

SANYO Semiconductors **DATA SHEET**

An ON Semiconductor Company

LV8401V — Forward/Reverse Motor Driver

Overview

The LV8401V is a 1-channel motor driver IC using D-MOS FET for output stage and operates in one of the four modes under program control: forward, reverse, brake, and standby.

As the P/N-channel structure is used in the H-bridge output stage, the LV8401V features minimal number of external component and low on-resistance (0.33 Ω typical). This IC is optimal for driving motors that need large-current.

Functions

- 1-channel forward/reverse motor driver
- Low power consumption
- Low output ON resistance 0.33Ω

- Built-in constant current output circuit
- Built-in low voltage reset and thermal shutdown circuit
- Four mode function forward/reverse, brake, standby.

Specifications

Maximum Ratings at Ta = 25°C, SGND = PGND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage (for load)	VM max		-0.5 to 16.0	V
Power supply voltage (for control)	V _{CC} max		-0.5 to 6.0	V
Output current	I _O max	DC	1.2	Α
	I _O peak1	t ≤ 100ms, f = 5Hz	2.0	Α
	I _O peak2	t ≤ 10ms, f = 5Hz	3.8	Α
	I _{OUT} max	DC	30	mA
Input voltage	V _{IN} max		-0.5 to V _{CC} +0.5	V
Allowable power dissipation	Pd max	Mounted on a specified board *	800	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Specified board : $30mm \times 50mm \times 1.6mm$, glass epoxy board.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LV8401V

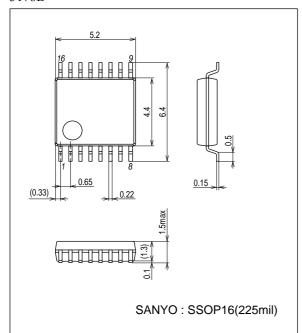
Allowable Operating Conditions at Ta = 25°C, SGND = PGND = 0V

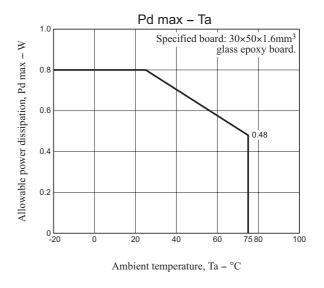
Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage (for load)	VM		4.0 to 15.0	V
Power supply voltage (for control)	Vcc		2.7 to 5.5	V
Input signal voltage	V_{IN}		0 to V _{CC}	V
Input signal frequency	f max	Duty = 50%	200	kHz

Electrical Characteristics Ta = 25°C, V_{CC} = 5.0V, VM = 12.0V, SGND = PGND = 0V, unless otherwise specified.

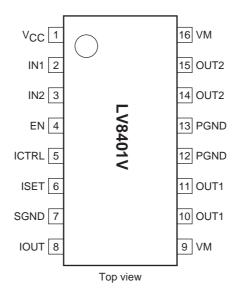
Parameter		Cumbal	Conditions	Remarks	Ratings			Llois
Parar			Remarks	min	typ	max	Unit	
Standby load cur	rrent drain 1	IMO1	EN = 0V	1			1.0	μΑ
Standby load cur	rrent drain 2	IMO2	EN = 0V, V _{CC} = 0V, Each input pin = 0V	1			1.0	μА
Standby control	current drain	ICO	EN = 0V, IN1 = IN2 = 0V	2	12.5	25	50	μА
Operating load c	urrent drain 1	IM1	V _{CC} = 3.3V, EN = 3.3V	3		0.35	0.70	mA
Operating load current drain 2		IM2	V _{CC} = 5.0V, EN = 5.0V	3		0.35	0.70	mA
Operating curren	t consumption 1	IC1	V _{CC} = 3.3V, EN = 3.3V	4		0.6	1.2	mA
Operating curren	nt consumption 2	IC2	V _{CC} = 5.0V, EN = 5.0V	4		0.8	1.6	mA
High-level input	voltage	VIH	2.7 ≤ V _{CC} ≤ 5.5V		0.6×V _{CC}		VCC	V
Low-level input v	oltage	V _{IL}	2.7 ≤ V _{CC} ≤ 5.5V		0		0.2×V _{CC}	V
High-level input of (IN1, IN2, ICTRL		IH	V _{IN} = 5.0V	5	12.5	25	50	μА
Low-level input current (IN1, IN2, ICTRL)		I _{IL}	V _{IN} = 0V	5	-1.0			μА
Pull-up resistance	e value (EN)	R _{UP}			100	200	400	kΩ
Pull-down resista (IN1, IN2, ICTRL	Pull-down resistance value (IN1, IN2, ICTRL)				100	200	400	kΩ
Output ON resistance		R _{ON}	Sum of top and bottom sides ON resistance. $2.7V \le V_{CC} \le 5.5V$	6		0.33	0.5	Ω
Constant current output leakage current		I _O LEAK	EN = 0V	7			1.0	μА
Output constant current		lout	RSET = 40Ω , Internal reference = $0.2V$	8	4.65	5.00	5.35	mA
ISET pin voltage		V_{ISET} RSET = 40Ω		9	0.186	0.20	0.214	V
Constant current output ON resistance		R _{ON} IO	RSET = 0Ω , $I_O = 5mA$	10		20	30	Ω
Low-voltage detection voltage		VCS	V _{CC} voltage	11	2.10	2.25	2.40	V
Thermal shutdown temperature		Tth	Design guarantee *	12	150	180	210	°C
Output block Turn-on time		TPLH		13		0.5	1.0	μS
Turn-off time		TPHL		13		0.5	1.0	μS

^{*} Design guarantee value and no measurement is performed.

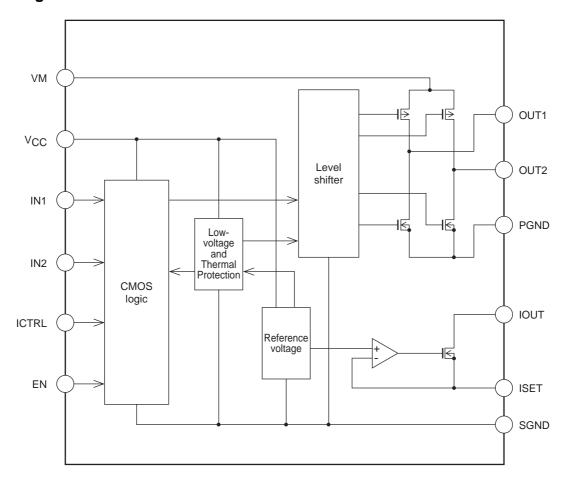

Remarks


- 1. Current consumption when output at the VM pin is off.
- 2. Current consumption at the V_{CC} pin when in all function stop mode.
- 3. Current consumption at the VM pin when EN is high.
- 4. Current consumption at the V_{CC} pin when EN is high.
- 5. These input pins (IN1, IN2, and ICTRL) have an internal pull-down resistor and the EN pin an internal pull-up resistor.
- 6. Sum of the top and bottom side output on resistance.
- 7. Leakage current when the constant current output is off.
- 8. Current value that is determined by dividing the internal reference voltage (0.2V) by RSET.
- 9. ISET pin voltage when the constant current output block is active.
- 10. ON resistance value of the constant current output block.
- 11. All output transistors are turned off if a low-voltage is detected.
- 12. All output transistors are turned off if the thermal protection circuit is activated. They are turned on again as the temperature goes down.
- 13. Rising time from 10 to 90% and falling time from 90 to 10% are specified.

Package Dimensions


unit: mm (typ)

3178B



Pin Assignment

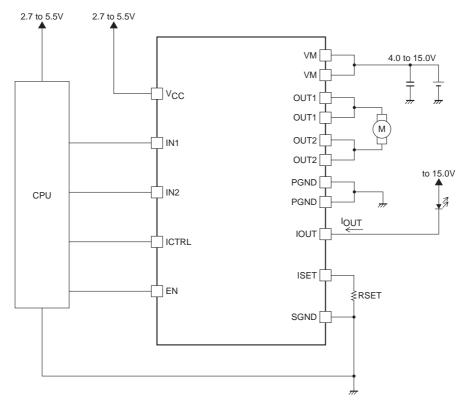
Block Diagram

Truth Table

EN	IN1	IN2	OUT1	OUT2	Mode
	Н	Н	L	L	Brake
н	Н	L	Н	L	Forward
	L	Н	L	Н	Reverse
	L	L	Z	Z	Standby
L	-	-	Z	Z	All function stop

EN	ICTRL	IOUT	Mode
	H ON		Constant current ON
Н	L	Z	Constant current OFF
L	-	Z	All function stop

-: denotes a don't care value. Z: High-impedance


- Current drain is zero in all function stop mode. (excluding the current that flows out of the EN pin)
- * All power transistors turn off and the motor stops driving when the IC is detected in low voltage or thermal protection mode.

LV8401V

Pin Functions

Pin No.	Pin name	Description	Equivalent circuit
9	VM	Motor block power supply.	
16		(Both pins must be connected)	
1	Vcc	Logic block power supply.	
4	EN	Logic enable pin. (Pull-up resistor incorporated)	VCC
2 3 5	IN1 IN2 ICTRL	Driver output switching. (Pull-down resistor incorporated)	V <u>CC</u>
Ţ			10kΩ W \$200kΩ
10	OUT1	Driver output.	○ VM
11 14	OUT2		
15		Constant output	OUT1 OUT2 PGND
6 8	ISET IOUT	Constant current output.	Reference voltage 0.2V
			ISET
7	SGND	Logic block ground.	
12 13	PGND	Driver block ground. (Both pins must be connected)	

Sample Application Circuit

- *1 : Connect a kickback absorbing capacitor as close as possible to the IC. Characteristics deterioration of the IC or damage may result if an instantaneous voltage surge exceeding the maximum rated value is applied to the VM line due to coil kickback or other causes.
- *2 : The output constant current (I_{OUT}) is determined by the internal reference voltage and the sense resistor between the ISET and SGND pins.

 I_{OUT} = Internal reference voltage (0.2V) ÷ Sense resistor (RSET)

From the formula above, $I_{OUT} = 5mA$ when a sense resistor of 40Ω is connected between the ISET and SGND.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2008. Specifications and information herein are subject to change without notice.