

SANYO Semiconductors DATA SHEET

Overview

The LV5609LP is vertical clock driver for CCD.

Functions

- Ternary output ×2ch
- Binary output ×2ch
- SHT output ×1ch
- Output ON resistance : 30Ω typ

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = VM = 0V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		6	V
	VH max		20	V
	VL max		-10	V
	VH-VL max		24	V
Allowable power dissipation	Pd max	with specified substrate *	0.8	W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-40 to +125	°C

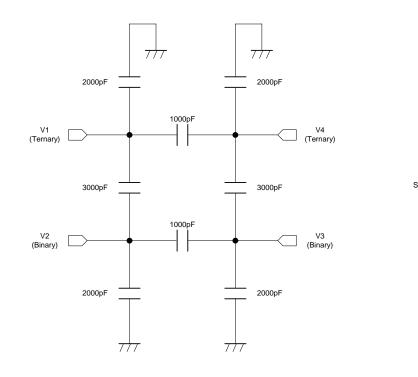
* : Specified substrate : 40×50×0.8mm³, glass epoxy four-layer (2S2P) board

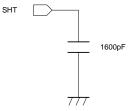
Allowable Operating Ratings at $Ta = 25^{\circ}C$, $V_{SS} = VM = 0V$

Parameter	Querrahad	Our differen		Ratings	11-3	1.1
	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}		2.0	3.3	5.5	V
	VH			15	17	V
	VL		-8.5	-7.5	-4	V
	VH-VL				23.5	V
CMOS input High voltage	VINH		0.8V _{DD}		V _{DD}	V
CMOS input Low voltage	VINL		-0.1		0.4	V

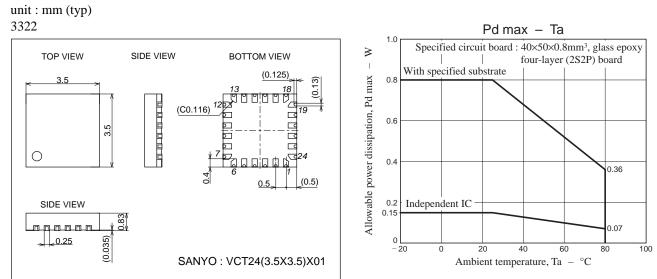
- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

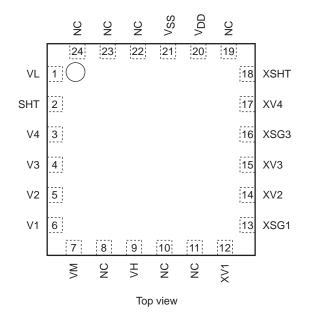

LV5609LP


Electrical Characteristics at Ta = 25°C, V_{DD} = 3.3V, V_{SS} = 0V, VH = 15V, VL = -7.5V, VM = 0V,

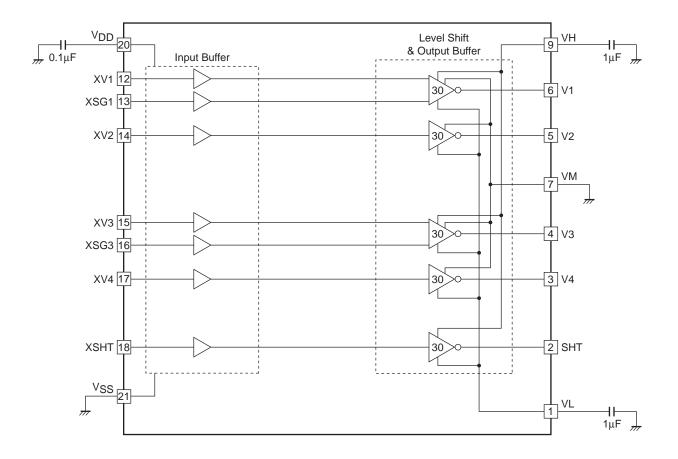
		herwise specified		Datiana			
Parameter	Symbol	Conditions	min	Ratings			
Otatia aureat daaia			min	typ	max	A	
Static current drain	IDD	V _{DD} pin			1	μA	
	IH	VH pin			10	μA	
	IL	VL pin			1	μA	
Dynamic current drain	IDD	V _{DD} pin See *1 and *2.			1	mA	
	IH	VH pin See *1 and *2.		2.4	4.5	mA	
	IL	VL pin See *1 and *2.		3	5	mA	
Output ON resistance	RL	I _O = +10mA		20	30	Ω	
	RM	$I_{O} = \pm 10 \text{mA}$		30	45	Ω	
	RH	I _O = -10mA		30	40	Ω	
	RSHT	I _O = -10mA		30	40	Ω	
Propagation delay time	TPLM	No load			200	ns	
	ТРМН	No load			200	ns	
	TPLH	No load			200	ns	
	TPML	No load			200	ns	
	TPHM	No load			200	ns	
	TPHL	No load			200	ns	
Rise time	TTLM VL \rightarrow VM V1, V3 See *1.				800	ns	
		$VL \rightarrow VM V2, V4 See *1.$			800	ns	
	ТТМН	$VM \rightarrow VL V1, V3 See *1.$			800	ns	
	TTLH	$VL \rightarrow VH$ SHT See *1.			200	ns	
Fall time	TTML	TTML VM \rightarrow VL V1, V3 See *1.			800	ns	
		$VM \rightarrow VL V2, V4 See *1.$			800	ns	
	ТТНМ	$VH \rightarrow VM V1, V3$ See *1.			800	ns	
	TTHL	$VH \rightarrow VL$ SHT See *1.			200	ns	


 $^{\ast}\mathrm{1}$: Refer to the CCD equivalent load shown below.

*2 : Refer to the timing waveform on Page 7.

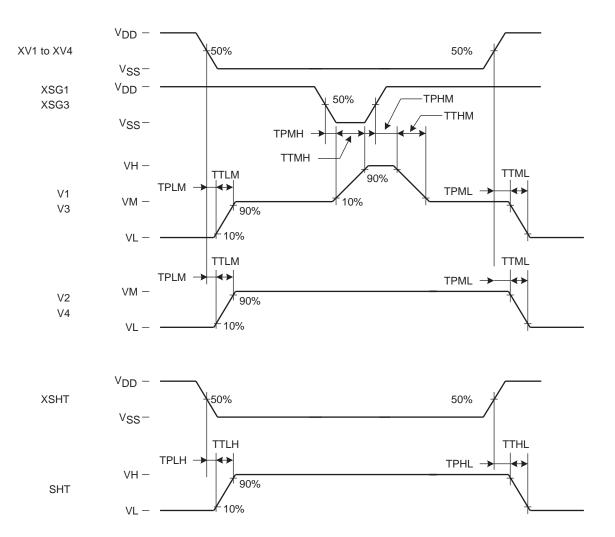


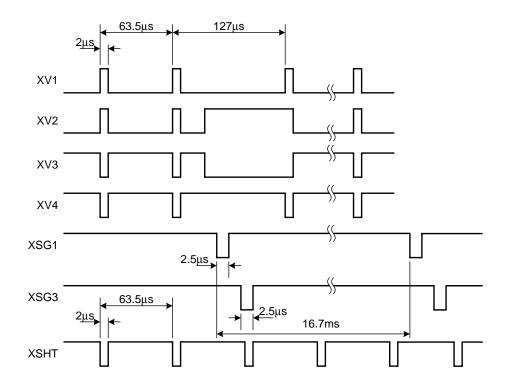
Package Dimensions


Pin Assignment

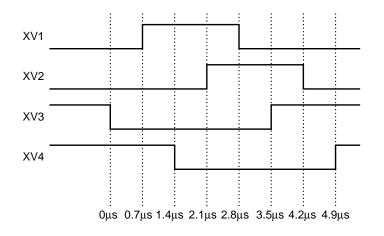
Pin Function

Pin No.	Name	Mode				
1	VL	Lo power for output (-7.5V system)				
2	SHT	Level shift output (binary VH, VL)				
3	V4	Level shift output (binary VM, VL)				
4	V3	Level shift output (ternary VH, VM, VL)				
5	V2	Level shift output (binary VM, VL)				
6	V1	Level shift output (ternary VH, VM, VL)				
7	VM	GND for output				
8	NC					
9	VH	Hi power supply for output (15V system)				
10	NC					
11	NC					
12	XV1	V1 transfer pulse input				
13	XSG1	V1 read pulse input				
14	XV2	V2 transfer pulse input				
15	XV3	V3 transfer pulse input				
16	XSG3	V3 read pulse input				
17	XV4	V4 transfer pulse input				
18	XSHT	SHT pulse input				
19	NC					
20	V _{DD}	Power supply for input buffer (3.3V system)				
21	VSS	GND for input buffer				
22	NC					
23	NC					
24	NC					


Block Diagram


Logical Function Table

Input					Output	
XV1 XV3	XSG1 XSG3	XV2 XV4	XSHT	V1 V3	V2 V4	SHT
L	L	Х	Х	VH	Х	х
L	н	Х	Х	VM	Х	х
Н	L	Х	Х	VL	Х	х
Н	н	Х	Х	VL	Х	х
Х	Х	L	Х	Х	VM	х
Х	Х	н	Х	Х	VL	х
Х	Х	Х	L	Х	Х	VH
Х	Х	Х	н	Х	Х	VL


Timing Chart

CCD Equivalent Load Measurement Timing Waveform

Enlarged View of overlapped portion

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 2007. Specifications and information herein are subject to change without notice.