

SANYO Semiconductors **DATA SHEET**

An ON Semiconductor Company

LV5692P — Monolithic Linear IC
For Car Audio Systems
Multi-Power Supply System IC

Overview

LV5692P is a multiple voltage regulator for car audio system, which allows reduction of quiescent current. This IC has 5 systems of voltage regulator pre-driver for P-FET which generates USB power and a high side switch for external devices. The following protection circuits are integrated: over current protector, overvoltage protector and Thermal Shut Down. This IC is suitable for use in car audio with USB port.

Features

• Five channel regulator and one channel P-FET pre-driver (for USB-power)

For VDD: VOUT is 3.3V, IOMAX is 300mA For DSP: VOUT is 3.3V, IOMAX is 300mA For CD: VOUT is 8.0V, IOMAX is 1300mA

For illumination: V_{OUT} is 8.4V, I_Omax is 500mA For audio systems: V_{OUT} is 8.4V, I_Omax is 500mA

For USB (controller), VOUT is flexible (configurable with external resistor), IOmax is 1000mA

- High side switch: Voltage difference between input and output is 0.5V, Iomax is 500mA
- Over current protector
- Overvoltage protector (Without VDD-OUT) Clamp voltage is 21V (typical)
- Thermal Shut down 175°C (typical)
- Quiescent current 50µA (Typ. when only VDD is in operation)

(Warning) The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under over current protection range or thermal shutdown state may degrade the IC's reliability and eventually damage the IC.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Conditions	Conditions		Ratings	Unit
Power supply voltage	V _{CC} max			36	V
Power dissipation	Pd max	IC unit	Ta ≤ 25°C	1.5	W
		At using Al heat sink		5.6	W
		At infinity heat sink		32.5	W
Peak voltage	V _{CC} peak	Regarding Bias wave, refer to below the pulse.		50	V
Junction temperature	Tj max			150	°C
Operating temperature	Topr			-40 to +85	°C
Storage temperature	Tstg			-55 to +150	°C

Recommended Operating range at Ta = 25°C

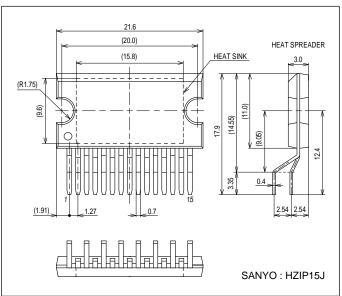
Parameter	Conditions	Ratings	Unit
Power supply voltage rating 1	V _{DD} output ON, DSP output ON	7 to 16	V
Power supply voltage rating 2	ILM output ON	10.8 to 16	V
Power supply voltage rating 3	Audio output ON, CD output ON	10 to 16	V

^{*} V_{CC}1 should be as follows: V_{CC}1>V_{CC}-0.7V

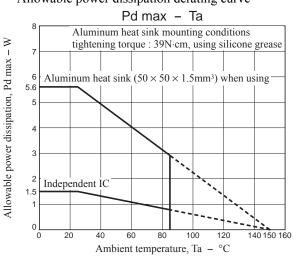
Electrical Characteristics at Ta = 25°C, $V_{CC} = V_{CC}1 = 14.4V$

Downston	0 11	Conditions		Ratings		
Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain	Icc	V _{DD} no load, CTRL1/2/3 = L/L/L		50	100	μΑ
CTRL1 Input						
Low input voltage	V _{IL} 1		0		0.3	V
Middle input voltage	V _{IM} 1		1.1	1.65	2.1	V
High input voltage	V _{IH} 1		2.5		5.5	V
Input impedance	R _{IH} 1		280	400	520	kΩ
CTRL2 Input	•					
Low input voltage	V _{IL} 2		0		0.3	V
Middle1 input voltage	V _{IM1} 2		0.8	1.06	1.4	V
Middle2 input voltage	V _{IM2} 2		1.9	2.13	2.4	V
High input voltage	V _{IH} 2		2.9	3.2	5.5	V
Input impedance	R _{IH} 2		280	400	520	kΩ
CTRL3 input.						
Low input voltage	V _{IL} 3		0		0.3	V
High input voltage	V _{IH} 3		2.5		5.5	V
Input impedance	R _{IH} 3		280	400	520	kΩ
V _{DD} 3.3V output						
Output voltage	V _O 1	I _O 1 = 200mA	3.16	3.3	3.45	V
Output current	I _O 1	V _O 1 ≥ 3.1V	300			mA
Line regulation	ΔV _{OLN} 1	7.5V < V _{CC} 1 < 16V, I _O 1 = 200mA		30	100	mV
Load regulation	ΔV _{OLD} 1	1mA < I _O 1 < 200mA		70	150	mV
Ripple rejection	R _{REJ} 1	f = 120Hz, I _O 1 = 200mA	30	40		dB
USB output: CTRL3 = [H] (V	When external power	er FET SANYO 2SJ650, it external resists 27	7kΩ, and 9.1kΩ is s	set)		
USB output voltage	V _O 2	I _O 2 = 1000mA	4.75	5	5.25	V
USB output current	I _O 2	V _O 2 ≥ 4.75V	1000			mA
Line regulation	ΔV _{OLN} 2	10V < V _{CC} < 16V, I _O 2 = 1000mA		50	90	mV
Load regulation	ΔV _{OLD} 2	10mA < I _O 2 < 1000mA		100	150	mV
Dropout voltage	V _{DROP} 2	I _O 2 = 1000mA		1.0	1.5	V
Ripple rejection	R _{REJ} 1	f = 120Hz, I _O 2 = 1000mA	40	50		dB

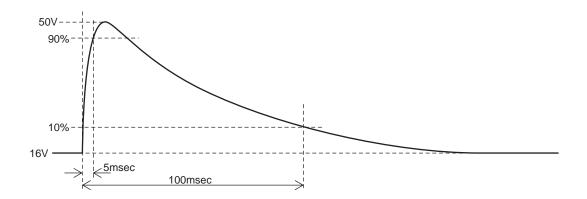
Continued on next page.


LV5692P

Danamatan	O:hl	O and distance		Ratings		Unit	
Parameter	Symbol	Symbol Conditions		typ	max	Offic	
AUDIO (8.4V) Output ; CTRL	_1 = 「M or H」						
AUDIO output voltage 1	V _O 3	I _O 3 = 400mA	8.0	8.4	8.8	٧	
AUDIO output current	I _O 3	$V_O 3 \ge 8.0 V$	500			mA	
Line regulation	ΔV _{OLN} 3	10V < V _{CC} < 16V, I _O 3 = 400mA		30	90	mV	
Load regulation	ΔV _{OLD} 3	1mA < I _O 3 < 400mA		70	150	mV	
Dropout voltage 1	V _{DROP} 3	I _O 3 = 400mA		0.4	0.8	V	
Dropout voltage 2	V _{DROP} 3'	I _O 3 = 200mA		0.2	0.4	V	
Ripple rejection	R _{REJ} 3	f = 120Hz, I _O 3 = 400mA	40	50		dB	
ILM (8.4V) Output ; CTRL2 =	- M1 or H∫						
ILM output voltage	V _O 4	I _O 4 = 400mA	8.0	8.4	8.8	V	
ILM output current	I _O 4		500			mA	
Line regulation	ΔV _{OLN} 4	10.8V < V _{CC} < 16V, I _O 4 = 400mA		30	90	mV	
Load regulation	ΔV _{OLD} 4	1mA < I _O 4 < 400mA		70	150	mV	
Dropout voltage 1	V _{DROP} 4	I _O 4 = 400mA		1.0	1.5	V	
Dropout voltage 2	V _{DROP} 4'	I _O 4 = 200mA		0.7	1.05	V	
Ripple rejection	R _{REJ} 4	f = 120Hz, I _O 4 = 400mA	40	50		dB	
AMP_HS-SW; CTRL2 = M2	or H_						
Output voltage	V _O 5	I _O 5 = 500mA	V _{CC} -1.0	V _{CC} -0.5		V	
Output current	I _O 5	$V_O 5 \le V_{CC} - 1.0$	350			mA	
DSP(3.3V output); CTRL1 =	M or H						
DSP output voltage	V _O 7	I _O 7 = 200mA	3.1	3.3	3.5	V	
DSP output current	I _O 7		300			mA	
Line regulation	ΔV _{OLN} 7	10V < V _{CC} < 16V, I _O 7 = 200mA		30	90	mV	
Load regulation	ΔV _{OLD} 7	1mA < I _O 7 < 200mA		70	150	mV	
Ripple rejection	R _{REJ} 7	f = 120Hz, I _O 7 = 200mA	40	50		dB	
CD(8.0V output); CTRL1 = [нј						
CD output voltage	V _O 8	I _O 8 = 1000mA	7.6	8.0	8.4	V	
CD output current	I _O 8		1300			mA	
Line regulation	ΔV _{OLN} 8	10.5V < V _{CC} < 16V, I _O 8 = 1000mA		50	100	mV	
Load regulation	∆V _{OLD} 8	10mA < I _O 8 < 1000mA		100	200	mV	
Dropout voltage	V _{DROP} 8	I _O 8 = 1000mA		1.0	1.5	V	
Ripple rejection	R _{REJ} 8	f = 120Hz, I _O 8 = 1000mA	40	50		dB	

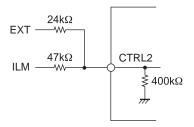

Package Dimensions

unit: mm (typ)


3395

• Allowable power dissipation derating curve

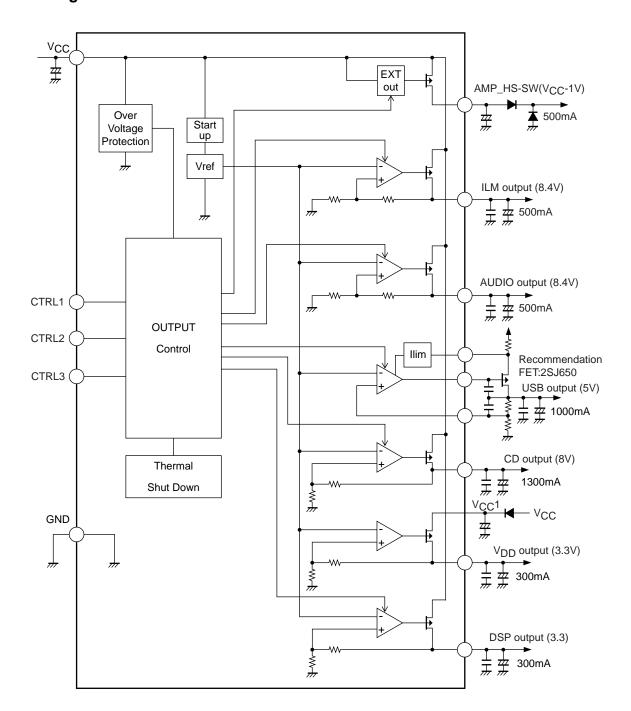
• Waveform applied during surge test


CTRL Pin Output Truth Table

CTRL1	CD	DSP	AUDIO
L	OFF	OFF	OFF
М	OFF	ON	ON
Н	ON	ON	ON

CTRL3	USB	
L	OFF	
Н	ON	

CTRL2	EXT	ILM
L	OFF	OFF
M1	OFF	ON
M2	ON	OFF
Н	ON	ON


Example of CTRL2 application circuit

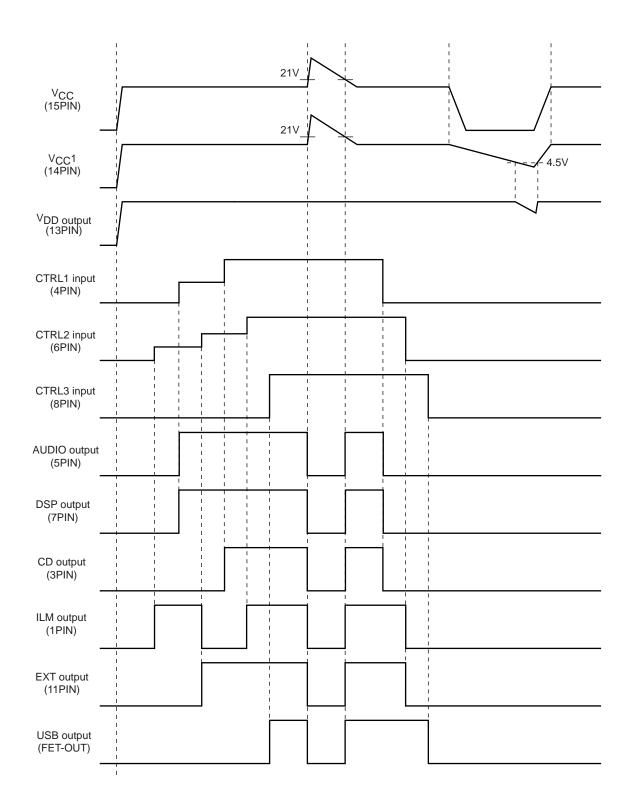
EXT	ILM	CTRL2
0V	0V	0V
0V	3.3V	1.06V
3.3V	0V	2.13V
3.3V	3.3V	3.20V

note) The control terminal is input 3.3V correspondence. Please set it by the input resistance at 5V input.

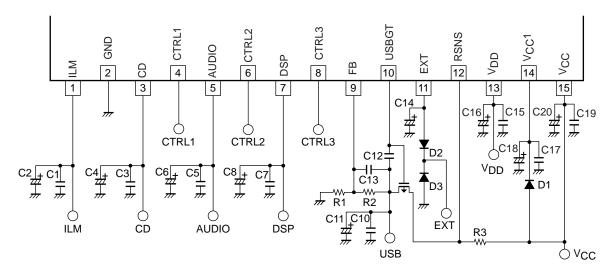
Block Diagram

Pin Function

Pin No.	Pin name	Description	Equivalent Circuit
1	ILM	ILM output pin ON when CTRL2 = M1, H 8.4V/0.5A	15 VCC
2	GND	GND pin	
3	CD	CD output pin ON when CTRL1 = H 8.0V/1.3A	3 *241kΩ *1kΩ *3 GND
4	CTRL1	CTRL1 input pin Three value input	15 VCC
5	AUDIO	AUDIO output pin ON when CTRL1 = M, H 8.4V/0.5A	15 VCC


Continued on next page.

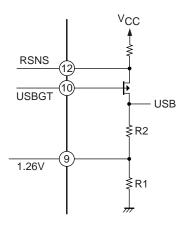
Continued from preceding page. Pin No. Pin name Description Equivalent Circuit CTRL2 6 CTRL2 input pin (15) -V_CC Four-value input **6** GND DSP DSP output pin (15) VCC ON when CTRL1 = M, H 3.3V/0.3A (7)**₹**73kΩ **≱**45kΩ GND CTRL3 CTRL3 input pin (15) VCC Two-value input (8) . \$400kΩ 2 GND 9 FΒ USB-FB pin (15) VCC 1.26V GND


Continued on next page.

Pin No.	om preceding pa	Description	Equivalent Circuit
10	USBGT	Pch-FET gate connect pin 12.0V	15 1kΩ 1kΩ GND
11	EXT	EXT output pin ON when CTRL2 = M2, H V _{CC} -0.5V/500mA	15 VCC VCC VCC VCC VCC VCC VCC VCC VCC VC
12	RSNS	USB current detection resistance connection pin 14.3V	$\begin{array}{c} 15 \\ \hline 12 \\ \hline \end{array}$
13	VDD	V _{DD} output pin 3.3V/0.3A	15 VCC VCC VCC VCC VCC VCC VCC VCC VCC VC
14	V _{CC} 1	V _{DD} power supply pin	Vcc (c) N N N
15	VCC	Power supply pin	VCC (15) (14) VCC1 (SND)

Timing Chart

Recommended Operation Circuit



Peripheral parts list

Name of part	Description	Recommended value	Remarks
C2, C4, C6, C8, C11, C16	Output stabilization capacitor	10μF or more*	Electrolytic capacitor
C1, C3, C5, C7, C10, C15	Output stabilization capacitor	0.22μF or more*	Ceramic capacitor
C12, C13	Capacity for phase amends	C12=1000pF (C13=0pF: TBD)	Ceramic capacitor
C18, C20	Power supply bypass capacitor	100μF or more	These capacitors must be placed near
C17, C19	Oscillation prevention capacitor	0.22μF or more	the V _{CC} and GND pins.
C14	EXT output stabilization capacitor	2.2μF or more	
R1, R2	Resistor for ILM voltage adjustment	R1/R2=9.1k Ω /27k Ω for 5.0V	A resistor with resistance accuracy as low as less than ±1% must be used.
R3	Resistor for AUDIO voltage setting	0.1Ω for Ipeak=3A	Panasonic ERJB1CFR10U(Reference)
M1	USB output Pch-FET	SANYO 2SJ650	
D1	Diode for prevention of backflow		
D2, D3	Diode for internal element protection	SANYO SB1003M3	

note)The circuit diagram and the values are only tentative which are subject to change.

• USB output voltage setting method

The FB voltage is determined by the internal band gap voltage of the IC (typ = 1.26V)

Formula for USB voltage calculation

$$USB = \frac{1.26[V]}{R_1} \times R_2 + 1.26[V]$$

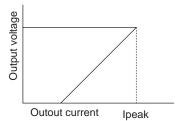
$$\frac{R_2}{R_1} = \frac{(USB-1.26)}{1.26}$$

Please design so that the ratio of R1 and R2 may fill the above-mentioned expression for the set USB voltage.

$$\frac{R_2}{R_1} = \frac{(5.0-1.26)}{1.26} \approx 2.968$$

$$\frac{R_2}{R_1} = \frac{27k\Omega}{9.1k\Omega} \approx 2.967$$

$$USB = 1.26V \times 2.967 + 1.26V \cong 4.998V$$

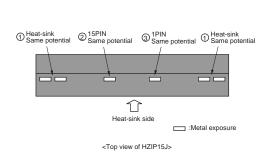

^{*:} Make sure that the capacitors of the output pins are $10\mu\text{F}$ or higher and ESR is 10Ω or lower in total and temperature characteristics and accuracy are taken into consideration. Also the E-cap should have good high frequency characteristics.

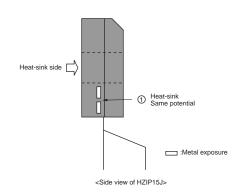
• How to set USB overcurrent limit value (OCP)

OCP of the USB works when the voltage of RSNS is under V_{CC} -0.3V. The peak current value of OCP is calculated as follws: Ipeak(A) =0.3/R3. (ex.) R3=0.1 Ω \rightarrow Ipeak=3A

- Since this IC does not detect the heat generation of the external FET, keep the temperature of the FET as low as possible so as not to exceed the eatings.
- Recommended FET: SANYO 2SJ650.

(note) The above values were obtained under typical conditions. The values may fluctuate in manufacturing processes due to external resistor and IC variation.


Warning

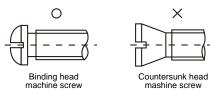

The internal circuit of USBGT and RSNS consist of components that support 5V. Do not bias 7V or above between V_{CC} and these pins to prevent the IC from destruction.

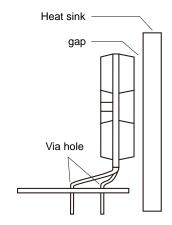
Caution for implementing LV5692P to a system board


The package of LV5692P is HZIP15J which has some metal exposures other than connection pins and heatsink as shown in the diagram below. The electrical potentials of (2) and (3) are the same as those of pin 15 and pin 1, respectively. (2) (=pin 15) is the V_{CC} pin and (3) (=pin 1) is the ILM (regulator) output pin. When you implement the IC to the set board, make sure that the bolts and the heatsink are out of touch from (2) and (3). If the metal exposures touch the bolts which has the same electrical potential with GND, GND short occurs in ILM output and V_{CC} . The exposures of (1) are connected to heatsink which has the same electrical potential with substrate of the IC chip (GND). Therefore, (1) and GND electrical potential of the set board can connect each other.

· HZIP15J outline

• Frame diagram (LV5692P) *In the system power supply other than LV5692P, pin assignment may differ.


HZIP15J Heat sink attachment


Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.

a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.

b. Heat sink attachment

- · Use flat-head screws to attach heat sinks.
- · Use also washer to protect the package.
- · Use tightening torques in the ranges 39-59Ncm(4-6kgcm).
- · If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
- · Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- · Take care a position of via hole.
- · Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- · Verify that there are no press burrs or screw-hole burrs on the heat sink.
- · Warping in heat sinks and printed circuit boards must be no more than 0.05 mm between screw holes, for either concave or convex warping.
- · Twisting must be limited to under 0.05 mm.
- · Heat sink and semiconductor device are mounted in parallel. Take care of electric or compressed air drivers
- The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.

c. Silicone grease

- · Spread the silicone grease evenly when mounting heat sinks.
- · Sanyo recommends YG-6260 (Momentive Performance Materials Japan LLC)

d. Mount

- · First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
- · When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
 - · Take care not to allow the device to ride onto the jig or positioning dowel.
 - · Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device.

f. Heat sink screw holes

- · Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
- · When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
- · When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of October, 2011. Specifications and information herein are subject to change without notice.