

Spec No. :DS70-2013-0016 Effective Date: 09/22/2022 Revision: D

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto

Photocoupler LTV-155E series

1.0 Amp Output Current IGBT Gate Drive Optocoupler with Rail-to-Rail Output Voltage, High CMR.

1. DESCRIPTION

The LTV-155E optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 1.0A peak output current is capable of directly driving most IGBTs with ratings up to 1200 V/50 A. For IGBTs with higher ratings, the LTV-155E series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from -40°C ~ +105°C.

1.1 Features

- 1.0 A maximum peak output current
- 0.8 A minimum peak output current
- Rail-to-rail output voltage
- 200 ns maximum propagation delay
- 100 ns maximum propagation delay difference
- 35 kV/us minimum Common Mode Rejection (CMR) at V_{CM} = 1500 V
- I_{CC} = 3.0 mA maximum supply current
- Wide operating range: 10 to 30 Volts (V_{CC})
- Guaranteed performance over temperature -40°C ~ +105°C.
- MSL Level 1
- Safety approval:
- UL/ cUL Recognized 3750 V_{RMS}/1 min
- IEC/EN/DIN EN 60747-5-5 V_{IORM} = 565 V_{peak}

1.2 Applications

- Plasma Display Panel .
- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- Induction heating

Functional Diagram

Truth Table

LED	High side	Low side	Vo
OFF	OFF	ON	Low
ON	ON	OFF	High

Note: A 0.1µF bypass capacitor must be connected

between Pin 4 and 6.

Photocoupler LTV-155E series

2. PACKAGE DIMENSIONS

Part No : LTV-155E

Notes :

- 1. The first digit is year date code, second and third digit are work week
- 2. Factory identification mark (W :China-CZ)
- "V" for VDE option Dimensions are all in Millimeters.

2/14

Photocoupler LTV-155E series

3. TAPING DIMENSIONS

3.1 LTV-155E

3.1 LTV-155E-TP

Description	Symbol	Dimension in mm (inch)
Tape wide	W	12±0.3 (0.47)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	5.5±0.1 (0.217)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	8±0.1 (0.315)

Quantities Per Reel

Package Type	LTV-155E series
Quantities (pcs)	3000

 $\boldsymbol{\Delta}$

Photocoupler LTV-155E series

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25℃

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	T _{stg}	-55	+125	°C	
Operating Temperature	T _{opr}	-40	+105	°C	
Output IC Junction Temperature	TJ		125	°C	
Total Output Supply Voltage	(V _{CC} –V _{EE})	0	35	V	
Average Forward Input Current	I _F		25	mA	
Reverse Input Voltage	V _R		5	V	
Peak Transient Input Current	I _{F(TRAN)}		1	А	1
"High" Peak Output Current	I _{OH(PEAK)}		1.0	А	2
"Low" Peak Output Current	I _{OL(PEAK)}		1.0	А	2
Input Current (Rise/Fall Time)	t _{r(IN)} /t _{f(IN)}		500	ns	3
Output Voltage	V _{O(PEAK)}	-0.5	V _{cc}	V	
Power Dissipation	Pı		40	mW	
Output Power Dissipation	Po		250	mW	
Total Power Dissipation	Ρ _T		295	mW	
Lead Solder Temperature	T _{sol}		260	°C	

Note: Ambient temperature = 25° C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Note: Note: A ceramic capacitor (0.1 μ F) should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Note 1: Pulse width (PW) \leq 1 µs, 300 pps

Note 2: Exponential waveform. Pulse width \leq 0.3 µs, f \leq 15 kHz

Note 3: The rise and fall times of the input on-current should be less than 500 ns

4.2 Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
Operating Temperature	T _A	-30	105	°C
Supplier Voltage	V _{cc}	10	30	V
Input Current (ON)	I _{F(ON)}	7	16	mA
Input Voltage (OFF)	V _{F(OFF)}	-3.0	0.8	V

4/1

Photocoupler LTV-155E series

4.3 Electrical optical characteristics at Ta=25°C

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
	Input Forward Voltage	V _F	1.2	1.37	1.8	V	I _F = 10mA	13	—
	Input Forward Voltage Temperature Coefficient		—	-1.237	_	mV/ ^o C	I _F = 10mA	_	_
	Input Reverse Voltage	BV _R	5	—	—	V	I _R = 10μΑ	—	—
Input	Input Threshold Current (Low to High)	I _{FLH}	—	1.9	5	mA	V _O > 5V, I _O = 0A	6, 7 ,18	_
	Input Threshold Voltage (High to Low)	V _{FHL}	0.8	_	—	V	V ₀ < 5V, I ₀ = 0A	_	—
	Input Capacitance	C _{IN}	—	33	—	pF	$f = 1 MHz, V_F = 0 V$	—	—
	High Level Supply Current	I _{ссн}	—	1.9	3.0	mA	Output Open, I _F = 7 to 16 mA	4, 5	_
	Low Level Supply Current	ICCL	_	2.1	3.0	mA	Output Open, V _F = -3 to +0.8 V	., c	_
			—	—	-0.3	۸	$V_0 = (V_{CC} - 1.5 V)$	40	1
	High level output current	I _{ОН}	_	—	-0.8	A	$V_{\rm O} = (V_{\rm CC} - 3 \text{ V})$	16	2
	Low level output current	I _{OL}	0.3	_	—	A	V _O = (V _{EE} + 1.5 V)	17	1
Output			0.8	—	—		$V_{O} = (V_{EE} + 3 V)$		2
	High level output voltage	V _{он}	V _{CC -} 0.6	V _{CC -} 0.35	_	V	I _F = 10mA, I _O = -100mA	1, 2, 14	-
	Low level output voltage	V _{OL}	—	V _{EE +} 0.25	V _{EE +} 0.4	V	I _F = 0mA, I _O = 100mA	3, 15	_
		V _{UVLO+}	—	7.8	—	V	V _O > 5V, I _F = 10 mA	19	—
	UVLO Threshold	V _{UVLO-}	—	6.7	—	V	$V_{\rm O} < 5V$, $I_{\rm F} = 10 \ {\rm mA}$	19	—
	UVLO Hysteresis	UVLO _{HYS}	—	1.1	—	V		—	—

All Typical values at $T_A = 25^{\circ}C$ and $V_{CC} - V_{EE} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at

recommended operating condition. (Refer to 4.2)

Note 1: Maximum pulse width = 50 μ s.

Note 2: Maximum pulse width = 10 μ s.

5/14

Photocoupler LTV-155E series

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
Propagation Delay Time to High Output Level	t _{PHL}	50	120	200				—
Propagation Delay Time to Low Output Level	t _{PLH}	50	110	200		$R_g = 47\Omega$,	8, 9, 10,	_
Pulse Width Distortion	PWD	_	10	70		$C_g = 3nF,$ f = 10 kHz,	11, 12, 20	_
Propagation delay difference between any two parts or channels	PDD	100	_	100	ns	Duty Cycle = 50% $I_F = 7$ to 16 mA, $V_{CC} = 15$ to 30V $V_{EE} = ground$		3
Output Rise Time (20 to 80%)	Tr	—	35	—				_
Output Fall Time (80 to 20%)	Tf	_	35	_			20	_
Common mode transient immunity at high level output	(CMH)	35	50	_	kV/µs	$T_A = 25$ °C, $I_F = 10 \text{ to } 16 \text{ mA},$ $V_{CM} = 1500 \text{ V},$ $V_{CC} = 30 \text{ V}$	21	1
Common mode transient immunity at low level output	CML	35	50	_	kV/µs	$T_A = 25$ °C, $V_F = 0$ V, $V_{CM} = 1500$ V, $V_{CC} = 30$ V	- 21	2

All Typical values at $T_A = 25$ °C and $V_{CC} - V_{EE} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: CM_H is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state (V₀ > 15 V).

Note 2: CM_L is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($V_O < 1 V$).

Note 3: The difference between t_{PHL} and t_{PLH} between any two parts series parts under same test conditions.

Photocoupler LTV-155E series

6. ISOLATION CHARACTERISTICS

Parameter	Test Conditions	Symbol	Min.	Тур	Max.	Unit	Note
Withstand Insulation Test	RH ≤ 40-60%,	M	2750			V	1.0
Voltage	$t = 1$ min, $T_A = 25^{\circ}$ C	V _{ISO}	3750	_	_	V	1, 2
Input-Output Resistance	V _{I-O} = 500V DC	R _{I-0}	—	10 ¹²	—	Ω	1
Input-Output Capacitance	$f = 1MHz, T_A = 25^{\circ}C$	C _{I-O}	—	0.92	—	pF	1

All Typical values at $T_A = 25$ °C unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Device is considered a two terminal device: pins 1 and 3 are shorted together and pins 4, 5 and 6 are shorted together. Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage $4500V_{RMS}$ for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge

7/1 4

I_F = 10 mA

 $V_{CC} = 30 V$ $V_{EE} = 0 V$

I_{OUT} = -100mA

Photocoupler LTV-155E series

ITEON[®]

7.

OPTOELECTRONICS

0.00 -0.05 > -0.10

TYPICAL PERFORMANCE CURVES & TEST CIRCUITS

Figure 1: High output rail voltage vs. Temperature

Figure 3: VoL vs. Temperature

Figure 5: Icc vs. Vcc

- 0.10 - 0.15 - 0.20 - 0.20 - 0.20 - 0.20 - 0.20 - 0.30 - 0.30 - 0.35 - 0.40 - 0.40 -0.45 > -0. > -0.50 -0.55 -0.60 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 TA - Temperature - °C

Figure 2: VOH vs. Temperature

Data Sheet

Photocoupler LTV-155E series

115 - Propagation Delay - n 201 00 201 00 202 - n 203 - n Ļ I_F = 8 mA, T_A = 25 °C 90 $R_g = 47\Omega$, $C_g = 3nF$ Duty Cycle = 50% $\mathsf{T}_{\mathsf{PLH}}$ 85 f = 10kHz T_{PHL} 80 10 15 20 25 30 V_{cc} - Supply Voltage - V

Figure 7: IFLH vs. Temperature

Figure 11: Propagation delays vs. Rg

Figure 8: Propagation delays vs. Vcc

125

120

Figure 10: Propagation delays vs. Temperature

Figure 12: Propagation delays vs. Cg

9/14

Photocoupler LTV-155E series

Figure 13: Input current vs. Forward voltage

Figure 14 : Von Test Circuit

Figure 18 : IFLH Test Circuit

Figure 19 : UVLO Test Circuit

1

Figure 15 : VoL Test Circuit

Figure 17 : IoL Test Circuit

Photocoupler LTV-155E series

Figure 20 : tr, tf, tPLH and tPHL Test Circuit and Waveforms

Figure 21 : CMR Test Circuit and Waveforms

Photocoupler LTV-155E series

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (T_L)	217°C
- Time (t _L)	60 sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

Part No. : LTV-155E series BNC-OD-FC002/A4 Rev.: D

12

Photocoupler LTV-155E series

8.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

Photocoupler LTV-155E series

9. NAMING RULE

	Part Number Options					
	LTV-155E					
	LTV-155E-TP					
	LTV155E-V					
	LTV155ETP-V					
Definition of Suffix	Remark					
"155E"	LiteOn model name					
"no suffix"	Pin 1 location at upper right of the tape					
"TP"	"TP" Pin 1 location at lower left of the tape					
"V"	VDE approved option					

10. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.

