

SANYO Semiconductors **DATA SHEET**

An ON Semiconductor Company

LV5213LP — 3ch LED Driver

Overview

This LV5213LP is LED driver for cell phones. Each LED driver gets a constant current controlled. The brilliance control becomes possible by changing the current value that flows to LED by the serial bus control.

LV5213LP can achieve various effects of the illumination of a full-color LED display.

Functions

- Three color LED driver circuits.
- The LED current can be switched independently in 5-bit units (0 to 5mA).
- Independent on/off control of the three LED drivers (independent control of the 3 RGB colors).
- Each LED drive current level can be adjusted independently over the serial bus.
- Miniature package.
- Thermal shutdown circuit.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} max		6.0	V
Supply voltage 2	V _{DD} max		6.0	V
Allowable power dissipation	Pd max	Mounted on the specified board *	5.5	W
Maximum input current	V _{IN} B		6.0	V
Maximum output current	I _O max		12.0	mA
STBY pin voltage	VSTBY		6.0	V
Operating temperature	Topr		-30 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

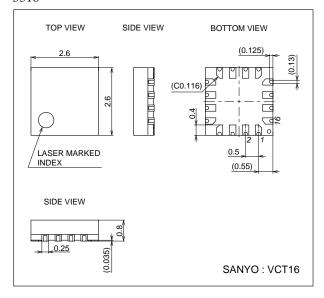
The specified board *: $50 \text{mm} \times 40 \text{mm} \times 0.8 \text{mm}$ glass epoxy (4-layer circuit board).

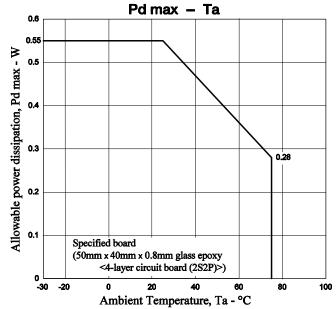
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	Vcc		3.0 to 4.5	V
Supply voltage 2	V_{DD}		1.6 to 3.0	V

Electrical Characteristics

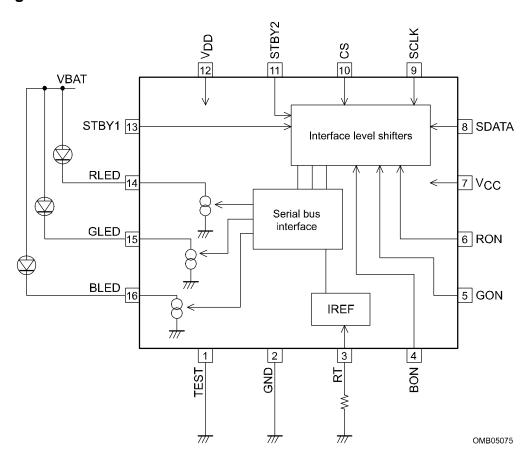

Operating Characteristics at $V_{CC}=3.7V,\,V_{DD}=1.8V,\,RT=82\Omega,\,Ta=25^{\circ}C$


Danamatan	Cumbal	Conditions		1.1-4			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Overall Characteristics							
Current drain 1	I _{CC} 1	STBY = L *1			5	μΑ	
Current drain 2	I _{CC} 2	STBY = H, RON = GON = BON = L *1 With the default serial data settings		0.6	2	mA	
High-level input voltage 1	V _{IN} H1	Serial data signals, each of the "ON" pins	VDD × 0.8			V	
Low-level input voltage 1	V _{IN} L1	Serial data signals, each of the "ON" pins	0		$\text{VDD} \times 0.2$	V	
High-level input voltage 2	V _{IN} H2	STBY pin	VDD × 0.8			V	
Low-level input voltage 2	V _{IN} L2	STBY pin	0		$\text{VDD} \times 0.2$	V	
LED Driver Block							
Minimum output current 1	I _{min} 1	When the serial data is 00000, $V_0 = 0.5V$		0.54		mA	
Maximum output current 1	I _{max} 1	When the serial data is 11111, $V_0 = 0.5V$		4.74		mA	
Linearity error	LE	*2	-3		3	LSB	
Differential linearity error	DLE	*3	-2		2	LSB	
Maximum output current	ΔIL	At the maximum current setting, V _O = 2 to 0.15V	-10			%	
Leakage current	I _{leak}	Drivers: off, V _O = 5V			1	μА	

^{*1.} The sum of the $V_{\mbox{\footnotesize{CC}}}$ and $V_{\mbox{\footnotesize{DD}}}$ current drain values.

Package Dimensions

unit : mm 3318

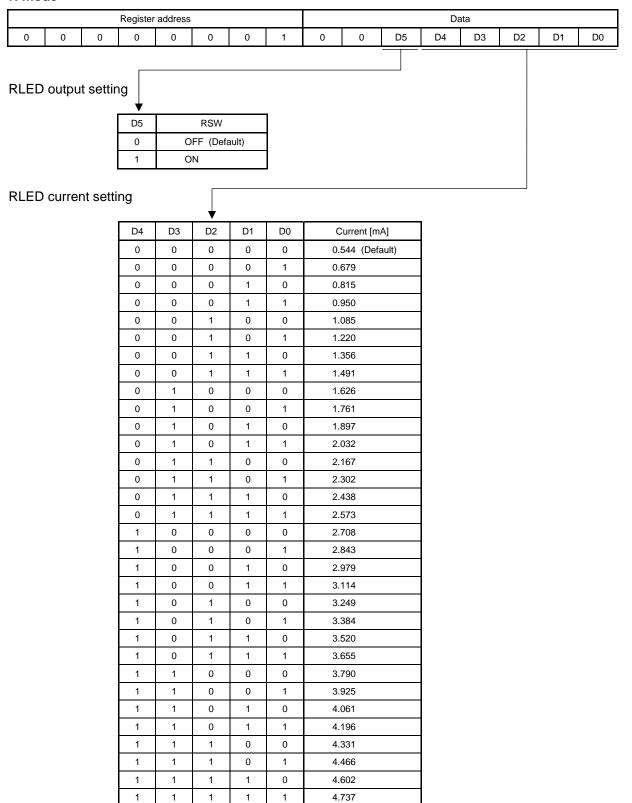


^{*2.} Linearity error: The difference between the actual and ideal current values.

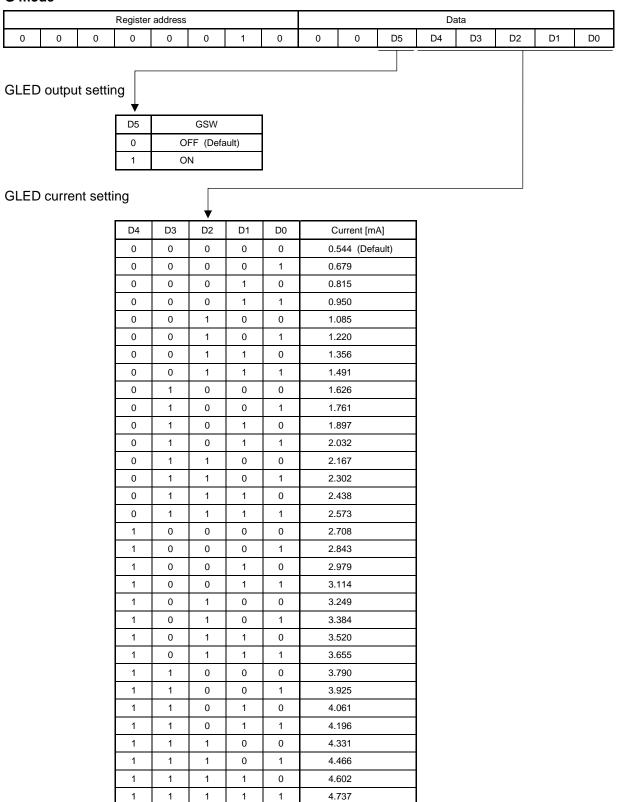
^{*3.} Differential linearity error: The difference between the actual and ideal amounts when one low-order bit value is added.

Block Diagram

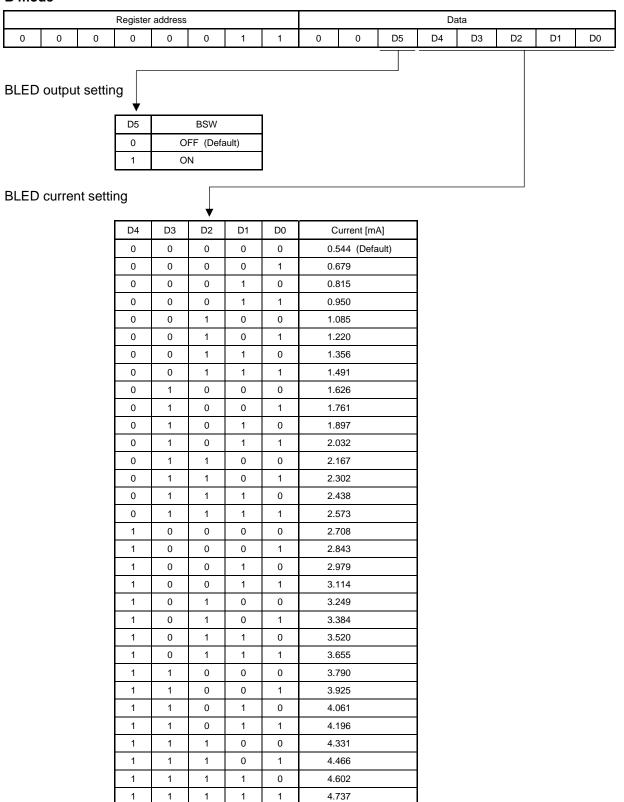
Note 1: The TEST pin must be tied to ground.


Serial Data Map

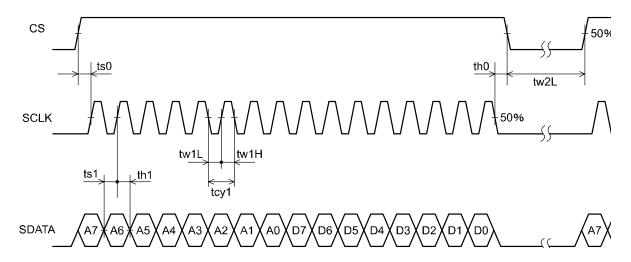
			Register	address							Da	ata			
A7	A6	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0		×	×	RSW			R[4:0]		
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
								×	×	GSW			G[4:0]		
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
_							_	×	×	BSW			B[4:0]		
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0


Upper row: Register name, Lower row: default value

Serial Data Mode Settings


R mode

G mode


B mode

Pin Functions

Pin No.	Pin	Function
1	TEST	Test signal input. This pin must be connected to ground.
2	GND	Ground
3	RT	Reference current setting resistor connection
4	BON	External blue LED control input
5	GON	External green LED control input
6	RON	External red LED control input
7	Vcc	Circuit system power supply
8	SDATA	Serial data signal input
9	SCLK	Serial clock signal input
10	CS	Chip select
11	STBY2	Standby mode 2 control
12	V _{DD}	Control system (RON, GON, BON, SDATA, SCLK, and CS pins) power supply
13	STBY1	Standby mode 1 control
14	RLED	Red LED driver output
15	GLED	Green LED driver output
16	BLED	Blue LED driver output

Serial Data Transfer Timing Conditions

Parameter	Symbol	Conditions	min	typ	max	unit
Cycle time	tcy1	SCLK clock period	330			nS
Data setup time	ts0	The CS setup time from the SLCK rising edge	150			nS
	ts1	The SDATA setup time from the SLCK rising edge	100			nS
Data hold time	th0	The CS hold time from the SLCK falling edge	300			nS
	th1	The SDATA hold time from the SCLK rising edge	100			nS
Pulse width	tw1L	SCLK low period pulse width	150			nS
	tw1H	SCLK high period pulse width	150			nS
	tw2L	CS low period pulse width	1.0			μS

Data length:

16bits

Clock frequency:

Up to 2MHz

After 16 clock cycles have been input with CS at the high level, SDATA is acquired on the fall of CS.

Note: SDATA will not be acquired if 15 or fewer clock cycles were input during the CS high-level period. If 17 or more clock cycles are input, the SDATA for the first 16 cycles are acquired and the SDATA following those 16 cycles is ignored.

Power Supply Application

- 1. Either bring up V_{CC} and V_{DD} at the same time, or bring up V_{CC} first then V_{DD}.
- 2. Then, set the serial data. (After the serial data has been set, a period of about 2µs is required as the startup time for the IC internal circuits.)
- 3. Finally, clear the STBY pin states.

Pin Descriptions and Equivalent Circuits

Pin No.	Symbol	Equivalent circuit	Description
4 5 6	BON GON RON	VCC VDD RON 10kΩ GND OMP05194	Control inputs for the three external colored LEDs When an RSW, GSW, or BSW bit in the serial data is set to 1, the corresponding LED will be on when the voltage applied to the corresponding pin is high, and off when the voltage applied is low.
8 9 10	SDATA SCLK CS	VCC VDD RON 10kΩ GND OMP05195	Serial data system inputs
3	RT	VCC RT 15pF GND 10kΩ OMP05196	Reference current setting resistor connection A reference current is created by connecting an external resistor between this pin and ground. The pin voltage is roughly 1.2V. The LED driver current can be changed by changing this current value.
14 15 16	RLED GLED BLED	RLED VCC SMP05197	Driver outputs for the three color LEDs Feedback is applied to control the current flowing in the output transistors to be the set value. Each of the driver output current levels can be set independently with the serial data.

Continued on next page.

Continued from	Continued from preceding page.									
Pin No.	Symbol	Equivalent circuit	Description							
1	TEST	VCC TEST 50.5kΩ GND OMP05198	Test signal input This pin must be tied to ground.							
11 13	STBY2 STBY1	VCC STBY 10kΩ GND OMP05199	Standby mode pins The LV5213LP goes to standby mode when both the STBY1 and STBY2 pins are at the low level.							
7	VCC		Circuit system power supply							
12	V _{DD}		Control system (serial data inputs and "ON" inputs) power supply							
3	GND		Ground							

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, of otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 2010. Specifications and information herein are subject to change without notice.