (n=gray level) Note 2)Input signal: 0 =Low level voltage, 1=High level voltage

5.4 Input Signals, Basic Display Colors and Gray Scale of Each Color



6. INTERFACE TIMING


6.1 Timing Parameters

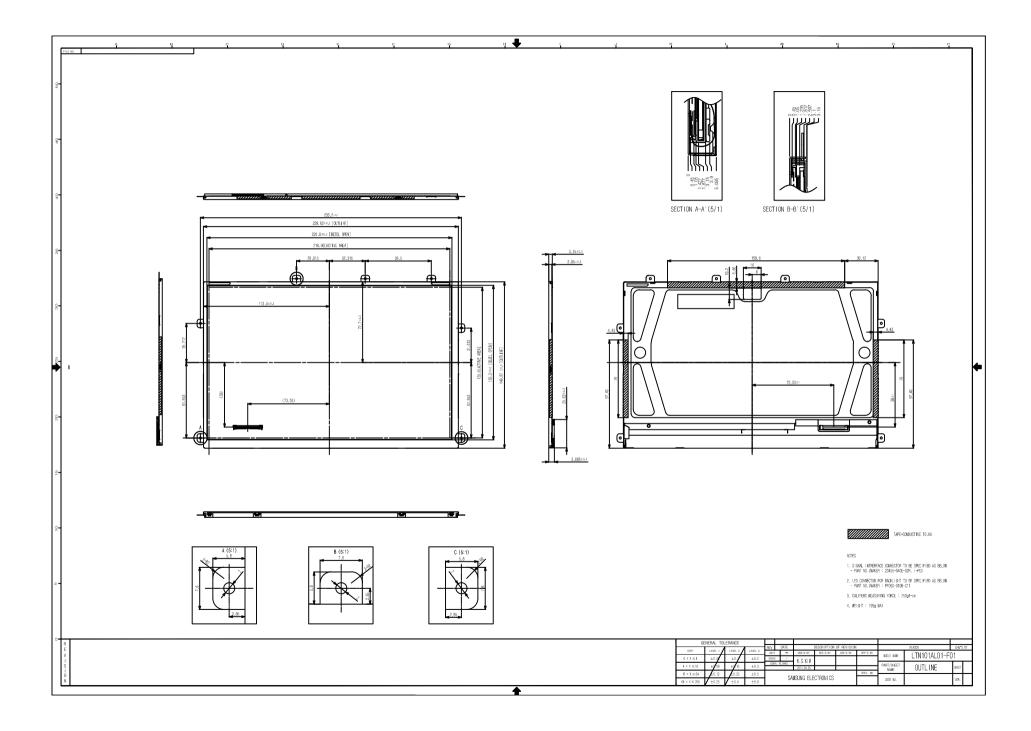
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Frame Frequency	Cycle	ΤV	809	816	-	Lines	
Vertical Active Display Term	Display Period	TVD	-	800	-	Lines	
One Line Scanning Time	Cycle	ТН	1362	1408	-	Clocks	
Horizontal Active Display Term	Display Period	THD	-	1280	-	Clocks	

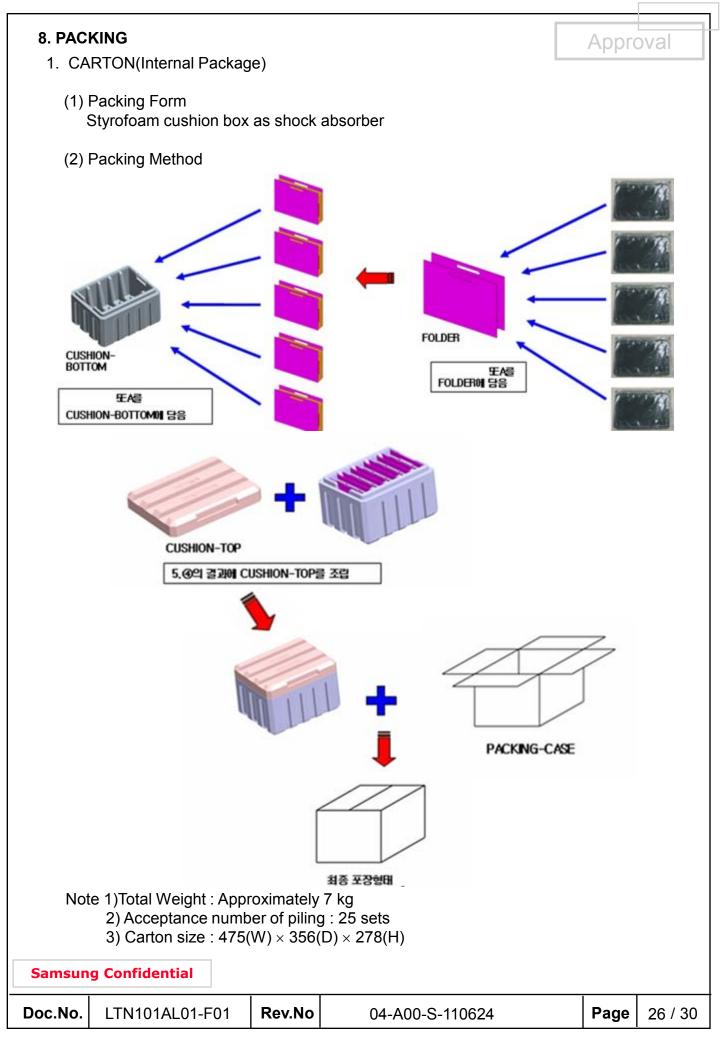
6.2 Timing diagrams of interface signal

: To prevent a latch-up or DC operation of the LCD module, the power on/off sequence should be as the diagram below.

Timing (ms)	Remarks		
0.5 ≤ T1 ≤ 10	V _{DD} rising time from 10% to 90%		
0 ≤ T2 ≤ 50	Delay from V_{DD} to valid data at power ON		
0 ≤ T3 ≤50	Delay from valid data OFF to V_{DD} OFF at power Off		
500 ≤ T4	V _{DD} OFF time for Windows restart		
300 ≤ T5	Delay from valid data to B/L enable at power ON		
200 ≤ T6	Delay from B/L disable to valid data off at power Off		
0 ≤ T7			
0 ≤ T8			
0 ≤ T9			
0 ≤T10			

Power Sequence & Timing Parameters


NOTE.


- (1) The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

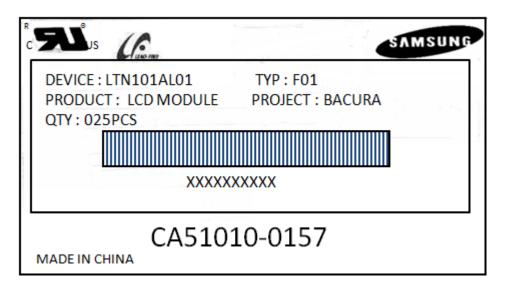
7. Mechanical Outline Dimension

Refer to the next page

Approval


(3)Packing Material

No	Part name	Quantity	
1	Static electric protective sack	25	
2	Cushion Pad(Inner Box)	1 oot	
	Included shock absorber.	1 set	
3	Carton	1 set	


9. MARKINGS & OTHERS

Doc.No.

A nameplate bearing followed by is affixed to a shipped product at the specified location on each product.

(1) Packing small box attach

Samsung	Confidential
---------	--------------

10. GENERAL PRECAUTIONS

1. Handling

- (a) When the module is assembled, It should be attached to the system firmly using every mounting holes. Be careful not to twist and bend the modules.
- (b) Refrain from strong mechanical shock and / or any force to the module. In addition to damage, this may cause improper operation or damage to the module.
- (c) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than a HB pencil lead.
- (d) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.
- (e) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (f) The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. They might cause permanent damage to the polarizer due to chemical reaction.
- (g) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (h) Protect the module from static , it may cause damage to the C-MOS Gate Array IC.
- (i) Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (j) Do not disassemble the module.
- (k) Do not adjust the variable resistor which is located on the back side.
- (I) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (m) Pins of I/F connector shall not be touched directly with bare hands.

2. STORAGE

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 5 to 40 °C and relative humidity of less than 70%.
- (b) Do not store the TFT-LCD module under the direct sunlight.
- (c) The module shall be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during storage.
- (d) Storage period is recommended not to exceed 1 year.

3. OPERATION

- (a) Do not connect, disconnect the module in the "Power On" condition.
- (b) Power supply should always be turned on/off according to the following item 6.3 " Power on/off sequence ".
- (c) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (d) The standard limited warranty is only applicable when the module is used for general notebook applications. If used for purposes other than as specified, SEC is not to be held reliable for the defective operations. It is strongly recommended to contact SEC to find out fitness for a particular purpose.
- 4. OTHERS
 - (a) Ultra-violet ray filter is necessary for outdoor operation.
 - (b) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
 - (c) Do not exceed the absolute maximum rating value. (the supply voltage variation, input voltage variation, variation in part contents and environmental temperature, so on) Otherwise the module may be damaged.
 - (d) If the module displays the same pattern continuously for a long period of time, it can be the situation when the image "sticks" to the screen.
 - (e) This module has its circuitry PCB's on the rear side and should be handled carefully in order not to let it stressed.

Doc.No. LTN101AL01-F01	Rev.No	04-A00-S-110624	Page	30 / 30	
------------------------	--------	-----------------	------	---------	--