

SANYO Semiconductors DATA SHEET

LV23401V For Home Stereo System 1-chip Tuner IC Incorporating PLL

Overview

The LV23401V is a AM/FM one-chip tuner IC for home stereo system.

Functions

- AM tuner
- FM tuner
- MPX stereo decoder
- FLL tuning system

Features

- All the adjustment work of external parts is unnecessary.
- CCB control with easy command base
- External parts are reduced by LOW-IF frequency (FM=225kHz, AM=53kHz) adoption.
- The high sensitivity reception is achieved in low noise MIX input circuit.
- All bands of Japan-U.S.-Euro can be received by the soft program change (76MHz to 108MHz).
- With built-in FLL(Frequency Locked Loop) tune function
- Soft mute and stereo blend function (seven stages programmed control possible)
- With built-in adjacent channel obstruction removal function
- With built-in stereo pilot cancellation function
- For EN55020-S1 standard (European immunity)
- With built-in power save function

■ Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

> SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

Specifications

Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	Analog block supply voltage	10.0	V
Maximum output voltage	V _O max	Digital block supply voltage	4.5	V
Maximum input voltage	V _{IN} 1 max	CE, DI, CL	*1) Vref2+0.35	V
	V _{IN} 2 max	CLK IN	4.5	V
Allowable power dissipation	Pd max	Ta≤70°C *2)	450	mW
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

*1) Vref2 = 22 pin voltage

*2) When mounted on the specified printed circuit board (114.3mm × 76.1mm × 1.6mm), glass epoxy

Operating Condition at $Ta = 25 \ ^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}	Analog block supply voltage	9.0	V
Operating supply voltage range	Operating supply voltage range V _{CC} op Resister 1Eh Bit 1(LEVSHIF)=0		4.5 to 6.5	V
		Resister 1Eh Bit 1(LEVSHIF)=1	8.5 to 9.5	V

* Stabilize the service voltage so as not to cause the voltage charge by the noise etc.

Interface block allowable operation range at Ta = -20 to $+70^{\circ}C$, $V_{SS} = 0V$

Deremeter	Cumbol	Symbol		Ratings			
Parameter	Symbol Conditions		min	typ	max	Unit	
Input "H" level voltage	V _I H1	CE, DI, CL	2.3		3.435	V	
	V _I H2	CLK IN	2.3		3.435	V	
Input "L" level voltage	V _I L1	CE, DI, CL	0		0.5	V	
	V _I L2	CLK IN	0		0.3	V	
Output voltage	VO	D0	0		4.0	V	
Crystal frequency	fIN	CLK IN		32.768		kHz	
Crystal frequency deflection	f devi1	For the standard European immunity	-50		+50	ppm	
	f devi2	When standard non-corresponds European	-150		+150	ppm	
		immunity					
Crystal vibrator load capacity	CL	*	4	12.5		pF	

* The evaluation request to the crystal maker is recommended because it changes by the substrate and the circuit constant used.

Operating Characteristics at Ta = 25° C, V_{CC} = 9.0V with the designated circuit.

Devenueter	Conditions			Linit						
Parameter Symbol Condition		Conditions	min	typ	max	Unit				
Current drain	ICCEM	No input in FM mode. 15 pin supply current.	25	35	45	mA				
(at no input)	ICCAM	No input in AM mode. 15 pin supply current.	14	24	34	mA				
Power save current drain	I standby	15 pin supply current		0.25	0.7	mA				
		power save : Register 1Fh_bit0 = 0								
V _{DD} output voltage	V _{DD}	22 pin voltage (reference value)	(2.772)	3.3	(3.435)	V				
V _{DD} drop-out voltage	V _{DD} _drop	22 pin voltage. Drive mode at 10mA.		0.15		V				
		*Drive current maximum = 10mA								
[FM receive characteristics] : fc = 98MHz, V _{IN} = 60dBµV, fm = 1kHz, De-emphasis = 50µs, IF = 225kHz, BW = 50%										
MONO : 75kHz dev. STEI	REO : L+R = 6	7.5kHz dev., Pilot = 7.5kHz dev.								
Volume level = 3, Soft mute = 0	off, Soft stered	= off, Resister 1Eh Bit 1(LEVSHIF) = 1, 9 pin outp	out, IHF-BPF							
S/N 50dB Sensitivity	SN50	Input level that becomes S/N=50dB		17	24	dBµV				
S/N 30dB Sensitivity	SN30	Input level that becomes S/N=30dB		12	18	dBµV				
IHF Sensitivity	IHF	Input level that becomes THD=3%		12	20	dBµV				
Signal-to-noise ratio	SN	MONO	62	70		dB				
	SN-ST1	STEREO	58	66		dB				
Total harmonic distortion	THD1	MONO		0.5	1.5	%				
THD1-ST STEREO			0.5	2.5	%					
	THD2	MONO, 150kHz dev.		1.5	5	%				
	THD3	MONO, V _{IN} = 120dBµV		0.6	2.5	%				

Continued on next page.

Continued from preceding page.						
Parameter	Symbol	Conditions		Ratings		Linit
	Symbol	Conditions	min	typ	max	Unit
Demodulation output	V _O 0	MONO, V _O L = 0 (reference value)	(218)	(327)	(489)	mVrms
	V _O 1	MONO, V _O L = 1 (reference value)	(291)	(436)	(652)	mVrms
	V _O 2	MONO, V _O L = 2 (reference value)	(366)	(549)	(821)	mVrms
	Vo3	MONO, V_OL = 3 (reference value)	518	775	1160	mVrms
	0	*In-house management = Typ \pm 3.0dB				
MPX output	V _O _MPX	6 pin output	100	200	300	mVrms
Channel balance	СВ	10 pin output / 9 pin output	-1	0	+0	dB
SD operation level	SD	FS_S = 4	17	25	33	dBµV
Stereo operation level	ST	FS_S = 4	17	25	33	dBµV
Stereo separation		Both channels of 9 pins and 10 pins are				
	Sep	measured.	25	40		dB
		*In-house management value ≥25dB				
De-emphasis deflection	Deemp50	fm = 10kHz, 15kHz LPF OFF	-12.5	-10	-7.5	dB
	Deemp75	fm = 10kHz, 15kHz LPF OFF		-13		dB
Carrier leakage	CL	STEREO S/N, 15kHz LPF OFF	30	40		dB
Pilot margin	ST-ON	L+R = 67.5kHz. Pilot-mod	0.6		5.5	%
(Pilot lighting sensitivity)	0. 0.1		0.0		0.0	
AM suppression ratio	AMR	400Hz AM 30% mod.	40	65		dB
Mute attenuation	MUTE		60	75		dB
[AM receive characteristics] : fc = 1M Volume level = 3, Soft mute = 4,	IHz, V _{IN} = 94c Resister 1Eh	dBμV, fm = 400Hz, 30% mod, IF = 53kHz, BW = 50 Bit 1(LEVSHIF) = 1, 9 pin output, 15kHz LPF OFF)%			
S/N 20dB Sensitivity	SN20	Input level that becomes S/N=20dB		49	65	dBµV
	SN20-L	fc = 603kHz (reference value)		(55)	(65)	dBµV
	SN20-H	fc = 1404kHz (reference value)		(49)	(65)	dBµV
Signal-to-noise ratio	SN		42	50		dB
Total harmonic distortion	THD1			0.6	2.8	%
	THD2	V _{IN} = 104dBµV		0.8	2.8	%
Detected output	V _O 0	VOL = 0 (reference value)	(55)	(78)	(109)	mVrms
	V _O 1	VOL = 1 (reference value)	(69)	(98)	(138)	mVrms
	V _O 2	VOL = 2 (reference value)	(87)	(123)	(173)	mVrms
	V _O 3	VOL = 3	110	155	218	mVrms
Channel balance	СВ	10 pin output / 9 pin output	-1	0	+1	dB
AGC response	AGC1	Input level difference that output level becomes $10 dR$. Soft muto = 2, (reference value)	(52)	(62)		dB
	4000	-TodB. Solt mute = 5 (reference value)	47	57		٩D
Eroquency response		Solit mule = 4 fm = $4kHz$	4/	37	10	dD dD
			-22	-17	-12	uВ
SD operation level	SD	AGC = ON, FS = 4 *In-house management =46 to 65dBµV	46	54	65	dBµV
Mute attenuation	MUTE	15kHz LPF ON	50	65		dB

Package Dimensions

unit : m 3191B

Pin function

pin	pin name	Description	Remark	DC_bias
1	AM ANT	AM antenna	It connects it to 2pin through the matching coil or the bar antenna.	
2	AM ref	AM reference voltage	It connects it to 1pin through the matching coil or the bar antenna.	2.0V
3	AM CAP	AM capacitor bank	It connects it to GND through an external inductor of recommendation 240µH.	
4	GND1	AM antenna GND	Connect to GND	
5	Vref1	Analog reference voltage	It connects it to GND through the capacitor of 1µF.	
6	MPX OUT	Detected output	LC72725 and connection when RDS is used	
7	AM AGC	AM AGC	It connects it to GND through the capacitor of 4.7µF	
8	GND2	Analog GND	Connect to GND	
9	L OUT	L-ch audio output	The DC level changes by setting Resistor 1Eh bit1 (LEVSHIF) to adjust the output level	
10	R OUT	R-ch audio output	according to the V _{CC} potential.	
11	V _{CC} Low	Low voltage mode	It is short with 15pin when using it with $V_{CC} < 6.0V$ or less.	
12	AM LCF	AM low cutting filter	It connects it to GND through the capacitor of 0.047µF	
13	SD OUT	SD detecting phase output		
14	ST OUT	ST detecting phase output		
15	V _{CC}	Supply voltage		
16	CLK IN	Reference clock input	The crystal is recommended to be used.	
			It is also possible to input directly clock signals (square wave GND standard).	
17	ST ADJ	Pilot margin adjustment pin	It connects it to GND through 180k Ω	
18	CE	address/data switching		
		timing		
19	CL	Communication clock		
20	DI	Data input		
21	DO	Data output	It connects it to 22 pin through $10k\Omega$	
22	Vref2	V _{DD} voltage output	3.3V voltage output pin.	
			It is also possible to supply the current to other IC up to 10mA.	
23	GND3	Logic GND	Connect to GND	
24	L1	Local oscillation circuit	It connects it to 25 pin through 33nF.	
25	Vref3	Reference voltage for local	It connects it to GND through the capacitor of 100µF	
		oscillation circuit		
26	L2	Local oscillation circuit	It connects it to 25 pin through 33nF.	
27	SD ADJ	SD = ON sensitivity	It connects it to GND through $22k\Omega$	
		adjustment pin		
28	FLL CAP	FLL low pass filter	It connects it to 25 pin through 0.1µF.	
29	GND4	FM antenna GND	Connect to GND	
30	FM ANT	FM antenna	Input impedance 75Ω.	

Descr	iption of Pin Fu	nctions		
No.	Pin name	Voltage (V)	Internal Equivalent Circuit	Remarks
1	AM-ANT	2.2V		AM antenna input pin. The AM antenna coil is connected between 2pin. R = 100Ω
2	AM-REF	2.2V	(15) 2.2V Regulator (2)	AM standard bias pin.
3	AM-CAP	-		AM Tuning for tune pin. (AM Capacitor Bank)
4	GND1	0V		Analog (AM_FE) GND pin.
5	VREF1	4.3V	(15) 4.3V Regulator 5	Analog (tuner area) standard bias pin. VREF = 4.3V
6	MPX-OUT	2.5V		FM demodulation output pin. R1 = 100Ω R2 = $23k\Omega$ R3 = $1k\Omega$
7	AM RF-AGC	-	$(7) \xrightarrow{R2} \xrightarrow{R4} \xrightarrow{R4} \xrightarrow{R4} \xrightarrow{R1} \xrightarrow{R3} \xrightarrow{\#} \xrightarrow{\#} \xrightarrow{\#} \xrightarrow{R1} \xrightarrow{R3} \xrightarrow{R1} \xrightarrow{R1} \xrightarrow{R3} \xrightarrow{R1} \xrightarrow{R1} \xrightarrow{R3} \xrightarrow{R1} R$	AGC pin for AM-RF department Gain control. R1 = $2M\Omega$ R2 = $5k\Omega$ R3 = 250Ω R4 = $1k\Omega$
8	GND2	0V		Analog (tuner) GND pin.
9 10	L-OUT R-OUT	2.5V (It is 3.3V for LEVSHIF = 1)		L-ch (R-ch) output pin. R = 100Ω R _{OUT} = 150Ω

Continued on next page.

Continu	ied from preceding p	bage.		
No.	Pin name	Voltage (V)	Internal Equivalent Circuit	Remarks
11	V _{CC} -Low	-	15 Regulator	It is short 11pin with 15pin when using it with V_{CC} < 6.0V.
12	AM LCF	2.2V	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	AM Low-cut Filter pin. R1 = 250Ω R2 = $100k\Omega$ R3 = $100k\Omega$ R4 = $50k\Omega$ R5 = $50k\Omega$
13	SD-OUT	V _{DD}	R R SD SW m m	SD indicator output pin. Active Low output R = 100kΩ
14	ST-OUT	V _{DD}	R R ST SW M M	FM stereo indicator output pin. Active Low output R = 100kΩ
15	V _{CC}	V _{CC}		Analog area supply voltage pin. 8.5 to 9.5V are impressed at Resister 1Eh bit 1(LEVSHIF) = 1, and it is short at "0" with V _{CC} Low.
16	CLK_IN	2.1V	(16)	Clock connection pin for internal standard. 32.768kHz crystal is connected. R = 100Ω
17	ST-ADJ	3.7V		Stereo lighting sensitivity adjustment pin. It connects it to GND through $180k\Omega$. R = $24k\Omega$
18	CE	_		Chip enable pin. Pin assumed to be high-level when serial data input (DI) and serial data output (DO).
19	CL	-		Data clock input pin Clock that takes data and synchronization when serial data input (DI) and serial data output (DO).

Continued on next page.

Continu	Continued from preceding page.								
No.	Pin name	Voltage (V)	Internal Equivalent Circuit	Remarks					
20	DI	_		Serial data input pin. Input pin of the serial data transmitted by controller.					
21	DO	_		Serial data output pin. Serial data output pin to controller.					
22	V _{DD}	3.3V		Logic area standard bias pin. V _{DD} = 3.3V					
23	GND3	0V		Digital area (control block) GND pin.					
24 26	L1 L2	4.3V	20 CAP BANK BANK	OSC coil connect pin. 33nH is connected between 25pin.					
25	VREF2	4.3V	12 4.3V Regulator 25	OSC area standard bias pin. VREF2 = 4.3V					
27	SD-ADJ	0.1V		SD lighting sensitivity adjustment pin. It connects it to GND through $22k\Omega$. R = 100Ω					
28	FLL-CAP	_		LPF pin for internal FLL control. R = 80kΩ					
29	GND4	0V		Analog (FMRF) GND pin.					
30	FM-ANT	0.9V		FM antenna input pin. R = 1.5kΩ R _{IN} = 75Ω					

Block Diagram

Measurement circuit

No.A1746-8/24

Example of applied circuit 1

Example of applied circuit 2

Used parts

Component	Parameter	Value	Tolerance	Туре	Supplier
L1	Local Osc Coil	33nH	5%	LL2012-FHL33NJ	TOKO
L2	Local Osc Coil	33nH	5%	LL2012-FHL33NJ	TOKO
L3	AM Loop antenna	18.1µH	5%	4910-CSL18R1JN1	SAGAMI
T 1				A90326057	COILS
11	AM RF matching	-	-	#7003RNS-A1109YZS	TOKO
C1	Ripple Filter	0.1µF			
C2	Ripple Filter	1µF			
C3	AM RF AGC Capacitor	4.7µF			
C4	Coupling Capacitor	1µF			
C5	Coupling Capacitor	1µF			
C6	AM Low-cut Filter	0.047µF			
C7	Supply Bypass Capacitor	0.1µF			
C8	Supply Bypass Capacitor	22µF			
C9	Correction Capacitor	10pF			
C10	Supply Bypass Capacitor	22µF			
C11	Ripple Filter	0.1µF			
C12	Osc Filter	0.1µF			
C13	Ripple Filter	0.1µF			
C14	Ripple Filter	10µF			
C15	Coupling Capacitor	330pF			
C16	Coupling Capacitor	560pF			
C17	Correction Capacitor	15pF			
C18	Correction Capacitor	15pF			
R1	Reference Resistor	180Ω			
R2	Pulled-up Resistor	10kΩ			
R3	Reference Resistor	22kΩ			
R4	Reference Resistor	33kΩ			
R5	Pulled-up Resistor	10kΩ			
BPF	FM ANT BPF	-	-	GFMB7	SOSHIN
X1	Crystal	32.768kHz	100ppm	VT-200-F(12.5pF)	SEIKO
X2	Crystal	4.332MHz	100ppm	AT-49	DAISHINKI
LO1	AM Ferrite antenna	260µH	TBD	-	-

 \ast L1 must be used when you receive an Eastern European band (65MHz to 75MHz) and L2 must use 39nH.

* Inquire match (C9, C17, C18) of X1 and the X2 crystal of the crystal maker together with the substrate used.

Interface specification

1) LV23401 Interface specification

LV23401 is controlled by the C²B (Computer Control Bus) cereal bus format.

 C^2B is a bus to achieve it economically surely format as for the communications between LSI in the system with two or more LSI. Because it is single master's system, the processing of a complex arbitration is unnecessary. Therefore, the load of hardware is reduced, and the system configuration that is economically abundant becomes possible. Moreover, neither a lot of kinds of controller and interface doing nor special hardware is easily needed by serial I/O with software. C²B is thought between LSI in the equipment, and the communications between equipment that need a long line are not targeted.

2) C2B data composition

DI control data (cereal data input) composition IN mode

LV23401V is controlled by the bus format composed of the sub-address (register) that stores the data of the device address of 8bit (address) and each 8bit. "C0" is input from LSB to the start as an address when the serial data is input to LV23401V, the device that controls is specified, and the mode as the data input is fixed. It inputs from LSB in order of data (bit setting) \rightarrow register synchronizing with data clock (CL) after the address is input and the data input can be concluded.

Composition of the DO control data (serial data output) OUT mode

"C1" is input from LSB to the start as an address when the serial data is output from LV23401V, the controlled device is specified, and the mode as the data output is fixed. The subsequent data is output from DO pin synchronizing with lock (CL) after the address is input LSB from one with small register number. The output of data is ended by setting CE pin to Low.

3) Description of the Register of LV23401

Register 00h – *CHIP_ID* – *Chip identify register* (*Read-Only*)

7	6	5	4	3	2	1	0				
ID[7:0]											
Bit 7-0 :	ID[7:0] : 8-bit CHIP ID.										
	LV23400 : 18h										
Note : To abort th	Note : To abort the command, write any value in this register.										

Register 01h - CHIP_REV - Chip Revision identify resister (Read-Only)

7	6	5	4	3	2	1	0			
Revision[7:0]										
Bit 7-0 :	ID[7:0] : 8-bit Chip revision									
ES1 : 00h										
Note : To abort the command, write any value in this register.										

Register 02h - RADIO_STAT - Radio station status (Read-Only)

7	6	5	4	3	2	1	0			
IM_STAT	IM_FS[1:0]		MO_ST	FS[2:0]			TUNED			
Bit 7 :	IM_STAT : State of	of image evasion co	de							
	0 = Eternal operati	on (It is possible to	write it.)							
	1 = The image eva	sion is being proces	ssed. (Writing is im	proper.)						
Note : This bit operates only when Resister 14h_bit7 (IM_EVAS) is set to "1". The data writing processing to LV23401 when this bit is "1" is prohibited.										
Bit 6 - 5 :	5 - 5 : IM_FS : Image bureau electric field strength									
	0 : Image bureau none									
	1:0									
	2 : 0dB to 10dB co	mpared with the ho	pe bureau.							
	3 : The level of the image bureau is +10dB or more stronger than that of the hope bureau.									
Bit 4 :	MO_ST : MONAURAL/STEREO display									
	0 = Stereo receptio	n (Compelling the	monaural setting is	also the same.)						
	1 = Receiving in st	ereo mode.								
Bit 3 - 1 :	FS[2:0] : Field stre	ength								
	0 : Field strength <	10dBµV								
	1 : Field strength 1	0 to 20dBµV								
	2 : Field strength 2	0 to 30dBµV								
	•••									
	3 : Field strength >	· 70dBµV								
Bit 0 :	TUNED : Radio-tu	ining flag								
	0 = No tuning.									
	1 = The tuning.									
Note : When the	ote : When the frequency tuning succeeds, this bit is set. This flag is cleared under the following three conditions.									
	1. $PW_RAD = 0$									
	2. Do the tuning of	the frequency.								
	3. When FLL become	mes outside the cor	rection range							
Only when the T	UNED flag is chang	ged from one into 0	, the RAD_IF inter	rupt flag is set.						
When the status	When the status of TUNED changes from 0 into one, the interrupt is not generated.									

Register 04h – TNPL – Tune position low (Read-Only)

7	6	5	4	3	2	1	0		
TUNEPOS[7:0]									
Bit 7-0 : TUNEPOS[7:0] : Current RF frequency (Low 8bit)									

LV23401V

Register 05h	$n - TNPH_S$	TAT – Tune po	sition high / sta	tus (Read-Onl	v)				
7	6	5	4	3	2	1	0		
ERROR[1:0]		TUNEPOS	S[12:8]						
Bit 7 - 6 :	ERROR[1:0]] : Error code							
	ERROR[1:	0]	Remark						
	0		OK, Comn	nand end (No Erro	r)				
	1		DAC Limi	t Error					
	2		Command	forced End					
	3		Command	busy (executing it	1				
Bit $5 - 0$	TUNEPOS[1	3.8] · Current RF	frequency (High 5	hit)					
Register 06h	D = COUNT	L – Counter lo	w (Read-Only)						
7	6	5	// (Itelua Only)	3	2	1	0		
, COUNT[7:0]	0	5	· · ·	5	2	1	0		
Bit $7 = 0$:	COUNT[7:0]	l · Counter value (I	ow 8hit)						
Bit $I = 0$: COUNT[I : O]: Counter value (Low 801t)									
Register 07h	n – COUNT_	<u>H</u> – Counter H	ligh (Read Onl	y)					
7	6	5	4	3	2	1	0		
COUNT[15:8]									
Bit 7 – 0 :	COUNT[15:	8] : Counter value	(High 8bit)						
Register 08h – IF_OSC – DAC for IF OSC (Read/Write)									
7	6	5	4	3	2	1	0		
IFOSC[7:0]									
Bit 7 – 0 : IFOSC[7:0] : IF Oscillator DAC									
Register 09h – IFBW – DAC for IF – Filter Band width (Read/Write)									
7	6	5	4	3	2	1	0		
, IFBW[7:0]	0	5	I •	5	2	Ĩ	0		
$\operatorname{Bit} 7 = 0$	IFBW[7:0] ·	IF Band-nass Filte	r Band DAC						
Bit / 0.	n D (([/.0]).	II Duilu puss I inc	i Build Brie						
Register 0Bl	n – STEREO	OSC - DACf	for Stereo Deco	oder OSC (Read	l/Write)				
7	6	5	4	2	2	1	0		
7 SDOSC[7:0]	0	5	4	3	2	1	0		
Bit 7 0 :	SDOSC[7:0]	· Staraa Daaadar (Desillator DAC						
Bit 7 = 0.	3D03C[7.0]	. Steleo Decodel (Discillator DAC						
Register 0Cl	$h - RF_OSC$	C – DAC for RF	OSC (Read/W	rite)					
7	6	5	4	3	2	1	0		
RECAP[7:0]	0	5	т Т	5	2	1	0		
$\operatorname{Rit} 7 = 0$	REOSC[7:0]	· RF Oscillator D4	NC .						
$\operatorname{Dit} 7 = 0$.	Ki 050[7.0]	. ICI Oscillator DF	ic						
Register 0D	h – RFCAP	– RF Cap bank	(Read/Write)						
7	6	5	4	3	2	1	0		
RFCAP[7:0]									
Bit 7 – 0 :	RFCAP[7:0]	: RF Oscillator Ca	pacitor bank						
Register 0El	n – AMCAP	l – AM-ANT Co	ap bank1 (Read	l/Write)					
7	6	5	4	3	2	1	0		
AMCAP[7:0]	Ň	5	ŕ	5	2	Ť	v		
Bit $7 = 0$	ΑΜCΑΡ[7·0] · AM Antenna Ca	anacitor bank						
Note · The AM	antenna canaci	itor bank is compos	sed of 12 hits						
High 4 h	its are arranged	in AMCTRL resid	ster.						
8 0			-						

Register 0Fh	n - AMCTRL - A	M Station Contr	ol (Read/W	rite)				
7	6	5	4	3	2	1	0	
AMDIV[2:0]			AM_CAL	ACAP11	ACAP10	ACAP9	ACAP8	
Bit 7 – 5 :	AMDIV[2:0] : AM	1 Clock Divider						
Bit 7 :	AM_CD2 : AM C	lock Divider bit 2.						
Bit 6 :	AM_CD1 : AM C	lock Divider bit 1.						
Bit 5 :	AM_CD0 : AM C	lock Divider bit 0.						
Note : AMCD[2	2:0] uses the frequen	cy of FM belt even f	for the AM belt	to lower.				
Set the m	achine of the AM di	viding frequency to	turning off at H	FM mode.				
	AM_CD[2:0]	Rate of dividing	frequency	Rough estimate A	M-RF frequency (In kHz)		
	0,1	Divider O	FF	0	(FM mode)			
	2	224		3	338 - 483			
	3	160		2	474 – 676			
	4	112		(676 – 966			
	5	80		9	47 – 1353			
	6	64		1	183 – 1692			
	7	48		1:	578 - 2256			
Bit 4 :	NA (0 Fixation)							
Bit 3 – 0 :	AMCAP[11:8] : A	M antenna capacitor	bank.					
Bit 3 :	AMCAP_bit11							
Bit 2 :	AMCAP_bit10							
Bit 1 :	AMCAP_bit9							
Bit 0 :	AMCAP_bit8							

Register 10h – DO_REF_CLK_CNF – Do output mode and reference clock configuration (Read/Write)

							-		
7	6	5	4	3		2	1	0	
IPOL	DO_SEL[1:0]		EXT_CLK_CF	G[1:0]		FS_S[2:0]			
Bit 7 :	IPOL : Indicator (I	DO pin _SD/ST mo	de) polarity						
	0 = SD/ST Active	Low (The same sta	te change as 13pir	n – SD pin / 14pi	in – ST	pin)			
	1 = SD/ST Active	High (State change	opposite to 13pin	- SD pin / 14pi	n – ST	pin)			
Note : This bit do	besn't influence the	polarity of the seria	ıl data.						
Bit 6 -5 :	DO_SEL : DO pin	select (DO pin out	put mode select)						
	DO SEL[1:0]	DO pin							
	00	Serial da	ata output mode						
	01	ST pin n	node						
	10 SD pin mode								
	11	Local po	sition confirmation	on mode					
DO pin is used b	y observing the pos	ition (Upper hetero	dyne / Lower hete	rodyne) of a star	te of Sl	D pin/ST pin bes	ides the serial data	output and local	
OSC.									
* The state of DO) pin changes synch	nronizing with SD p	oin / ST pin when	DO_SEL is set t	to (01b) or (10b).			
* The state of DO) pin changes by th	e position of Local	OSC when DO is	set to (11b). Low	wer het	terodyne = 0, Up	per heterodyne = 1		
* Set DO_SEL to	o (00b) when you o	utput the serial data							
Bit 4 – 3 :	EXT_CLK_CFG[1:0] : External cloc	k setting						
	EXT_CLK_CF	G[1:0]	Reference clock						
	00		Off						
	01 The external clock is supplied								
	10		32768Hz Crystal oscillation						
	11		Unused						

Bit 2 – 0: FS_S[2:0] : SD(Station Detector) operate level setting (distinguishes at the FS level)

LV23401V

Regis	Register 11h – 1F_SEL – 1F frequency selection (Read/Write)																	
7		6		5			4		3		2			1		0		_
FLL_N	10D	AM	IF[2:0]						FMI	F[3:0]								
Bit 7 :		FLL_	MOD : H	FLL oper	ation mo	ode												
		0 : Sn	noothing	filter =	OFF													
		1 : Sn	noothing	filter =	ON													
Bit 6 -4	ł:	AMI	F[2:0] : I	F freque	ncy setti	ng when	AM mo	de is sel	ected									
AMIF[2:0]																		
		0		1		2		3	4		5		6		7			
		20kHz	3	1kHz	42	kHz	531	ĸHz	64k	Hz	75kH	[z	86kHz	z	97kHz			
Bit 3 –	0:	FMII	F[3:0] : I	F freque	ncy setti	ng when	FM mo	de is sele	ected (kł	łz)								
SE_	RF_								FMI	F[3:0]								
AM	SEL	0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15									15						
0	0	112.5	125	137.5	150	162.5	175	187.5	212.5	225	237.5	250	262.5	275	287.5	312.5	325	
0	1	112.5	127.5	142.5	157.5	157.5	172.5	187.5	202.5	217.5	232.5	247.5	262.5	277.5	292.5	307.5	322.5	

Register 12h - REF_CLK_MOD - Slope correction (Read/Write)

7	6	5	4	3	2	1	0		
REFMOD[7:0]									
Bit 7 – 0 : REFMOD[7:0] : Reference clock correction									
Note : As for this register, a set value is different according to the crystal connected with 16pin and the input clock. Inform of a set value of this register									
when you adopt the applications other than an example of applied circuit and recommended parts of this specifications.									

No.A1746-16/24

Register 13	$h - SM_CTR$	L – Statemach	ine control (Re	ead/Write)							
7	6	5	4	3	2	1	0				
FLL_ON	CLKS_SE[2	2:0]		nSD_PM	nIF_PM	DM_SE[1	:0]				
Bit 7 :	FLL_ON : FI 0 = FLL OFF 1 = FLL ON	LL control									
Bit 6 – 4 :	CLKS_SE : C 0 = No select 1 = The source $2 = The source3 = The source4 = The source5 = The source6 - 7 = no second$	 0 = No select 1 = The source of the stereo decoder oscillator is effective. 2 = The source of the IF oscillator is effective. 3 = The source of the AM antenna oscillator is effective. 4 = The source of the FM-RF oscillator is effective. 5 = The source of the AM-RF oscillator is effective. 6 - 7 = no select : Bit[6-4] selects the source of the oscillator. Select the arbitrary source that to be adjusted and to be measured. 									
Note	e : Bit[6-4] select	ts the source of the	e oscillator. Select	the arbitrary source that	t to be adjusted and	l to be measured					
Bit 3 :	nSD_PM : Stereo decoder clock PLL mute 0 = SD PLL OFF (Adjustment) 1 = SD PLL ON (Operation usually)										
Bit 2 :	$nIF_PM : IF$ 0 = IF PLL O 1 = IF PLL O	PLL mute DFF (Adjustment) DN (Operation usu	ally)								
Bit 1 – 0 :	CM_SE : Con 0 = Command 1 = Measurer 2 = Adjustme 3 = Radio tum	mmand mode seled d no select nent mode ent mode ning (reception free	ct quency adjustmen	t) mode							
Note	e : This bit is use TARGET_VA	d to select the con L_L/H.	nmand mode. Sele	ct the arbitrary comman	d to be executed. T	he command is	executed by setting				
Con	nmand execution SD calibration	time : n = 540ms									
	IF calibration RF(FM) tunin	h = 134 ms hg = 105 ms hg = 158 ms									
	* Stand-by at executed the	hg = 158ms time to have prove command.	ided for the above	-mentioned before all pr	ocessing including	reading the reg	ister value after having				

 $Register \ 14h-REF_CLK_PRS-Reference \ clock \ pre-scalar \ (Read/Write)$

7	6	5	4	3	2	1	0			
IM_EVAS	Reserved	WAIT_SEL	A<_FINE	REFPRE[3:0]						
Bit 7 :	IM_EVAS : Image	evasion function C	N/OFF							
	0 = The image burg	eau is not evaded.								
	1 = The image burg	eau is evaded. (reco	ommendation)							
Bit 6 :	Reserved : 0 fixati	on								
Bit 5 :	WAIT_SEL : Selec	ction after tuning at	mute release stand	by time						
	0 = 8ms standby									
	1 = 4ms standby									
Bit 4 :	AM_FINE : Select	ion at AM_ANT ac	ljustment standby ti	ime						
	0 = No standby after	er switch of DAC								
	1 = 2ms standby af	ter switch of DAC								
Bit 3 – 0 :	REFPRE[3:0] : Sta	indard Clock Pre-sc	alar							
	0 = 1:1									
	1 = 1:2									
	2 = 1:4									
	•••									
	15 = 1:32768									

LV23401V

Register 15h - REF_CLK_DIV - Reference clock divider (Read/Write)

7	6	5	4	3	2	1	0			
REFDIV[7:0]	7:0]									
Bit 7 – 0 :	REFDIV[7:0] : Standard clock divider									
	0 : Rate of dividing frequency = 1									
	1 : Rate of dividing frequency = 2									
	•••									
	255 : Rate of dividing frequency =256									

Register 16h – TARGET_VAL_L – Target Value Low Register (Read/Write)

7	6	5	4	3	2	1	0	
TARGET[7:0]		•						
Bit $7 - 0$:	TARGET[7:0] : Target Frequency Low 8bit : Targeted value of radio tuning and oscillator adjustment : Low byte							

Register 17h – TARGET_VAL_H – Target Value High Register (Read/Write)

-		_								
7	6	5	4	3	2	1	0			
TARGET[15:8]										
Bit 7 – 0 :	7-0: TARGET[15:8] : Target Frequency High 8 bit : Targeted value of radio tuning and oscillator adjustment : High byte									
Note : V	Note : When subordinate position 8bit of the frequency of the target is set when it is on, and high rank of the frequency of the target 8bit is set									
to this register afterwards, the command is executed as for the radio power.										
TIDEDOG	1 T I D O D T									

TUNEPOS and TARGET :

- 1kHz interval at AM

- 10kHz interval at FM

Register 18h - RADIO_CTRL1 - Radio control 1 (Read/Write)

7	6	5	4	3	2	1	0			
IQC_CTR	IFPOL	OSC_LEV[1:0]		DEEM	VOL[1:0]		EN_AMHC			
Bit 7 :	IQC_CTR : I/Q ph	ase conversion								
	0 = Operational mo	ode usually (Upper	heterodyne)							
1 = I/Q phase conversion : Image measures (Lower heterodyne)										
Note : When the local is switched as an image measures, it uses it.										
Bit 6 :	IF polarity conversion in State Machine.									
	0 = The IF frequen	cy is added to a loc	al frequency. (Oper	rational usually)						
	1 = The IF frequency is subtracted by a local frequency. (Image measures)									
Bit $5 - 4$:	OSC_LEV[1:0] : R	GF-OSC oscillation	level setting							
	0 = Minimum osci	llation level								
	3 = Maximum osci	illation level	1	1. 1		1				
	* A pos	sible level adjustme	ent and "2" are assu	med to be a recomm	nended value at eac	ch interval of 3dB.				
Bit 3 :	DEEN : De-empha	sis time constant sv	vitch							
	$0 = 50 \mu s$: Japan, S	outh Korea, China,	and Europe							
	$1 = 75 \mu s$: The Uni	ted States								
D:+ 2 1 .	VOI [1.0] . V-h									
BII 2 - 1.	VOL[1.0]. Volum	e setting								
		LU)								
	2 - Maximum (MC)	NI 2)								
	5 – Maximuni (v C)[3]								
Bit 0 :	EN_AMHC : AM	high cut filter ON/C	OFF							
	0 = AM hi-cut filte	r function OFF								
	1 = AM hi-cut filte	r function ON								

7	6	5	4	3	2	1	0	
Reserved	Reserved	EN_AMM	Reserved	IF_AGC_LEV	RF_AGC_I	LEV[1:0]	EN_RFAGC	
Bit 7 :	Reserved : 0 fixa	ation						
Bit 6 :	Reserved : 1 five	ation						
Bit 0.		ation						
Bit 5 :	EN_AMM : AM	1 mute ON/OFF						
	0 = AM mute fu	nction OFF						
	1 = AM mute fu	nction ON						
Bit 4 :	Reserved : 0 fixation							
Bit 3 :	IF_AGC_LEV :	IF-AGC level cont	rol					
	0 = AGC slow n	node						
	1 = AGC first m	node						
Bit 2 – 1 :	RF_AGC_LEV[[1:0] : RF-AGC leve	el control					
	0 = AGC slow n	node						
	1 = AGC norma	l mode						
	3 = AGC first m	node						
Bit 0 :	EN_RFAGC : R	F-AGC ON/OFF						
	0 = AGC OFF							
	1 = AGC ON (0)	Operational usually)					

Register 19h – RADIO_CTRL 2 – Radio control 2 (Read/Write)

Register 1Ah – RADIO_CTRL3 – Radio control 3 (Read/Write)

7	6	5	4	3	2	1	0		
AMOSC_GA[2:	0]		AMOSC_DL[2:0)]		AMAGC_SP[1:0]		
Bit 7 – 5 :	AMOSC_GA[2:0]	: AM antenna oscil	llator gain control						
	0 = Minimum level								
	7 = Maximum level								
Bit 4 – 2 :	AMOSC DL[2:0] : AM oscillator detection level								
	0 = Minimum level	1							
	7 = Maximum level								
Bit 1 – 0 :	AMSGC_SP[1:0]:	AM oscillator AG	C speed						
	0 = Slow mode								
	3 = First mode								

Register 1Ch – STEREO_CTRL1 – Stereo control 1 (Read/Write)

7	6	5	4	3	2	1	0			
CRC[1:0]		SS_SP2	SS_SP1	NA	PICAN_EN	FOSTEREO	ST_M			
Bit 7 – 6 :	CRC[1:0] : Captur	e range control								
	0 = Narrowband m	node								
	1 = Recommended	l value								
	3 = Wideband mode									
Bit 5 :	SS_SP2 : STEREC) sensitivity speed	2 (First mode)							
	0 : First mode = O	FF								
	1 : First mode = O	N - Recommended	value							
Bit 4 :	SS_SP1 : STEREO) sensitivity speed	1 (Slow mode)							
	0 : Slow mode = C	OFF - Recommende	d value							
	1 : Slow mode = C	DN								
Bit 3 :	NA									
Bit 2 :	PICAN_EN : Pilot	cancel function O	N/OFF							
	0 = OFF									
	1 = ON									
Bit 1 :	FOSTEREO : Con	npulsion stereo								
	0 = Operational us	ually								
	1 = Compulsion st	ereo mode								
Bit 0 :	ST_M : STEREO/	MONAURAL setti	ing							
	0 = Stereo function	n ON (Operational	usually)							
	1 = Stereo function	OFF (Compulsion	n monaural)							

Register 1Dh - STEREO_CTRL2 - Stereo control 2 (Read/Write)

7	6	5	4	3	2	1	0			
NA	NA			Reserved	NA	CPAJ[1:0]				
Bit 7 – 5 :	NA									
Bit 4 :	FOAMAGC									
	0 : Compulsion AGC = OFF									
	1 : Compulsion AGC = ON									
Bit 3 :	Reserved : 0 fixatio	on								
Bit 2 :	NA									
Bit 1 – 0 :	CPAJ[1:0]: Channel separation adjustment									
	0 = Sub career level minimum									
	7 = Sub career level maximum									

Register 1Eh - RADIO_CTRL4 - Radio control 4 (Read/Write)

7	6	5	4	3	2	1	0		
SOFTST[2:0]			SOFTMU[2:0]			LEVSHIF	FO_SOFTT		
Bit 7 – 5 :	SOFTST[2:0] : Soft stereo function setting								
	0 : Soft stereo func	tion = OFF							
	7 : Soft stereo func	tion = Lev7 (Max)							
Bit 4 – 2 :	SOFTMU[2:0] : So	oft audio mute func	tion setting						
	0 : Soft mute funct	ion = OFF							
	7 : Soft mute funct	ion = Lev7 (Max)							
Bit 1 :	LEVSHIF : Audio	line DC level shift							
	0 = Normal DC lev	vel (V _{CC} =5.0V sup	oply)						
	1 = DC level shift ((V _{CC} =9.0V supply	r)						
Bit 0 :	FO_SOFTST : Cor	npulsion soft stered	o function setting						
	0 : Compulsion soft stereo function = ON								
	1 : Compulsion soft stereo function = OFF								
	* Set it to "0" when	n corresponding to 1	European immunity	y standard.					

Register 11	Fh – RADIO_XT	RL5 – Radio con	ntrol 5 (Read/W	⁷ rite)					
7	6	5	4	3	2	1	0		
RF_SEL	IFRIM	nAGC_SPD	SE_FM/AM	AMP_CTR	MUTE	NA	PW_RAD		
Bit 7 :	RF_SEL : RF fre 0 = Normal (Japa 1 = Eastern Euro	quency range settin an / USA / Europe) pe (65MHz to 74M	g Hz)						
Bit 6 :	IFRIM : IF oscill 0 : Max = 350kH 1 : Max =150kH	ator limit setting [z (FM mode) [z (AM mode)							
Bit 5 :	nAGC_SPD : IF 0 = Hi speed (FM 1 = Normal (AM	AGC speed setting 1 mode) mode)							
Bit 4 :	SE_FM/AM : AN 0 = FM mode 1 = AM mode	M/FM mode select							
Bit 3 :	$AMP_CTR : Automotion OFF$ $1 = ON$	dio amplifier ON/O	FF						
Bit 2 :	MUTE : Audio n 0 = Mute ON 1 = Mute OFF	nute function ON/O	FF						
Bit 1 :	AM_CAL : AM calibration (Oscillation mode) 0 = AM calibration impropriety (Operational usually) 1 = AM calibration mode (AM antenna frequency setting time) Note : Set this bit to "1" when you measure the frequency of the AM antenna.								
Bit 0 :	PW_RAD : Radi 0 = Power OFF (1 = Power ON	o circuit power Power save)							
* 1 : After the * 2 : When th * 3 : The cont * 4 : The stan * 5 : Tune RF * 6 : A built-i	V_{CC} voltage is imp e V _{CC} voltage is dro ent of the register ch dby time of 1200ms i again after the powe n each oscillator inclu-	ressed, PW_RAD o pped once, content ange set at the power is necessary, the circ r save returns. uding the RF bureau	of Register 1Fh_bit(of registers other th er save becomes eff cuit with stability () u departure and all o) is automatically s nan PW_RAD becc fective, and any con PW_RAD = $0 \rightarrow 1$ other analogue part	et to "0" in 50ms. omes irregular. mmand processin) after the power t circuit operation	g cannot be execu save returns. stop at the power	ted.		

* 7 : The standby time of 200ms is necessary after the switch of the band to AM before counting IF after adjusting the first RF.

4) C²B communication timing specification

Serial data input (IN1/IN2) tSU, tHD, tEL, tES, tEH \ge 0.75 μ s tLC<0.75 μ s

CL : Normally Hi

CL : Normally Low

Serial data output (OUT) tSU, tHD, tEL, tES, tEH >0.75 µs tDC, tDH <0.35 µs

(Note) DO pin is an Nch open drain pin, so that the data varying time (tDC and tDH) differs depending on the pull-up resistance and substrate capacity.

Serial data timing

<< When CL stops at the "L" level >>

<< When CL stops at the "H" level >>

Parameter	Symbol	Pin	Conditions	Min	Тур	Max	Unit
Data setup time	tSU	DI, CL		0.75			μS
Data hold time	tHD	DI, CL		0.75			μS
Clock "L" level time	tCL	CL		0.75			μS
Clock "H" level time	tCH	CL		0.75			μS
CE wait time	tEL	CE, CL		0.75			μS
CE setup time	tES	CE, CL		0.75			μS
CE hold time	tEH	CE, CL		0.75			μS
Data latch change time	tLC					0.75	μS
Data output time	tDC	DO, CL	Differs depending on the pull-up resistance			0.35	μS
	tDH	DO, CE	and substrate capacity				

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2010. Specifications and information herein are subject to change without notice.