

SANYO Semiconductors **DATA SHEET**

An ON Semiconductor Company

LV5695P

Monolithic Linear IC For Car Audio Systems Multi-Power Supply System IC

Overview

LV5695P is a multiple voltage regulator for car audio system, which allows reduction of quiescent current. This IC has 5 systems of voltage regulator pre-driver which a high side switch for external devices. The following protection circuits are integrated: over current protector, overvoltage protector and Thermal Shut Down.

Features

- Quiescent current 50μA (Typ. when only VDD is in operation)
- Five channel regulator

For VDD: VOUT is 5.0V/3.3V(Operation always), IOmax is 300mA

For SWD5V: V_{OUT} is 5.0V, I_Omax is 500mA For CD: V_{OUT} is 8.0V, I_Omax is 2000mA

For illumination: V_{OUT} is 8.5V, I_Omax is 500mA For audio systems: V_{OUT} is 8.45V, I_Omax is 800mA

• Two high side switch:

AMP: Voltage difference between input and output is 0.5V, I_Omax is 500mA ANT: Voltage difference between input and output is 0.5V, I_Omax is 350mA

- Over current protector
- Overvoltage protector (Without VDD-OUT) Clamp voltage is 28V (typical)
- Thermal Shut down 175°C (typical)
- Pch-LDMOS is used for power output block.

(Warning) The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the conditions out of safety range or ratings. Use of the IC such as use under over current protection range or thermal shutdown state may degrade the IC's reliability and eventually damage the IC.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Conditions	Conditions	Ratings	Unit
Power supply voltage	V _{CC} max		36	V
Power dissipation	Pd max	IC unit	1.5	W
	(*1)	At using AI heat sink (50×50×1.5mm³)	5.6	W
		At infinity heat sink	32.5	W
Peak voltage	V _{CC} peak	Regarding Bias wave, refer to below the pulse.	50	V
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +150	°C
Junction temperature	Tj max		150	°C

^{*1 :} $Ta \le 25$ °C

Recommended Operating range at Ta = 25°C

Parameter	Conditions	Ratings	Unit
Power supply voltage rating 1	V _{DD} output ON, SWD output ON	7 to 16	V
Power supply voltage rating 2	ILM output ON	10.3 to 16	V
Power supply voltage rating 3	Audio output ON, CD output ON	10 to 16	V

^{*} V_{CC}1 should be as follows: V_{CC}1>V_{CC}-0.7V

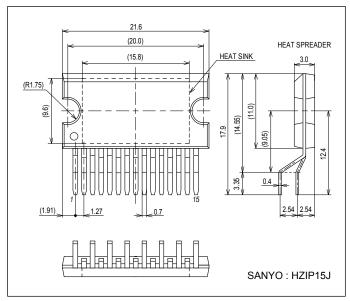
Electrical Characteristics at Ta = 25°C(*2), $V_{CC} = V_{CC}1=14.4$ V

Parameter	Symbol	Conditions		Ratings		
Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain	Icc	V _{DD} no load, CTRL1/2/3 = L/L/L		50	100	μΑ
CTRL1/2/3 Input						
Low input voltage	V _{IL} 1		0		0.3	V
Middle input voltage 1	V _{IM} 1		0.8	1.06	1.4	V
Middle input voltage 2	V _{IM} 2		1.9	2.13	2.4	V
High input voltage	V _{IH}		2.9	3.2	5.5	V
Input impedance	R _{IN}	Input voltage ≤ 3.3V	280	400	520	kΩ
IKV _{DD} input.						
Low input voltage	V _{IL} 2		-	-	0.7	V
High input voltage	V _{IH} 2	IKV _{DD}	V _{CC} 1-0.7	-	-	V
V _{DD} output(5V/3.3V)						
Output voltage	V _O 11	I _O 1 = 200mA, IKV _{DD} = V _{CC} 1	4.85	5.0	5.15	V
	V _O 12	I _O 1 = 200mA, IKV _{DD} = GND	3.2	3.3	3.4	V
Output current	I _O 1	$V_{O}11 \ge 4.7V, V_{O}12 \ge 3.1V$	300			mA
Line regulation	∆V _{OLN} 1	7.5V < V _{CC} 1 < 16V, I _O 1 = 200mA		30	70	mV
Load regulation	ΔV _{OLD} 1	1mA < I _O 1 < 200mA		70	150	mV
Dropout voltage 1	V _{DROP} 1	I _O 1 = 200mA (V _{DD} output 5V time)		0.8	1.6	V
Dropout voltage 2	V _{DROP} 1'	I _O 1 = 100mA (V _{DD} output 5V time)		0.4	8.0	V
Ripple rejection	R _{REJ} 1	f = 120Hz, I _O 1 = 200mA	30	40		dB
AUDIO (8.45V) Output ; CTR	L2 =「M1 or H」					
AUDIO output voltage 1	V _O 3	I _O 3 = 650mA	8.196	8.45	8.7	V
AUDIO output current	I _O 3	V _O 3 ≥ 8.0V	800			mA
Line regulation	ΔV _{OLN} 3	10V < V _{CC} < 16V, I _O 3 = 650mA		30	90	mV
Load regulation	ΔV _{OLD} 3	1mA < I _O 3 < 650mA		100	200	mV
Dropout voltage 1	V _{DROP} 3	I _O 3 = 650mA		0.7	1.2	V
Dropout voltage 2	V _{DROP} 3'	I _O 3 = 200mA		0.2	0.35	V
Ripple rejection	R _{REJ} 3	f = 120Hz, I _O 3 = 650mA	40	50		dB
ILM (8.5V) Output ; CTRL1 =	M1 or H			•		
ILM output voltage	V _O 4	I _O 4 = 350mA	8.245	8.5	8.755	V
ILM output current	I _O 4	V _O 4 ≥ 8.1V	500			mA

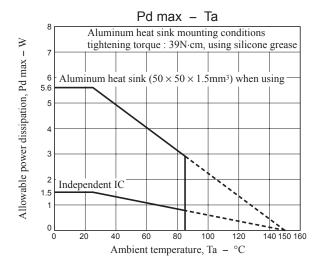
Continued on next page.

LV5695P

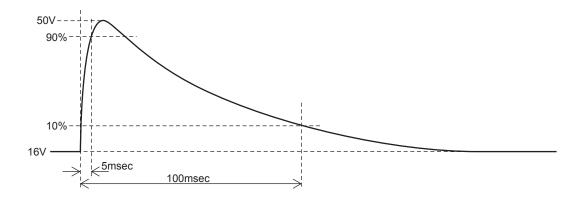
Continued	from	preceding	nage


Parameter	Cumbal	Conditions		Ratings		
Parameter	Symbol	Conditions	min	typ	max	Unit
Line regulation	ΔV _{OLN} 4	10.8V < V _{CC} < 16V, I _O 4 = 350mA		40	100	mV
Load regulation	ΔV _{OLD} 4	1mA < I _O 4 < 350mA		70	150	mV
Dropout voltage 1	V _{DROP} 4	I _O 4 = 350mA		1.0	1.5	V
Dropout voltage 2	V _{DROP} 4'	I _O 4 = 100mA		0.3	0.6	V
Ripple rejection	R _{REJ} 4	f = 120Hz, I _O 4 = 350mA	40	50		dB
AMP_HS-SW; CTRL3 = M2	2 or H	•				
Output voltage	V _O 5	I _O 5 = 500mA		V _{CC} -0.5	V _{CC} -1.0	V
Output current	I _O 5	V_{CC} -1.0 $\geq \Delta V_{O}$ 5	500			mA
ANT_HS-SW; CTRL3 = M1	or HJ					
Output voltage	V _O 6	I _O 6 = 300mA		V _{CC} -0.5	V _{CC} -1.0	V
Output current	I _O 6	V_{CC} -1.0 $\geq \Delta V_{O}$ 6	350			mA
SWD5V; CTRL2 = M2 or H	J	•				
SWD output voltage	V _O 7	I _O 7 = 350mA	4.85	5.0	5.15	V
SWD output current	I _O 7	V _O 7 ≥ 4.7V	500			mA
Line regulation	ΔV _{OLN} 7	10V < V _{CC} < 16V, I _O 7 = 350mA		30	70	mV
Load regulation	ΔV _{OLD} 7	1mA < I _O 7 < 350mA		70	150	mV
Dropout voltage	V _{DROP} 7	I _O 7 = 350mA		0.8	1.6	V
Ripple rejection	R _{REJ} 7	f = 120Hz, I _O 7 = 350mA	40	50		dB
CD(8.0V output); CTRL1 =	M2 or H	•				
CD output voltage	V _O 81	I _O 8 = 1300mA	7.76	8.0	8.24	V
CD output current	I _O 8	V _O 81 ≥ 7.6V	2000			mA
Line regulation	ΔV _{OLN} 8	10.5V < V _{CC} < 16V, I _O 8 = 1300mA		40	100	mV
Load regulation	ΔV _{OLD} 8	10mA < I _O 8 < 1300mA		70	200	mV
Dropout voltage 1	V _{DROP} 8	I _O 8 = 1300mA		1.3	1.95	V
Dropout voltage 2	V _{DROP} 8'	I _O 8 = 350mA		0.35	0.7	V
Ripple rejection	R _{REJ} 8	f = 120Hz, I _O 8 = 1300mA	40	50		dB

^{*2:} The entire specification has been defined based on the tests performed under the conditions where Tj and Ta (=25°C) are almost equal. There tests were performed with pulse load to minimize the increase of junction temperature (Tj).


Package Dimensions

unit: mm (typ)


3395

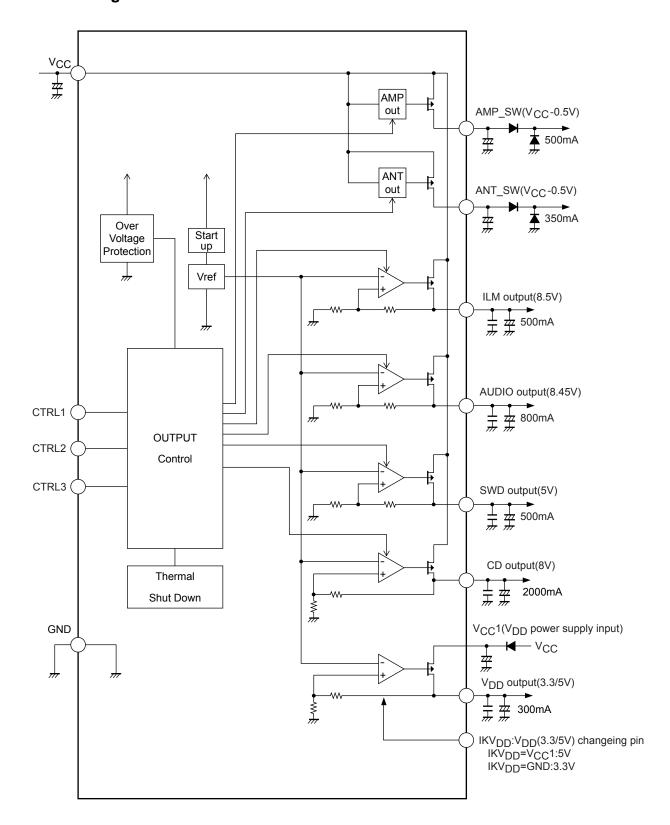
• Allowable power dissipation derating curve

• Waveform applied during surge test

CTRL Pin Output Truth Table(Each output can be independently controlled by four value input.)

INAMP	INANT	CTRL3	AMP	ANT
L	L	L	OFF	OFF
L	Н	M1	OFF	ON
Н	L	M2	ON	OFF
Н	Н	Н	ON	ON

CTRL2	SWD5V	AUDIO
L	OFF	OFF
M1	OFF	ON
M2	ON	OFF
Н	ON	ON


CTRL1	CD	ILM
L	OFF	OFF
M1	OFF	ON
M2	ON	OFF
Н	ON	ON

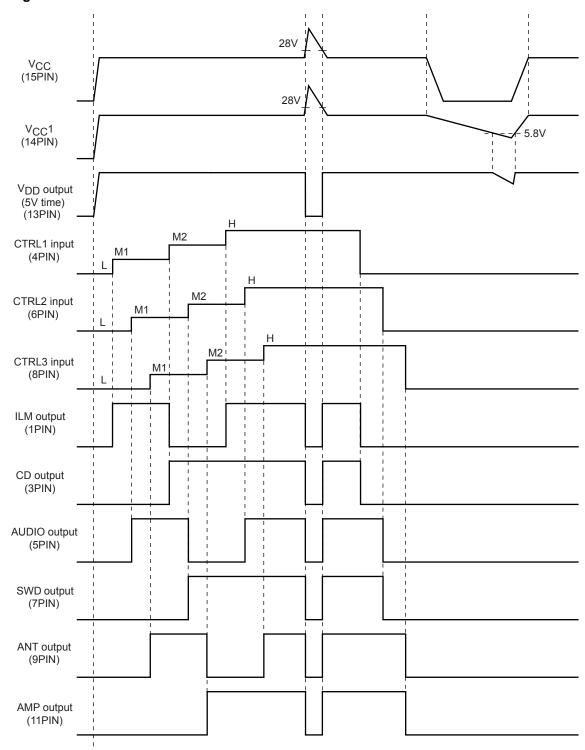
(Warning) Usage of CTRL2

When CTRL pin transits between L and M2, since it passes M1, ILM,/AUDIO/ANT is turned on for a moment. Likewise, when CTRL pin transits between H and M1, since it passes M2, ILM/AUDIO/ANT is turned off for a moment. To avoid operation failure by the above factors, please refer to the following precautions.

- Do not connect parasitic capacitor to CTRL as much as possible.
- If use of capacitor for CTRL is required, keep the resistance value as low as possible.
- Make sure that the output load capacitor has enough marjin against the voltage fluctuation due to instantaneous ON/OFF.

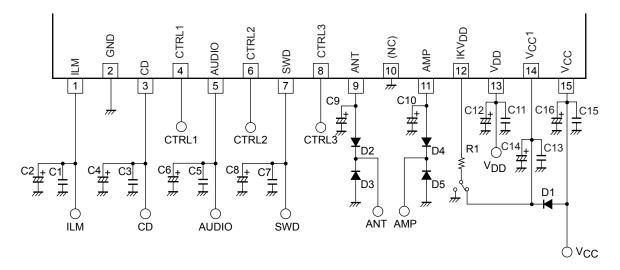
Block Diagram

LV5695P


Pin Function

Pin No.	Pin name	Description	Equivalent Circuit
1	ILM	ILM output pin ON when CTRL1 = M1, H 8.5V/0.5A	15 VCC VCC 259kΩ FIRΩ GND
2	GND	GND pin	
3	CD	CD output pin ON when CTRL1 = M2, H 8.0V/2A	15 VCC 3 VCC 3 VCC 3 VCC 45kΩ MKΩ MKΩ MKΩ MKΩ MKΩ MKΩ MKΩ MKΩ MKΩ MK
4 6 8	CTRL1 CTRL2 CTRL3	CTRL1/2/3 input pin Four values input	15 VCC
5	AUDIO	AUDIO output pin ON when CTRL2 = M1, H 8.45V/0.8A	5

Continued on next page.

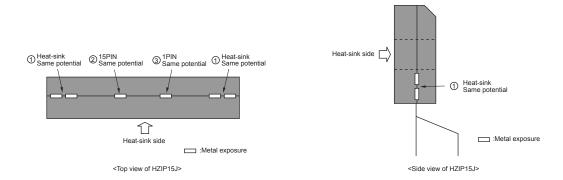

Pin No.	rom preceding pa	Description	Equivalent Circuit
7	SWD	SWD output pin ON when CTRL2 = M2, H 5V/0.5A	15 7 134kΩ 118
9	ANT	ANT output pin ON when CTRL3 = M1, H V _{CC} -0.5V/350mA EXT output pin ON when CTRL2 = M2, H V _{CC} -0.5V/500mA	15 VCC VCC VCC VCC VCC VCC VCC VCC VCC VC
10	NC	(GND)	2 GND
12	IKV _{DD}	V _{DD} voltage change control input pin V _{CC} 1/GND	14 VCC 65kΩ 4.75MΩ GND
13	V _{DD}	V _{DD} output pin 5.0V/0.3A(IKV _{DD} = V _{CC} 1) 3.3V/0.3A(IKV _{DD} = GND)	13 VCC 13 195kΩ 195kΩ 140kΩ 1kΩ GND
14	V _{CC} 1	V _{DD} power supply pin	Voo C
15	VCC	Power supply pin	VCC (15) (14) VCC1 (SND)

Timing Chart

^{*}Usage condition: Use under typical value.

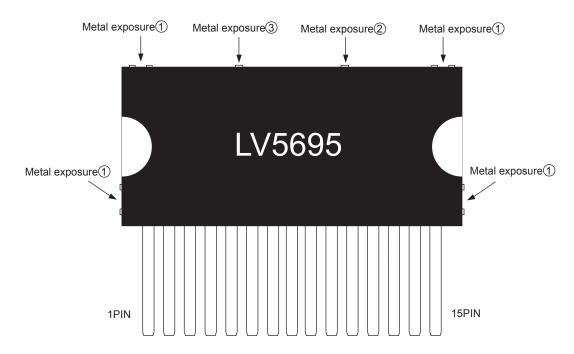
Example of applied circuit

Peripheral parts list


Nome of part	Description	Recommended value	Remarks
Name of part	Description	Recommended value	Remarks
C2, C4, C6, C8, C12	Output stabilization capacitor	10μF or more*	Electrolytic capacitor
C1, C3, C5, C7, C11	Output stabilization capacitor	0.22μF or more*	Ceramic capacitor
C14, C16	Power supply bypass capacitor	100μF or more	These capacitors must be placed near
C13, C15	Oscillation prevention capacitor	0.22μF or more	the V _{CC} and GND pins.
C9, C10	AMP/ANT output stabilization capacitor	2.2μF or more	
R1	Resistance for protection	10 to 100kΩ	
D1	Diode for prevention of backflow		
D2, D3, D4, D5	Diode for internal element protection	SANYO SB1003M3	

note)The circuit diagram and the values are only tentative which are subject to change.

Caution for implementing LV5695P to a system board

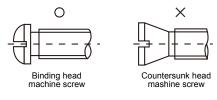

The package of LV5695P is HZIP15J which has some metal exposures other than connection pins and heatsink as shown in the diagram below. The electrical potentials of (2) and (3) are the same as those of pin 15 and pin 1, respectively. (2) (=pin 15) is the V_{CC} pin and (3) (=pin 1) is the ILM (regulator) output pin. When you implement the IC to the set board, make sure that the bolts and the heatsink are out of touch from (2) and (3). If the metal exposures touch the bolts which has the same electrical potential with GND, GND short occurs in ILM output and V_{CC} . The exposures of (1) are connected to heatsink which has the same electrical potential with substrate of the IC chip (GND). Therefore, (1) and GND electrical potential of the set board can connect each other.

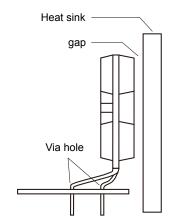
· HZIP15J outline

^{*:} Make sure that the capacitors of the output pins are 10μF or higher and ESR is 10Ω or lower in total and temperature characteristics and accuracy are taken into consideration. Also the E-cap should have good high frequency characteristics.

· Frame diagram (LV5695P) *In the system power supply other than LV5695P, pin assignment may differ.

LV5695P


HZIP15J Heat sink attachment


Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.

a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.

b. Heat sink attachment

- · Use flat-head screws to attach heat sinks.
- · Use also washer to protect the package.
- · Use tightening torques in the ranges 39-59Ncm(4-6kgcm).
- · If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
- · Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- · Take care a position of via hole.
- · Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- · Verify that there are no press burrs or screw-hole burrs on the heat sink.
- · Warping in heat sinks and printed circuit boards must be no more than 0.05 mm between screw holes, for either concave or convex warping.
- · Twisting must be limited to under 0.05 mm.
- · Heat sink and semiconductor device are mounted in parallel. Take care of electric or compressed air drivers
- The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.

c. Silicone grease

- · Spread the silicone grease evenly when mounting heat sinks.
- · Sanyo recommends YG-6260 (Momentive Performance Materials Japan LLC)

d. Mount

- · First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
- · When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
 - · Take care not to allow the device to ride onto the jig or positioning dowel.
 - · Design the jig so that no unreasonable mechanical stress is not applied to the semiconductor device.

f. Heat sink screw holes

- · Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
- · When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
- · When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of October, 2011. Specifications and information herein are subject to change without notice.