

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

Bi-CMOS LSI Operating Mode Switching Type Step-Up/Down Converter

Overview

The LV5256GP is an operating mode switching type step-up/step-down converter that can switch the operating mode by using the external signal.

Functions

- Built-in Pch gate drive power supply
- Output short-circuit detection by monitoring the input side of the error amplifier
- OCP timer function
- Software start function
- Support for tracking function
- Built-in thermal protection circuit
- Built-in UVLO
- \bullet ON/OFF function: Off-time input current smaller than $1\mu A$
- Oscillation frequency : 300kHz to 1.5MHz Oscillation frequency can be set by an external resistor

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
	Symbol	Conditions	Raungs	Unit
Maximum input voltage	V _{IN} max		12	V
	V _{DD} max		3.6	V
Maximum output voltage	V _O max		16	V
Maximum output current	I _O max	Between OUT and SW	650	mA
Allowable input pin voltage	V _{CONT} max	RT, FB, IN, OCP, SS, ONOFF, TRAC_IN, DU_SEL, OPC_SEL pins	V _{DD}	V
Allowable power dissipation	Pd max	Mounted on a specified board *	0.8	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-40 to +125	°C

* Specified board : 50mm \times 40mm \times 0.8mm, glass epoxy 4-layer circuit board (2S2P).

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

> SANYO Semiconductor Co., Ltd. www.semiconductor-sanyo.com/network

Recommended Operating Conditions at $Ta = 25^{\circ}C$

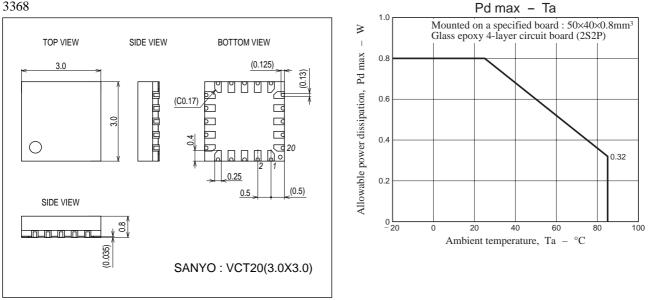
Parameter		Symbol	Conditions	Ratings	Unit
Input voltage range		V _{IN}		4.5 to 10	V
		V _{DD}		2.9 to 3.1	V
Output voltage range	Step-down	V1	When in normal operation mode	1.0 to V _{IN}	V
		V2	When in tracking operation mode	0 to V _{IN}	V
	Step-up	VOUT1	When in normal operation mode	5.3 to 14	V
		VOUT ²	When in tracking operation mode	V _{IN} to	V
Output current		10		600	mA

Electrical Characteristics at Ta = 25°C, V_{DD} = 3.0V, V_{IN} = 6.0V

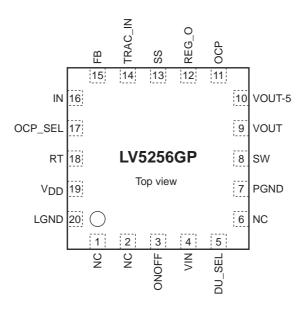
Parameter	Symbol	Conditions	Ratings			Unit
i didileter	Cymbol		min	typ	max	Onic
Reference voltage						
Reference voltage for comparison	Vref		-1%	1.0	-1%	V
Error amplifier		-				
Input voltage range	Vrange		0		1.5	V
Open loop voltage gain	Av		60	110		dB
Unity-gain bandwidth	Ft		2	8		MHz
Output source current	lfboL	IN = 2.0V, FB = 1.0V	2			mA
Output sink current	lfboH	IN = 0V, FB = 0V	100			μA
IN pin source current	liniL	IN = 0V		100	300	nA
FB pin output range	R_fb		0.1			V
TRAC_IN pin source current	ItracL	IN = 0 to Vref		100	300	nA
TRAC_IN pin input operation range	R_trac		0.1		Vref-0.1	V
Logic input pin block 1 (ONOFF)						
Input voltage H level	VoniH		2.8			V
Input voltage L level	VoniL				0.5	V
Input current H level	IoniH	ONOFF = 3.3V		0		μΑ
Input current L level	IoniL	ONOFF = 0V		0		μA
Logic input pin block 2 (DU_SEL)						
Input voltage H level	VduiH		2.8			V
Input voltage L level	VduiL				0.5	V
Input pull-down resistance	Rdu			200		kΩ
Logic input pin block 3 (OCP_SEL)				•		
Input voltage H level	VocpiH		2.8			V
Input voltage L level	VocpiL				0.5	V
Input pull-down resistance	Rocp			100		kΩ
Soft start	•			•		
Soft start source current	IssH	SS = 0V	7	10	13	μA
Soft start sink current	IssL	When reset, SS = 1.0V		1		mA
Short-circuit protection, SCP			·I			
Short-circuit protection detection voltage 1	Vsc1	OCP_SEL=GND/OPEN *1		× 0.8		V
Short-circuit protection detection voltage 2	Vsc2	OCP_SEL=REG_0 *1		× 0.4		V
SCP comparator offset voltage	SCPosf	TRAC_IN = 0.7V, operation starts from 0.9V.	-40		40	mV
OCP pin source current	locpH	When in short-circuit protection detection mode		10		μA
OCP pin sink current	locpL	When in normal operation mode, OCP = 1.0V	0.3	1	3	mA
OCP timer latch voltage	Vocp		1.1	1.2	1.3	V
			1			

Continued on next page.

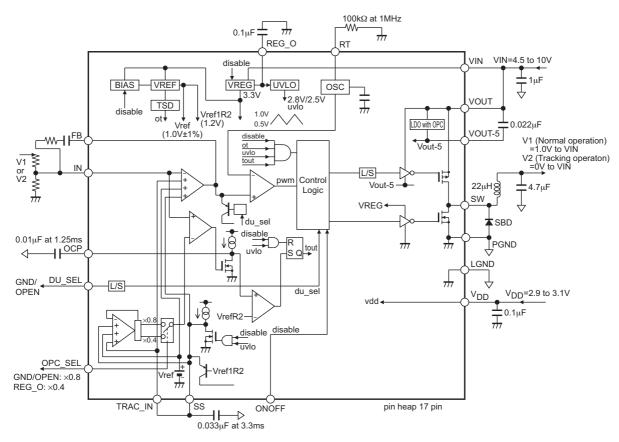
			of Constitutions		Ratings		
Parameter		Symbol	Conditions	min	typ	max	Unit
Therml protection, UV	′LO		-			-	
Thermal protection ope	rating	Tot	Design guarantee value *2		175		°C
temperature			R 1 H 10				
Thermal protection hyst		Dot	Design guarantee value *2	-	20		°C
UVLO lock release volta	age 1	VuvloH	REG_O monitored		2.8		V V
UVLO lock voltage 1		VuvloL	REG_O monitored		2.5		-
UVLO lock release volta	age 2	VuvloH2	V _{IN} pin voltage		3.8		V
UVLO lock voltage 2		VuvloL2	V _{IN} pin voltage		3.5		V
Oscillator		-				4.0	
Oscillation frequency		F	RT = 100kΩ	0.8	1	1.2	MHz
Oscillation frequency ra	-	R_F		0.3		1.5	MHz
Triangular wave lower-s threshold value	side	VtriL	RT = 100kΩ		0.5		V
Triangular wave upper-	side	VtriH	RT = 100kΩ		1.0		V
threshold value							
Power supply pin bloc	ck	[I.			1	
Current drain		lvin1	V _{IN} pin, when converter is in 1MHz operation mode.		2	4	mA
		lvin2	$V_{\mbox{IN}}$ pin, when in ONOFF stop mode.			1.0	μΑ
		lvdd1	$V_{\mbox{\scriptsize DD}}$ pin, when in ONOFF stop mode.			1.0	μΑ
Vout-5V Regulator							
Output voltage		Voutm5	Vout-5V regulator, VOUT = 10.0V	VOUT-4.5	VOUT-5	VOUT-5.5	V
Drooping current		lvoutm5	Vout-5V regulator		20		mA
Internal 3.3V Regulato	or						
Output voltage		Vreg_o	lreg_o = 2.0mA	3.0	3.3	3.6	V
Drooping current		lreg_o	$Vreg_o = 2V, V_{IN} = 5V$		10		mA
Output characteristics	5						
Main switch on resistan	ice (Pch)	RonH	V _{IN} = 5V		0.7		Ω
Main switch on resistan	ice (Nch)	RonL	V _{IN} = 5V		0.7		Ω
Through current prevention dead time		Tdead			25		ns
Maximum on-duty (step-down)		DMAX1	RT = 100kΩ		100		%
Maximum on-duty (step-up)		DMAX2	RT = 100kΩ		85		%
Converter characteris	tics						
Efficiency	Step-down	η1	V _{IN} = 5.0V, V = 4.6V, I _O = 200mA		93		%
	Step-up	η2	V _{IN} = 5.0V, VOUT1 = 6.6V, I _O = 200mA		93		%
Line regulation	Step-down	ΔV1/V _{IN}	V _{IN} = 4.5 to 8.6V, V1 = 4.6V, I _O = 200mA	0			%
	Step-up	۵۷OUT1/VIN	V _{IN} = 4.5 to 5.5V, VOUT1 = 6.6V, I _O = 200mA	0			%
Load regulation	Step-down	۵V1/IO	$V_{IN} = 8.4V, V1 = 4.6V, I_O = 0 \text{ to } 200\text{mA}$	0			
	1	-	-	1			


 $^{\ast}1$ IN pin voltage is the detection point. The lowest voltage among Vref, TRAC_IN, and SS is used.

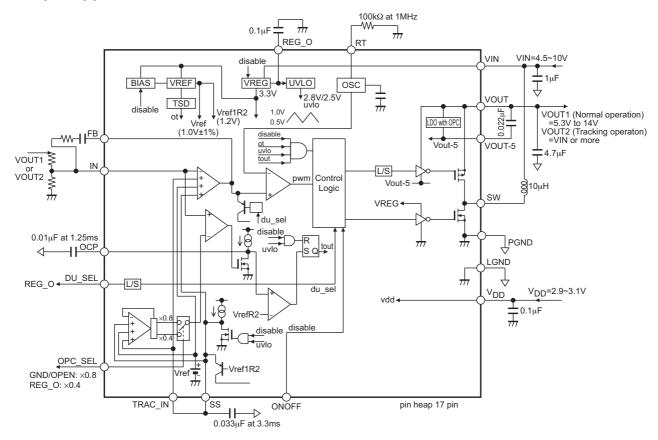
*2 Design guarantee value, and no measurement is performed.


Package Dimensions

unit : mm (typ)



Pin Assignment

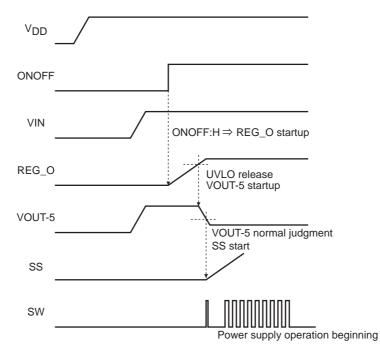


LV5256GP

Block Diagrams and Sample Application Circuit 1 (Step-down)

Sample Application Circuit 2 (Step-up)

Pin Functions							
Pin No.	Pin Name	Description	Equivalent Circuit				
1 2 6	NC	No connection. Must be kept open.					
3	ONOFF	ON/OFF signal input pin. Threshold level is TTL level. Maximum withstand voltage is V _{DD.}					
4	VIN	Power supply pin of the IC. Apply the input voltage.					
5	DU_SLE	Step-up/down switching pin. The IC goes in step-up mode by connecting this pin to REG_O pin, and in step-down mode by connecting this pin to GND or leaving this pin open. An internal pull-down resistor ($200k\Omega$) is provided between DU_SEL and GND pins.					
7	PGND	Power ground pin. The source of the output transistor (Nch-MOSFET) is connected.					
8	SW	Switching element. A 0.7Ω (typ) Nch switch is inserted between this pin and PGND, and a 0.7Ω (typ) Pch switch is connected between this pin and VOUT. In step-down mode, insert an inductor between the switching node and power supply output, and in step-up mode insert an inductor between this pin and power supply input.					
9	VOUT	Source potential of the internal Pch-MOSFET. In step-down mode, apply the input voltage. In step-up mode, apply the power supply voltage.					
10	VOUT-5	Internal Pch-MOSFET gate suplly voltage generation pin. Used to generate a voltage with a level equal to VOUT pin voltage-5V by the internal LDO with OCP.					
11	OCP	Overcurrent detection timer setup pin. Connect a capacitor between this pin and ground to define the time interval between the beginning of the overcurrent state and the IC latches off. The capacitor is charged by the 10μ A internal constant current source. If the OCP_SEL pin is kept open or connected to GND, the IC identifies a short-circuit and starts the timer counter when the voltage at the IN pin falls below 0.8 times the voltage of Vref, TRAC_IN or SS, whichever is lower. If the OCP_SEL pin is connected to REG_O, the IC compares the voltage at the IN pin with 0.4 times the voltage. When the voltage at this pin goes beyond 1.25V, the IC latches off. The latch-off state is reset by the off signal at the ON/OFF pin or the UVLO lock.	VIN $\overrightarrow{REG_O}$ $10\mu A$ $10k\Omega$ $10k\Omega$ 11 $10k\Omega$ 11 $10k\Omega$ 11 $10k\Omega$ 11 $10k\Omega$ 10k				
12	REG_O	3.3V regulator output pin.					

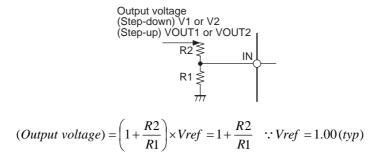

Continued on next page.

Continued	I from preceding pag	e.	
Pin No.	Pin Name	Description	Equivalent Circuit
13	SS	Capacitor connection pin for soft start. The capacitor connected to this pin is charged by the internal 10μ A constant current. The interval during which this voltage reaches Vref is called the soft start period. The voltage is clipped to approx. 2V after the soft start. This pin is pulled down to the ground level when ONOFF/UVLO lock mode.	VIN $\overrightarrow{REG_O}$ $10\mu A$ $10\mu A$ 10μ
14	TRAC_IN	Reference voltage input pin for tracking power supply operating. A voltage from 0V up to Vref applied to this pin serves as the reference voltage for determining the output voltage. This pin must be connected to the SS pin when it is not to be used.	VIN THEG_O THEG_O THEG_O THEG_O THEG_O
15	FB	Error amplifier output pin. Connect a phase compensation component between this pin and IN pin.	REG_O 100μA 100μA 1.25V 1
16	IN	Output voltage input pin. Apply the resistor divided output voltage to this pin.	VIN REG_O SS TRAC_IN Vref (16 REG_O REG_O REG_O
17	OCP_SEL	OCP detection voltage switching pin, A 100kΩ pull-down resistor is provided between OCP_SEL and GND. The IC enters the 0.8 times detection mode when this pin is connected to GND or kept open and enters the 0.4 times detection mode when the pin is connected to the REG_O pin.	

Continued on next page.

Continued from preceding page.							
Pin No.	Pin Name	Description	Equivalent Circuit				
18	RT	Oscillation frequency setting pin. Connect a resistor between this pin and GND. A 100kΩ resistor causes the oscillator to oscillate at 1MHz (typ.).					
19	V _{DD}	Logic system power supply. Apply 3.0V±0.1V to this pin from an external source.					
20	LGND	Logic system ground pin. All voltages are measured with respect to this voltage level.					

Startup Sequence



* Be sure to set the ONOFF to 0V when starts or stops V_{DD} . And apply voltage to VIN after V_{DD} started up.

Output Voltage Setting Method

The LV5256GP can produce any arbitrary output voltage. The output voltage is set by the resistor inserted between the IN pin (pin 16) and GND, and IN pin and output voltage.

The calculating formula for setting the output voltage by using the output voltage setup lower-side resistor R1 and the output voltage setup upper-side resistor R2 is as follows:

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2009. Specifications and information herein are subject to change without notice.