

SANYO Semiconductors

DATA SHEET

An ON Semiconductor Company

Bi-CMOS LSI LV8762T — **Forward/Reverse H-bridge Driver**

Overview

The LV8762T is an 1ch H-bridge driver that can control four operation modes (forward, reverse, brake, and standby) of a motor. The IC is optimal for use in driving brushed DC motors for office equipment.

Features

- Forward/reverse H-bridge motor driver: 1 channel
- Built-in current limiter
- Built-in thermal protection circuit
- Single power supply
- Built-in short-circuit protection function (selectable from latch-type or auto reset-type).

Specifications

Absolute Maximum Ratings at Ta = 25°C

	. ge at 1 a _ 20 e			
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VM max		36	V
Output peak current	I _O peak	tw \leq 10ms, duty 20%	1.5	А
Output continuous current	I _O max		1.0	А
Logic input voltage	V _{IN} max		-0.3 to +6	V
EMO pin input voltage	V _{EMO}		-0.3 to +6	V
Allowable power dissipation	Pd max	Mounted on a specified board. *	1.4	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

Specified circuit board : 57mm×57mm×1.6mm, glass epoxy both-type board.

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co., Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

> SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

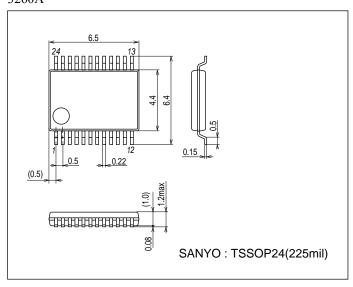
20911 SY 20110131-S00005 No.A1926-1/13

- $I_{Omax} = 1A$
- Current limit mask function
- Alert signal output

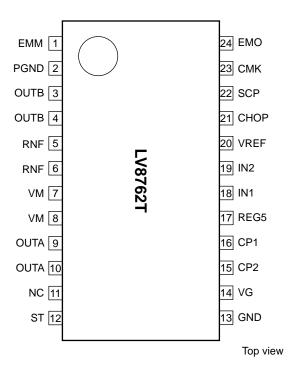
LV8762T

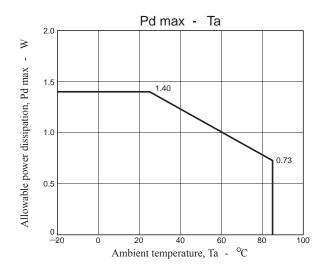
Allowable Operating Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VM		9 to 32	V
VREF input voltage	VREF		0 to 3	V
Logic input voltage	V _{IN}		0 to 5.5	V

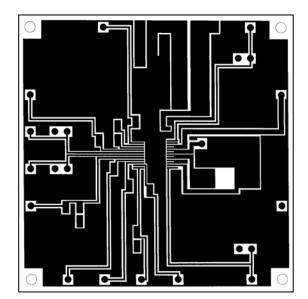

Electrical Characteristics at Ta = 25°C, VM = 24V, VREF = 1.5V

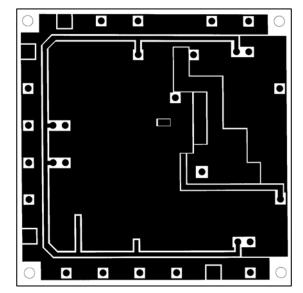
Parameter	Symbol	Conditions	Ratings			Unit
i didificici	Gymbol	Conditions	min	typ	max	Onit
General						
Standby mode current drain	IMst	ST = "L"		100	400	μA
Operating mode current drain	IM	ST = "H", IN1 = "H", IN2 = "L", with no load		3	5	mA
REG5 output voltage	VREG	I _O = -1mA	4.5	5	5.5	V
Thermal shutdown temperature	TSD	Design guarantee *	150	180	200	°C
Thermal hysteresis width	ΔTSD	Design guarantee *		40		°C
Output block						
Output on resistance	RonU	I _O = 1A, upper side ON resistance		0.75	0.97	Ω
	RonD	I _O = -1A, under side ON resistance		0.5	0.65	Ω
Output leakage current	lOleak	V _O = 32V			50	μA
Diode forward voltage	VD	ID = -1A		1.2	1.4	V
Rising time	tr	10% to 90%		100	200	ns
Falling time	tf	90% to 10%		100	200	ns
Input output delay time	tpLH	IN1 to OUTA, IN2 to OUTB (L \rightarrow H)		550	750	ns
	tpHL	IN1 to OUTA, IN2 to OUTB (H \rightarrow L)		550	750	ns
Control system input block				·	·	
Logic pin input H-level voltage	VINH		2.0			V
Logic pin input L-level voltage	VINL				0.8	V
Logic pin input current 1	IINL	V _{IN} = 0.8V	4	8	12	μA
	I _{IN} H	V _{IN} = 5V	30	50	70	μA
VREF input current	IREF	VREF = 1.5V	-0.5			μA
Current limit comparator threshold voltage	Vtlim	VREF = 1.5V	0.291	0.3	0.309	V
CHOP pin charge current ICHOP			-6.5	-5	-3.5	μA
CHOP pin threshold voltage	Vt _{CHOP}		0.8	1	1.2	V
CMK pin charge current	ICMK		-32.5	-25	-17.5	μA
CMK pin threshold voltage	VtCMK		1.2	1.5	1.8	V
Charge pump block				·	•	
Step-up voltage	VGH	VM = 24V	27.7	28.7	29.7	V
Rising time	tONG	VG = 0.1µF		250	550	μS
Oscillation frequency	Fcp		90	125	155	kHz
Short-circuit protection block		-				
EMO output saturation voltage	VEMO	I _{EMO} = 1mA			0.4	V
SCP pin charge current	ISCP	SCP = 0V	-6.5	-5	-3.5	μA
Comparator threshold voltage	VtSCP		0.8	1	1.2	V


* Design guarantee value and no measurement is made.


Package Dimensions

unit : mm (typ) 3260A


Pin Assignment



Substrate Specifications (Substrate recommended for operation of LV8762T)

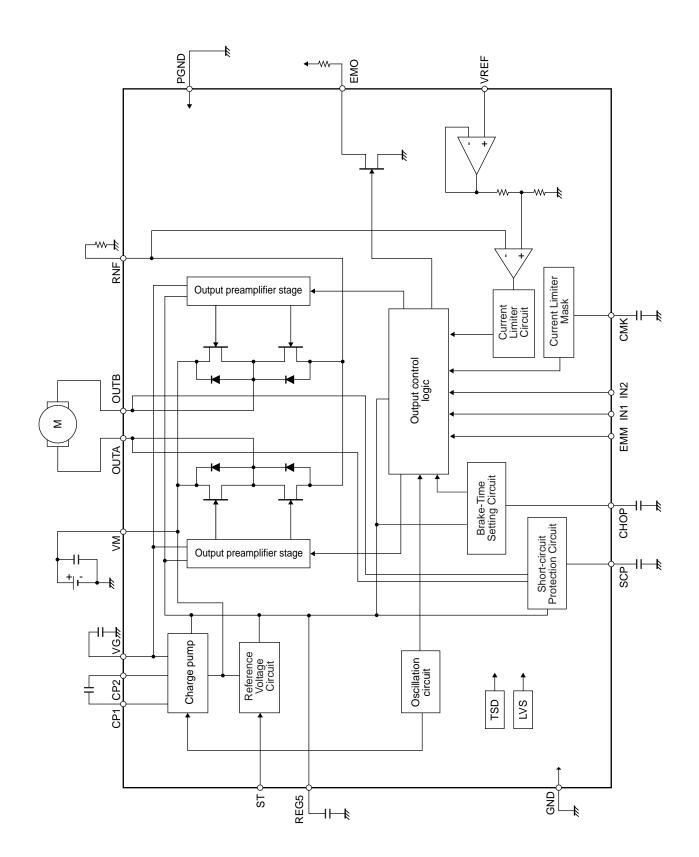
Size Material : 57mm × 57mm × 1.6mm (two-layer substrate) : Glass epoxy both-type board

L1 : Copper wiring pattern diagram

L2 : Copper wiring pattern diagram

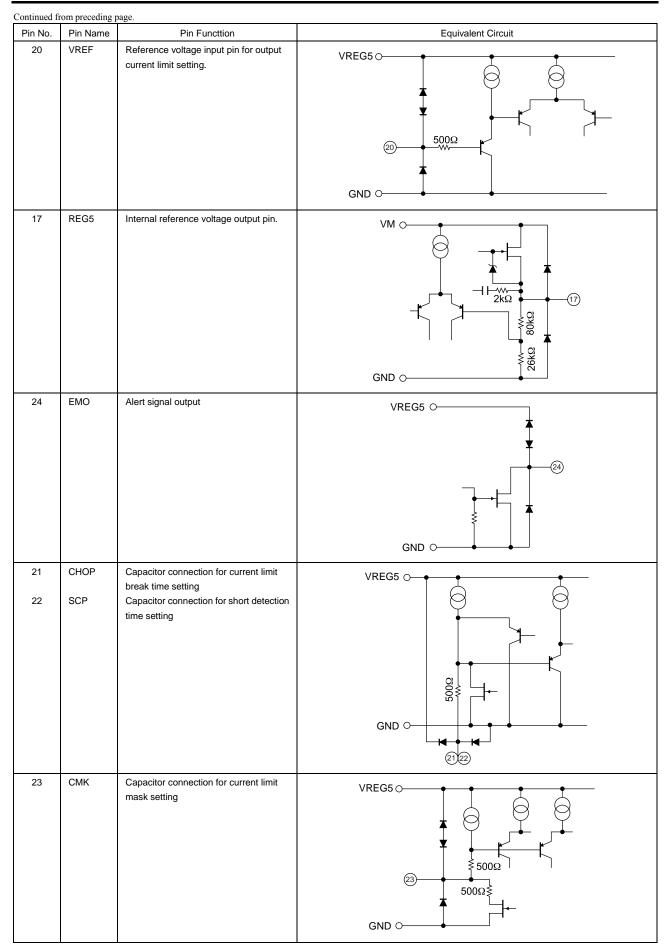
Cautions

1) For the set design, employ the derating design with sufficient margin.


Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as vibration, impact, and tension.

Accordingly, the design must ensure these stresses to be as low or small as possible.

- The guideline for ordinary derating is shown below :
- (1)Maximum value 80% or less for the voltage rating
- (2)Maximum value 80% or less for the current rating
- (3)Maximum value 80% or less for the temperature rating
- 2) After the set design, be sure to verify the design with the actual product.


Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc. Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction, possibly resulting in thermal destruction of IC.

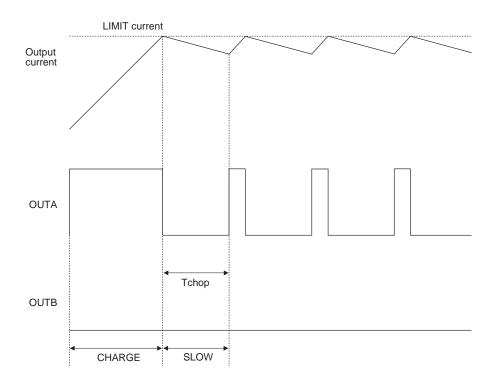
Block Diagram

Pin Fur	nctions		
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
18	IN1	Output control signal input pin 1.	VREG5 0
19	IN2	Output control signal input pin 2.	
1	EMM	Short protection mode setting.	
12	ST	Standby mode setting	VREG5 0
9, 10 3, 4 7, 8 5, 6 2	OUTA OUTB VM RNF PGND	OUTA output pin. OUTB output pin. Motor power-supply connection pin. Current sense resistor connection pin. Power ground.	78 910 $10k\Omega$ 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω
14 8 16 15	VG VM CP1 CP2	Charge pump capacitor connection pin. Motor power-supply connection pin. Charge pump capacitor connection pin. Charge pump capacitor connection pin.	$VREG5 \bigcirc 16 \\ \bullet \\ $

Continued on next page.

DC Motor Driver

1.Standby function


This is can switch the standby – operation mode by setting the ST pin. On standby-mode, all logic circuit is reset, internal regurator is off, internal charge-pump is off.

ST	mode	5V regurator	charge pump
"L" or OPEN	standby mode	standby	standby
"H"	operation mode	on	on

2.DCM output control logic

Contol Input			Output		Mada	
ST	IN1	IN2	OUTA	OUTB	Mode	
L	*	*	OFF	OFF	Standby	
Н	L	L	OFF	OFF	Output OFF	
н	н	L	Н	L	CW (forward)	
Н	L	н	L	н	CCW (reverse)	
Н	н	Н	L	L	Brake	

3.Current limit control timing chart

4. Setting the time of current limit brake value

This IC can set the time of the current limit break by connecting the capacitor with CHOP-GND. The value of the capacitor is decided according to the following expression.

```
brake time: T_{CHOP} \approx C_{CHOP} \times Vt_{CHOP} \div I_{CHOP} [sec]
Vt<sub>CHOP</sub>:CHOP comparator threshold voltage. TYP=1.0[V]
I_{CHOP}:CHOP charge current. TYP=5[\muA]
ex. Cchop=50[pF]
```

Tchop[sec] = $50[pF] \times 1.0[V] \div 5[\mu A] = 10[\mu s]$

5.Setting the current limit value

The current limit value of the DCM driver is determined by the VREF voltage and the resistance (RNF) connected across the RNF and GND pins using the following formula :

Ilimit [A]
$$\approx$$
 (VREF [V] \div 5) \div RNF [Ω])

Assuming VREF = 1.5V, RNF = 1 Ω , the current limit is : Ilimit = 1.5V÷5÷1 Ω = 0.3A

6. Setting the mask of current limit

СМК	mask of current limit
"L"	no operation
"H" or OPEN	operation

This function can be switched by CMK pin.

This function can prevent the current limit from working by the motor start-up current when the current limit value is set low.

7. Setting the time of the mask of current limit

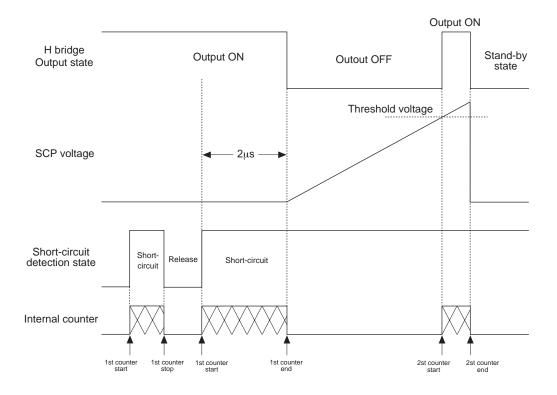
This IC can set the time of the mask of current limit by connection the capacitor with CMK-GND. The value of the capacitor is decided according to the following expression.

 $\label{eq:time_transform} \begin{array}{l} \mbox{Time of mask:} T_{CMK} \approx C_{CMK} \times Vt_{CMK} \div I_{CMK} \mbox{[sec]} \\ Vt_{CMK}:CMK \mbox{ comparator threshold voltage. TYP=1.0[V]} \\ I_{CMK}:CMK \mbox{ charge current. TYP=25[} \mu A \mbox{]} \end{array}$

ex. $C_{CMK}=0.1[\mu F]$ $T_{CMK}[sec] = 0.1[\mu F] \ge 1.5[V] \div 25[\mu A] = 6[ms]$

Output short-circuit protection function

Thils IC incorporates an output short-circuit protection circuit. It turns the output off to prevent destruction of the IC if a problem such as an output pin being shorted to the motor power supply or ground occurs. Then short-circuit detected, alart signal is assert to EMO pin.


1. Output short protect mode

This function can be switched by EMM pin. EMM pin is L or OPEN then latch method, H then auto-retry method.

EMM Pin	Method
"L" or OPEN	Latch
"H"	Auto retry

2. Protection function operation (Latch method)

The short-circuit protection circuit is activated when it detects the output short-circuit state. If the short-circuit state continues for the internally preset period ($\approx 2\mu s$), the protection circuit turns off the output from which the short-circuit state has been detected. Then it turns the output on again after a lapse of the timer latch time (T_{SCP}) described later. If the short-circuit state is still detected, it changes all the outputs to the standby mode and retains the state. The latched state is released by setting the ST to L.

3. Protection function operation (Auto retry method)

In this mode, short-protection function try repeatedly to detecting short-circuit.

The short-circuit detection circuit operates when a short output is detected as well as the latch method. The output is switched to the standby mode when the operation of the short-circuit detection circuit exceeds time (T_{SCP}) of the timer latch, and it returns to the turning on mode again after 2ms(typ). At this time, the switching mode is repeated when is still in the overcurrent mode until the overcurrent mode is made clear.

4. Unusual Condition Warning Output Pin (EMO)

The LV8762T is provided with the EMO pin which notifies the CPU of an unusual condition if the protection circuit operates by detecting an abnormal condition of the IC. This pin is of the open-drain output type, and if abnormality is detected, the EMO output becomes (EMO=L) of on.

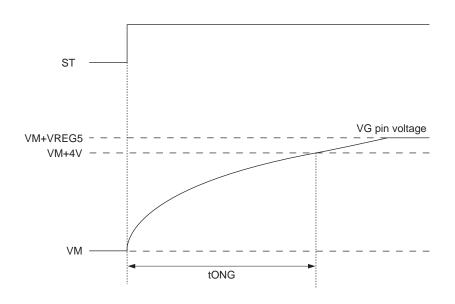
The EMO pin is placed in the ON state when one of the following conditions occurs.

- 1. Shorting-to-power or shorting-to-ground occurs at the output pin and the output short-circuit protection circuit is activated.
- 2. The IC junction temperature rises and the thermal protection circuit is activated.

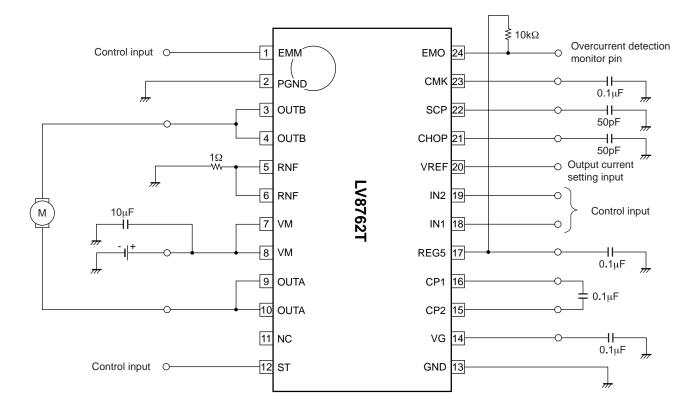
5.Timer latch-up (TSCP)

The user can set the time at which the outputs are turned off when a short-circuit occurs by connecting a capacitor (C_{SCP}) across the SCP and GND pins. The value of the capacitor (C_{SCP}) can be determined by the following formula :

Timer latch-up : TSCP	$T_{SCP} \approx C_{SCP} \times Vt_{SCP} \div I_{SCP}$ [sec]
	Vt _{SCP} : Comparator threshold voltage (1V typical)
	ISCP : SCP charge current (5µA typical)


Thermal protection circuit

This IC incorporates an thermal protection circuit, and the output is turned off when junction temperature Tj exceeds 180°C, and the abnormal state output (EMO pin) is turned on at the same time. The output is driven again when temperature hysteresis falling (automatic restoration). The overheating protection circuit doesn't guarantee protection and the destruction prevention of the set because it becomes operation by the area where ratings Tjmax=150°C of the junction temperature were exceeded.


TSD = 180° C (typical) Δ TSD = 40° C (typical)

Charge pump

This IC makes "H" ST pin, and operate the charge pump circuit, and VG pin voltage step-up VM voltage to VM+REG5 voltage. Use it after the time of tONG or more passes when drives the motor. If it is not so, on-resistance cannot be secured.

Application Circuit Example

Current limit value When VREF = 1.5V, Ilimit = Vref $\div 5 \div RNF$

$$mit = Vref \div 5 \div RNF$$
$$= 1.5V \div 5 \div 1\Omega = 0.3A$$

Setting the current limit regeneration time and short-circuit detection time

 $T_{SCP} \approx C_{SCP} \times Vt_{SCP} \div I_{SCP}$ $= 50 pF \times 1V \div 5 \mu A = 10 \mu s$

Setting at current limit mask time

 $T_{CMK} \approx C_{CMK} \times Vt_{CMK} \div I_{CMK}$ $= 0.1 \mu F \times 1.5 V \div 25 \mu A = 6 ms$

Setting at current limit brake time

 $T_{CHOP} \approx C_{CHOP} \times Vt_{CHOP} \div I_{CHOP}$

 $= 50 pF \times 1V \div 5 \mu A = 10 \mu s$

* The external part constant is a reference value.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2011. Specifications and information herein are subject to change without notice.