

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LV8713T — PWM Constant-Current Control Stepping Motor Driver

Overview

The LV8713T is a stepping motor driver of the micro-step drive corresponding to supports 8W 1-2 phase excitation. It is the best for the drive of the stepping motor for a scanner and a small printer.

Features

• Single-channel PWM constant-current control stepping motor driver incorporated.

• Control mode can be set to 2-phase, 1-2 phase, 4W1-2 phase, or 8W1-2 phase

Microstep can control easily by the CLK-IN input.
 Power-supply voltage of motor
 Output current
 IO max = 0.8A

• Output ON resistance : $R_{ON} = 1.1\Omega$ (upper and lower total, typical, $T_a = 25^{\circ}C$)

• A thermal shutdown circuit and a low voltage detecting circuit are built into.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	VM max		18	V
Logic supply voltage	V _{CC} max		6	V
Output peak current	I _O peak	Each 1ch, tw ≤ 10ms, duty 20%	1.0	А
Output continuousness current	I _O max	Each 1ch	800	mA
Logic input voltage	V _{IN}		-0.3 to V _{CC} + 0.3	V
Allowable power dissipation	Pd max	*	1.35	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Specified circuit board : 57.0mm×57.0mm×1.7mm, glass epoxy 2-layer board.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

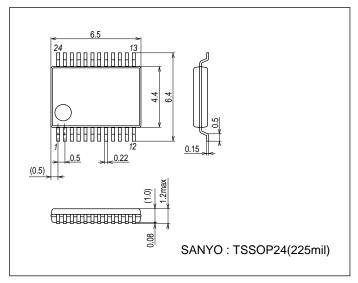
Allowable Operating Ratings at Ta = 25°C

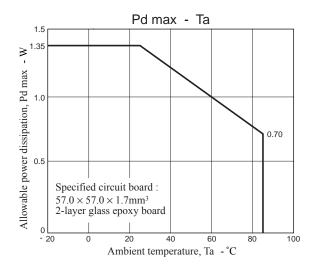
Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage range	VM		4 to 16	V
Logic supply voltage range	Vcc		2.7 to 5.5	٧
Logic input voltage	V _{IN}		-0.3 tp V _{CC} +0.3	V
VREF input voltage range	VREF		0 to V _{CC} -1.8	V

Electrical Characteristics at Ta = 25°C, VM = 12V, $V_{CC} = 3.3VVREF = 1.0V$

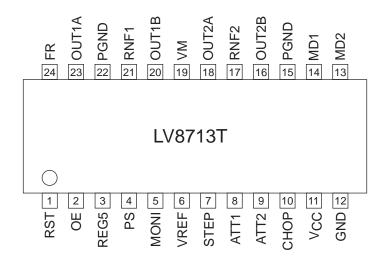
Parameter		Symbol	Conditions		Ratings		Unit
		-,		min	typ	max	
Standby mode current drain		IMstn	PS = "L", no load			1	μΑ
		I _{CC} stn	PS = "L", no load			1	μΑ
Current drain		IM	PS = "H", no load	0.3	0.5	0.7	mA
		Icc	PS = "H", no load	0.9	1.3	1.7	mA
Thermal shutdown	n temperature	TSD	Design guarantee		180		ů
Thermal hysteresi	s width	ΔTSD	Design guarantee		40		°C
V _{CC} low voltage of	cutting voltage	VthV _{CC}		2.1	2.4	2.7	٧
Low voltage hyste	resis voltage	VthHIS		100	130	160	mV
REG5 output volta	age	Vreg5	I _O = -1mA	4.5	5	5.5	V
Output on resistar	nce	RonU	I _O = -800mA, Source-side on resistance		0.78	1.0	Ω
		RonD	I _O = 800mA, Sink-side on resistance		0.32	0.43	Ω
Output leakage cu	ırrent	l _O leak	V _O = 15V			10	μА
Diode forward volt	age	VD	ID = -800mA		1.0	1.2	V
Logic pin input cur	rrent	I _{IN} L	V _{IN} = 0.8V	4	8	12	μА
		I _{IN} H	V _{IN} = 3.3V	22	33	45	μА
Logic high-level in	put voltage	V _{IN} H		2.0			V
Logic low-level inp	out voltage	V _{IN} L				0.8	٧
VREF input currer	nt	IREF	VREF = 1.0V	-0.5			μА
Current setting co	mparator	Vtatt00	ATT1 = L, ATT2 = L	0.191	0.200	0.209	V
threshold voltage		Vtatt01	ATT1 = H, ATT2 = L	0.152	0.160	0.168	V
(current attenuation rate switching)		Vtatt10	ATT1 = L, ATT2 = H	0.112	0.120	0.128	V
		Vtatt11	ATT1 = H, ATT2 = H	0.072	0.080	0.088	V
Chopping frequency		Fchop	Cchop = 220pF	36	45	54	kl
CHOP pin threshold voltage		V _{CHOP} H		0.6	0.7	0.8	
•	-	V _{CHOP} L		0.17	0.2	0.23	
CHOP pin charge/	discharge current	Ichop		7	10	13	ļ
MONI pin saturation		Vsatmon	Imoni = 1mA		250	400	n
Current setting comparator	8W1-2-phase drive	Vtdac0_2W	Step 0 (When initialized : channel 1 comparator level)	0.191	0.200	0.209	V
threshold		Vtdac1_8W	Step 1 (Initial state+1)	0.191	0.200	0.209	V
voltage		Vtdac2_8W	Step 2 (Initial state+2)	0.191	0.200	0.209	V
(current step		Vtdac3_8W	Step 3 (Initial state+3)	0.189	0.198	0.207	V
switching)		Vtdac4_8W	Step 4 (Initial state+4)	0.187	0.196	0.205	V
		Vtdac5 8W	Step 5 (Initial state+5)	0.185	0.194	0.203	V
		Vtdac6 8W	Step 6 (Initial state+6)	0.183	0.192	0.201	V
		Vtdac7 8W	Step 7 (Initial state+7)	0.179	0.188	0.197	V
		Vtdac8 8W	Step 8 (Initial state+8)	0.175	0.184	0.193	V
		Vtdac9_8W	Step 9 (Initial state+9)	0.171	0.180	0.189	V
		Vtdac10_8W	Step 10 (Initial state+10)	0.167	0.176	0.185	V
		Vtdac10_8W	Step 11 (Initial state+10)	0.167	0.170	0.183	V
		Vtdac11_8W	Step 12 (Initial state+11)	0.163	0.172	0.174	V
		Vtdac12_8W	Step 13 (Initial state+12)	0.158	0.160	0.174	V
		Vtdac13_8W	. ,				V
		ı viuac14 öVV	Step 14 (Initial state+14)	0.146	0.154	0.162	V
		Vtdac15_8W	Step 15 (Initial state+15)	0.140	0.148	0.156	V

Continued on next page.

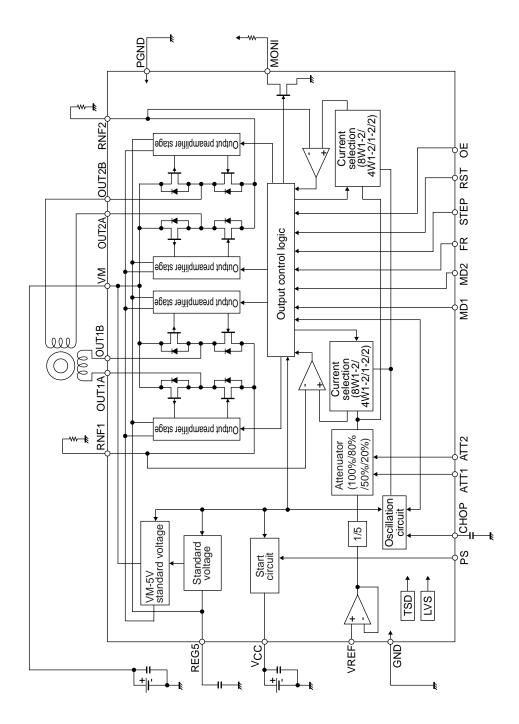

Continued from preceding page.


Descri	Parameter		On a distinue		Ratings		Unit
Para			Conditions	min	typ	max	Unit
Current setting	8W1-2-phase	Vtdac17_8W	Step 17 (Initial state+17)	0.126	0.134	0.142	V
comparator	drive	Vtdac18_8W	Step 18 (Initial state+18)	0.118	0.126	0.134	V
threshold		Vtdac19_8W	Step 19 (Initial state+19)	0.112	0.120	0.128	V
voltage (current step		Vtdac20_8W	Step 20 (Initial state+20)	0.102	0.110	0.118	V
switching)		Vtdac21_8W	Step 21 (Initial state+21)	0.094	0.102	0.110	V
-		Vtdac22_8W	Step 22 (Initial state+22)	0.086	0.094	0.102	V
		Vtdac23_8W	Step 23 (Initial state+23)	0.078	0.086	0.094	V
		Vtdac24_8W	Step 24 (Initial state+24)	0.068	0.076	0.084	V
		Vtdac25_8W	Step 25 (Initial state+25)	0.060	0.068	0.076	V
		Vtdac26_8W	Step 26 (Initial state+26)	0.050	0.058	0.066	V
		Vtdac27_8W	Step 27 (Initial state+27)	0.040	0.048	0.056	V
		Vtdac28_8W	Step 28 (Initial state+28)	0.032	0.040	0.048	V
		Vtdac29_8W	Step 29 (Initial state+29)	0.022	0.030	0.038	V
		Vtdac30_8W	Step 30 (Initial state+30)	0.012	0.020	0.028	V
		Vtdac31_8W	Step 31 (Initial state+31)	0.002	0.010	0.018	V
	4W1-2-phase drive	Vtdac0_4W	Step 0 (When initialized : channel 1 comparator level)	0.191	0.200	0.209	V
		Vtdac2_4W	Step 2 (Initial state+1)	0.191	0.200	0.209	V
		Vtdac4_4W	Step 4 (Initial state+2)	0.187	0.196	0.205	V
		Vtdac6_4W	Step 6 (Initial state+3)	0.183	0.192	0.201	V
		Vtdac8_4W	Step 8 (Initial state+4)	0.175	0.184	0.193	V
		Vtdac10_4W	Step 10 (Initial state+5)	0.167	0.176	0.185	V
		Vtdac12_4W	Step 12 (Initial state+6)	0.158	0.166	0.174	V
		Vtdac14_4W	Step 14 (Initial state+7)	0.146	0.154	0.162	V
		Vtdac16_4W	Step 16 (Initial state+8)	0.132	0.140	0.148	V
		Vtdac18_4W	Step 18 (Initial state+9)	0.118	0.126	0.134	V
		Vtdac20_4W	Step 20 (Initial state+10)	0.102	0.110	0.118	V
		Vtdac22_4W	Step 22 (Initial state+11)	0.086	0.094	0.102	V
		Vtdac24_4W	Step 24 (Initial state+12)	0.068	0.076	0.084	V
		Vtdac26_4W	Step 26 (Initial state+13)	0.050	0.058	0.066	V
		Vtdac28_4W	Step 28 (Initial state+14)	0.032	0.040	0.048	V
		Vtdac30_4W	Step 30 (Initial state+15)	0.012	0.020	0.028	V
	1-2 phase drive	Vtdac0_H	Step 0 (When initialized : channel 1 comparator level)	0.191	0.200	0.209	V
		Vtdac16_H	Step 4 (Initial state+1)	0.132	0.140	0.148	V
	2 phase drive	Vtdac16_F	Step 4' (When initialized : channel 1 comparator level)	0.191	0.200	0.209	V

Package Dimensions


unit: mm (typ)

3260A



Pin Assignment

Block Diagram

Pin Functions

FIIIFU	ınctions		
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
1	RST	Excitation reset signal input pin.	
2	OE	Output enable signal input pin.	VCC O + +
7	STEP	STEP signal input pin.	
8	ATT1	Motor holding current switching pin.	
	ATT2		★
9		Motor holding current switching pin.	
13	MD2	Excitation mode switching pin 2.	6kΩ TIF
14	MD1	Excitation mode switching pin 1.	○
24	FR	CW / CCW switching signal input pin.	
			★ \$100kΩ +
			GND O • • • • • • • • • • • • • • • • • •
4	PS	Power save signal input pin.	V _{CC} 0 •
			<u></u>
			Ţ
			4
			4
			\$ 36kΩ
			6kΩ
			<u> </u>
			Ā ↓
			\\$70kΩ
			GND O-
16	OUT2B	Channel 2 OUTB output pin.	VM
17	RNF2	Channel 2 current-sense resistor	φ
		connection pin.	
18	OUT2A	Channel 2 OUTA output pin.	
20	OUT1B	Channel 1 OUTB output pin.	
21	RNF1	Channel 1 current-sense resistor	23(8) + 20(6)
		connection pin.	
23	OUT1A	Channel 1 OUTA output pin.Power	
			5600 1k0
			560Ω 1kΩ
			5600 21 160"
			560Ω (21) 1kΩ (17)
			GND O-
6	VREF	Constant current control reference	
0	VICLI		VCC ○ • • •
		voltage input pin.	
			Į
			↑ .,
			5000
			6 500Ω
			<u> </u>
			↑
			GND O

Continued on next page.

	from preceding p		
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
3	REG5	Internal power supply capacitor connection pin.	50Ω $6k\Omega$ $186k\Omega$ $64k\Omega$
5	MONI	Position detection monitor pin.	VCC 5 100Ω
10	СНОР	Chopping frequency setting capacitor connection pin.	VCC 0 500Ω 500Ω 10 10 10 10 10 10 10 10 10 10 10 10 10

Description of operation

Stepping motor control

(1) Power save function

This IC is switched between standby and operating mode by setting the PS pin. In standby mode, the IC is set to power-save mode and all logic is reset. In addition, the internal regulator circuit do not operate in standby mode.

PS	Mode Internal regular	
Low or Open	Standby mode	Standby
High	Operating mode	Operating

(2) The order of turning on recommended power supply

The order of turning on each power supply recommends the following.

VCC power supply order \rightarrow VM power supply order \rightarrow PS pin = High

It becomes the above-mentioned opposite for power supply OFF.

However, the above-mentioned is a recommendation, the overcurrent is not caused by not having defended this, and IC is destroyed.

(3) STEP pin function

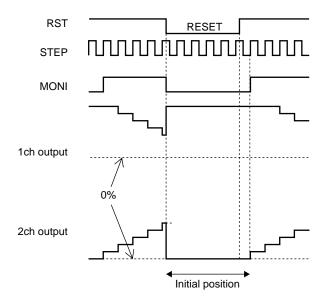
Input		Operating mode
PS	STP	
Low	*	Standby mode
High		Excitation step proceeds
High		Excitation step is kept

(4) Excitation mode setting function(initial position)

MD1	MD2	Excitation mode	Initial position	
			Channel 1	Channel 2
Low	Low	2 phase excitation	100%	-100%
High	Low	1-2 phase excitation	100%	0%
Low	High	4W1-2 phase excitation	100%	0%
High	High	8W1-2 phase excitation	100%	0%

This is the initial position of each excitation mode in the initial state after power-on and when the counter is reset.

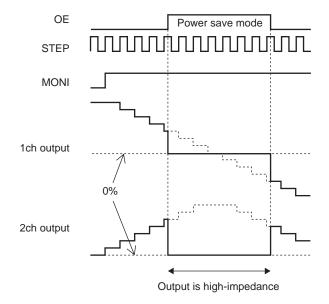
(5) Position detection monitoring function


The MONI position detection monitoring pin is of an open drian type.

When the excitation position is in the initial position, the MONI output is placed in the ON state.

(Refer to "(12) Examples of current waveforms in each of the excitation modes.")

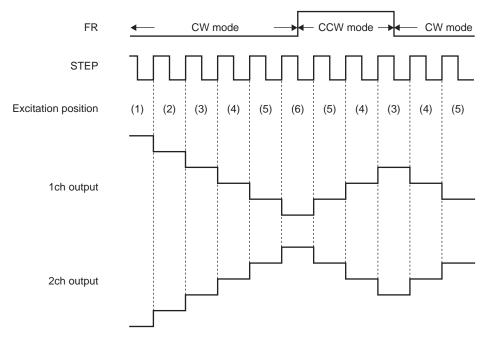
(6) Reset function


RST	Operating mode
High	Normal operation
Low	Reset state

When the RST pin is set to Low, the excitation position of the output is forcibly set to the initial position, and the MONI output is placed in the ON state. When RST is then set to High, the excitation position is advanced by the next STEP input.

(7) Output enable function

OE	Operating mode
Low	Output ON
High	Output OFF


When the OE pin is set High, the output is forced OFF and goes to high impedance.

However, the internal logic circuits are operating, so the excitation position proceeds when the STEP signal is input.

Therefore, when OE is returned to Low, the output level conforms to the excitation position proceeded by the STEP input.

(8) Forward/reverse switching function

FR	Operating mode
Low	Clockwise (CW)
High	Counter-clockwise (CCW)

The internal D/A converter proceeds by one bit at the rising edge of the input STEP pulse.

In addition, CW and CCW mode are switched by setting the FR pin.

In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current.

In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.

(9) Setting constant-current control

The setting of STM driver's constant current control is decided the VREF voltage from the resistance connected between RNF and GND by the following expression.

$$I_{OUT} = (VREF/5)/RNF$$
 resistance

The voltage input to the VREF pin can be switched to four-step settings depending on the statuses of the two inputs, ATT1 and ATT2. This is effective for reducing power consumption when motor holding current is supplied.

Attenuation function for VREF input voltage

ATT1	ATT2	Current setting reference voltage attenuation rati		
Low	Low	100%		
High	Low	80%		
Low	High	60%		
High	High	40%		

The formula used to calculate the output current when using the function for attenuating the VREF input voltage is given below.

 $I_{OUT} = (VREF/5) \times (attenuation ratio)/RNF resistance$

Example : At VREF of 1.0V, a reference voltage setting of 100% [(ATT1, ATT2) = (L, L)] and an RNF resistance of 0.5Ω , the output current is set as shown below.

$$I_{OUT} = 1.0V/5 \times 100\%/0.5\Omega = 400 \text{mA}$$

If, in this state, (ATT1, ATT2) is set to (H, H), IOUT will be as follows :

$$I_{OUT} = 400 \text{mA} \times 40\% = 160 \text{mA}$$

In this way, the output current is attenuated when the motor holding current is supplied so that power can be conserved.

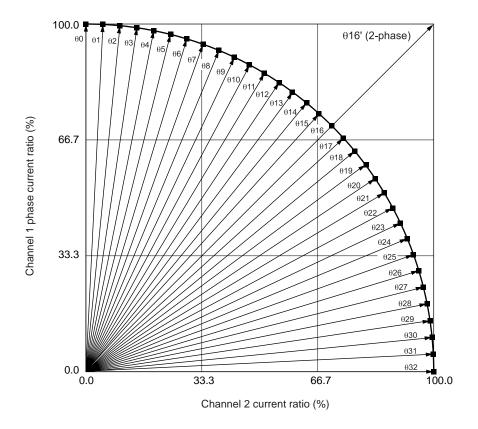
^{*} The above setting is the output current at 100% of each excitation mode.

(10) Chopping frequency setting

For constant-current control, this IC performs chopping operations at the frequency determined by the capacitor (Cchop) connected between the CHOP pin and GND.

The chopping frequency is set as shown below by the capacitor (Cchop) connected between the CHOP pin and GND.

Tchop
$$\rightleftharpoons$$
 C × V × 2 / I (s)

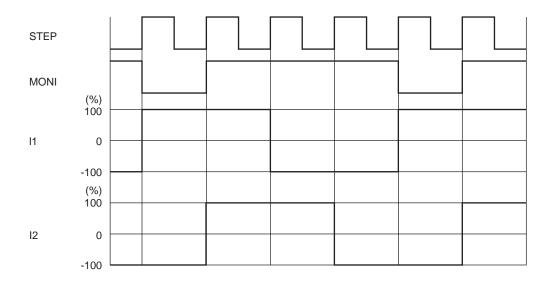

V: Width of suresshu voltage, typ 0.5V

I: Charge/discharge current, typ 10μA

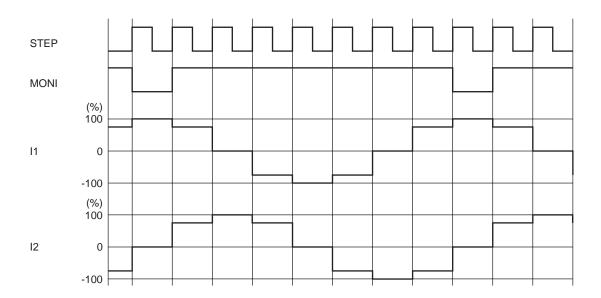
For instance, when Cchop is 200pF, the chopping frequency will be as follows:

Fchop = 1 / Tchop (Hz)

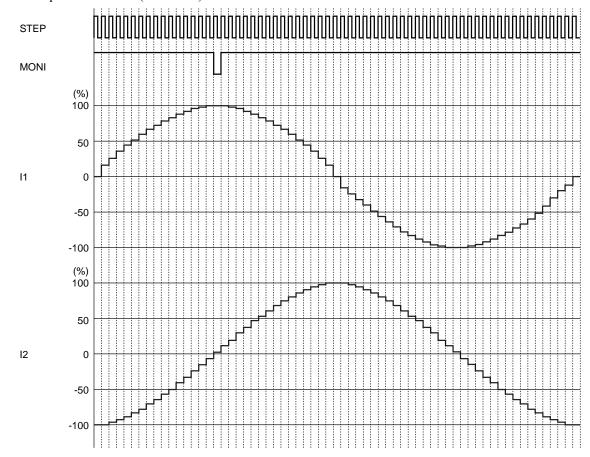
(11) Output current vector locus (one step is normalized to 90 degrees)

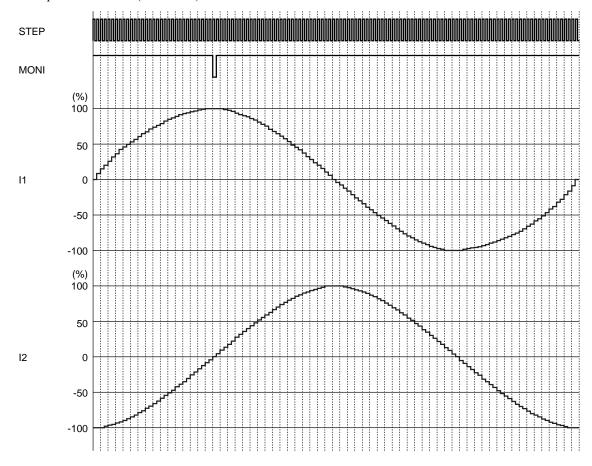


Setting current ration in each excitation mode

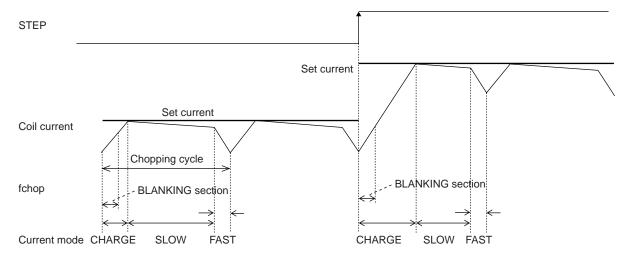

STEP	8W1-2 phase (%)		4W1-2 phase (%)		1-2 phase (%)		2-phase (%)	
	Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
θ0	100	0	100	0	100	0		
θ1	100	5						
θ2	100	10	100	10				
θ3	99	15						
θ4	98	20	98	20				
θ5	97	24						
θ6	96	29	96	29				
θ7	94	34						
θ8	92	38	92	38				
θ9	90	43						
θ10	88	47	88	47				
θ11	86	51						
θ12	83	55	83	55				
θ13	80	60						
θ14	77	63	77	63				
θ15	74	67						
θ16	70	70	70	70	70	70	100	100
θ17	67	74						
θ18	63	77	63	77				
θ19	60	80						
θ20	55	83	55	83				
θ21	51	86						
θ22	47	88	47	88				
θ23	43	90						
θ24	38	92	38	92				
θ25	34	94						
θ26	29	96	29	96				
θ27	24	97						
θ28	20	98	20	98				
θ29	15	99						
θ30	10	100	10	100				
θ31	5	100						
θ32	0	100	0	100	0	100		

(12) Typical current waveform in each excitation mode

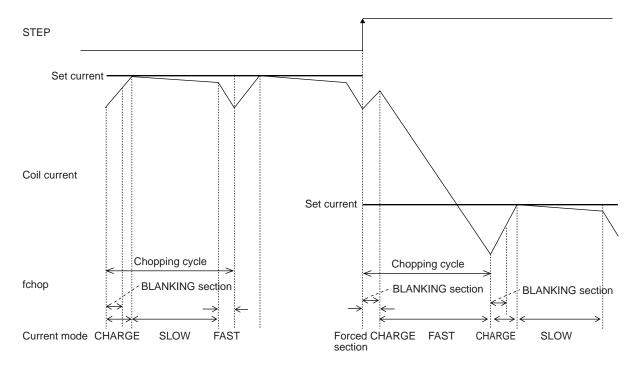

2-phase excitation (CW mode)


1-2 phase excitation (CW mode)

4W1-2 phase excitation (CW mode)



8W1-2 phase excitation (CW mode)



(13) Current control timing chart(Chopping operation)

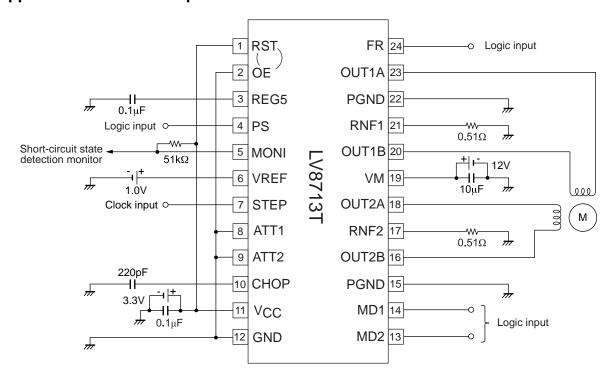
(Sine wave increasing direction)

(Sine wave decreasing direction)

In each current mode, the operation sequence is as described below:

- At rise of chopping frequency, the CHARGE mode begins. (The Blanking section in which the CHARGE mode is forced regardless of the magnitude of the coil current (ICOIL) and set current (IREF) exists for 1µs.)
- The coil current (ICOIL) and set current (IREF) are compared in this blanking time.

When (ICOIL < IREF) state exists;


The CHARGE mode up to ICOIL \geq IREF, then followed by changeover to the SLOW DECAY mode, and finally by the FAST DECAY mode for approximately 1μ s.

When (ICOIL < IREF) state does not exist;

The FAST DECAY mode begins. The coil current is attenuated in the FAST DECAY mode till one cycle of chopping is over.

Above operations are repeated. Normally, the SLOW (+FAST) DECAY mode continues in the sine wave increasing direction, then entering the FAST DECAY mode till the current is attenuated to the set level and followed by the SLOW DECAY mode.

Application Circuit Example

The formulae for setting the constants in the examples of the application circuits above are as follows: Constant current (100%) setting

When VREF = 1.0V
$$I_{OUT}$$
 = VREF/5/RNF resistance = 1.0V/5/0.51 Ω = 0.392A

Chopping frequency setting

Fchop = Ichop/ (Cchop × Vtchop × 2)
=
$$10\mu$$
A/ (220pF × 0.5V × 2) = 45kHz

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2011. Specifications and information herein are subject to change without notice.