
Not Recommended For New Design **UltraMAX[™]** LX5111A / 5112A **ULTRA 9-CHANNEL SCSI TERMINATOR** MICROSEMI COMPANY PRELIMINARY DATA SHEET THE INFINITE POWER OF INNOVATION DESCRIPTION **KEY FEATURES** The LX5111A/5112A SCSI terminators are part cable lengths and impedances. Frequently, this Ultra-Fast Response For FASTof Linfinity's UltraMAX family of highsituation is not controlled by the peripheral or host 20 SCSI Applications performance, adaptive, non-linear mode SCSI designer and, when problems occur, they are the 35MHz Channel Bandwidth products, which are designed to deliver true first to be made aware of the problem. The 3.0V Operation UltraSCSI performance in SCSI applications. The LX5111A/12A architecture is much more tolerant Less Than 3pF Output low voltage BiCMOS architecture employed in of marginal system integrations. Recognizing the Capacitance their design offers superior performance to older

linear passive and active techniques. Linfinity's UltraMAX architecture employs high-speed adaptive elements for each channel, thereby providing the fastest response possible — typically 35MHz, which is 100 times faster than the older linear regulator/terminator approach used by other manufacturers. Products using this older linear regulator approach have bandwidths which are dominated by the output capacitor and which are limited to 500KHz (see further discussion in the Functional Description section). The UltraMAX eliminates the architecture also output compensation capacitor typical in earlier terminator designs. Each is approved for use with SCSI-1, -2, -3, UltraSCSI and beyond — providing the highest performance alternative available today. Another key improvement offered by the LX5111A/12A lies in their ability to insure reliable, error-free communications even in systems which do not adhere to recommended SCSI hardware design guidelines, such as the use of improper

needs of portable and configurable peripherals, the LX5111A/12A have a TTL compatible sleep/disable mode. Quiescent current is typically less than 275µA in this mode, while the output capacitance is also less than 3pF. The obvious advantage of extended battery life for portable systems is inherent in the product's sleep-mode feature. Additionally, the disable function permits factory-floor or production-line configurability, reducing inventory and product line diversity costs. Field configurability can also be accomplished without physically removing components which, often times results in field returns due to mishandling. Reduced component counts is also inherent in the LX5111A/12A's architecture. Traditional termination techniques require large stabilization and transient protection capacitors of up to $20\mu F$ in value and size. The LX5111A/12A architecture does not require these components, allowing all the cost savings associated with inventory, board space, assembly, reliability, and component costs.

- Thermally Self-Limiting NO External Compensation Capacitors
- Implements 8-bit Or 16-bit (Wide) Applications
- Compatible with Active Negation Drivers
- Compatible With Passive And **Active Terminations**
- Approved For Use With SCSI 1, 2. 3 And Ultra SCSI
- Hot-Swap Compatible
- Pin-For-Pin Compatible With LX5211 and UC5606 (LX5111)
- Pin-For-Pin Compatible With LX5212 And UC5603/5613/5614 (LX5112)

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

PACKAGE ORDER INFO						
T _A (°C)	Plastic SOIC 16-Pin, Power ROHS Compliant / Pb-free transition DC: 0440	PWPPlastic TSSOP 24-Pin, Power				
0 to 70	LX5111ACDP	LX5111ACPWP				
01070	LX5112ACDP	LX5112ACPWP				

Note: Available in Tape & Reel. Append the letters "TR" to the part number. (i.e. LX5111ACDP-TR)

LINFINITY MICROELECTRONICS INC. 11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570

LX5111A/5112A

ULTRA 9-CHANNEL SCSI TERMINATOR

Preliminary Data Sheet

ABSOLUTE MAXIMUM RATINGS (Note 1)

TermPwr Voltage+7V
Signal Line Voltage 0V to +7V
Regulator Output Current
Operating Junction Temperature
Plastic (DP, PWP Packages) 150°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 seconds) 300°C
Peak Packge Solder Reflow Temp. (40 second max. exposure) 260°C (+0, -5)
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into negative out of the specified

respect to Ground. Currents are positive into, negative out of the specified terminal.

THERMAL DATA						
DP PACKAGE:						
THERMAL RESISTANCE-JUNCTION TO LEADS, $\theta_{_{J_L}}$	20°C/W					
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{_{JA}}$	50°C/W					
PWP PACKAGE:						
THERMAL RESISTANCE-JUNCTION TO LEADS, $\theta_{_{JL}}$	27°C/W					
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\boldsymbol{\theta}_{_{JA}}$	100°C/W					

Junction Temperature Calculation: $T_J = T_A + (P_D \ge \theta_A)$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

PACKAGE PIN OUTS 16 🞞 **T6** T8 🖂 2 15 🞞 T5 14 🖽 N.C. **T9** 🖂 3 HEATSINK/GND 1 12 HEATSINK/GND 11 V_{TERM} GND I 5 6 TI II 7 10 🞞 **T4** 9 🖽 T3 T2 🗖 8 **DP PACKAGE** (Top View) RoHS / Pb-free 100% Matte Tin Lead Finish 24 T6 C T8 23 T5 22 N.C. 21 N.C. 20 HEATSINK/GND T9 🗖 N.C. 5 HEATSINK/GND 6 18 HEATSINK/GND HEATSINK/GND HEATSINK/GND 8 HEATSINK/GND 9 16 N.C. 15 V_{TERM} 14 **T4** 10 TI 🗆 11 T2 12 13 T3 **PWP PACKAGE** (Top View)

UltraMAX

* Pin 10 is **DISCONNECT** for the LX5112A, and **DISCONNECT** for the LX5111A.

UltraMAX

LX5111A/5112A

ULTRA 9-CHANNEL SCSI TERMINATOR

PRELIMINARY DATA SHEET

RECOMMENDED OPERATING CONDITIONS (Note 2)

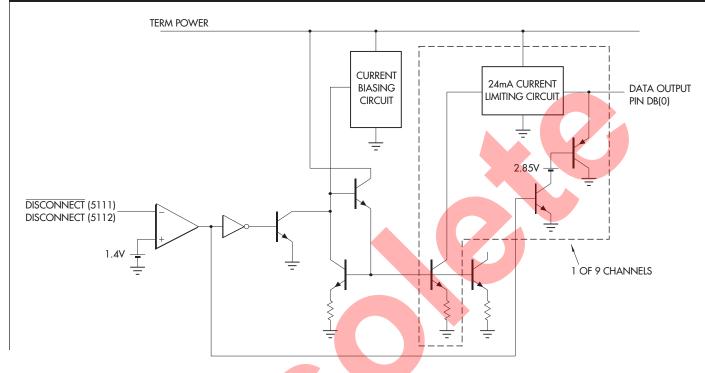
Parameter		Symbol	Recommend	Units		
			Min.	Тур.	Max.	Onits
Termination Voltage		V _{TERM}	3.0		5.5	V
High Level Enable Input Voltage	LX5111A	V _{IH}	2.5		V _{TERM}	V
	LX5112A		0		0.8	V
Low Level Disable Input Voltage	LX5111A	V	0		0.8	V
	LX5112A		2.5		V	V
Operating Virtual Junction Temperature Range						
LX5111AC/5112AC			0		125	°C

Note 2. Range over which the device is functional.

ELECTRICAL CHARACTERISTICS

Term Power = 4.75V unless otherwise specified. Unless otherwise specified, these specifications apply at the recommended operating ambient temperature of $T_A = 25^{\circ}$ C. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter		Symbol	Test Conditions	LX5111A/5112A			Units
r di dille (ei	Sy	/11001	Test conditions	Min.	Тур.	Max.	Units
Output High Voltage	Ň	V _{OUT}	Term Power = 4.75V	2.65	2.82		V
			Term Power = 3.0V	2.1	2.2		V
TermPwr Supply Current		I _{cc}	All data lines = open		5	9	mA
		[All data lines = 0.5V		205	225	mA
-	LX5111A		DISCONNECT Pin < 0.8V		275		μA
-	LX5112A		DISCONNECT Pin > 2.0V		275		μA
Output Current		I _{OUT}	$V_{out} = 0.5V$, Term Power = 4.75V	-21	-23	-24	mA
			$V_{out} = 0.5V$, Term Power = 3.0V	-17	-18		mA
DISCONNECT Input Current	LX5111A	I _N	DI <mark>SCONNECT</mark> Pin = 4.75V		10		nA
			DISCONNECT Pin = 0V		40		μA
DISCONNECT Input Current	LX5112A	I _N	DISCONNECT Pin = 0V		-14		μA
			DISCONNECT Pin = 4.75V		10		nA
Output Leakage Current	LX5111A	IOL	DISCONNECT Pin = $< 0.8V, V_0 = 0.5V$		10		nA
-	LX5112A		DISCONNECT Pin = $> 2.0V$, $V_0 = 0.5V$		10		nA
Capacitance in DISCONNECT	Mode	COUT	$V_{OUT} = 0V$, frequency = 1MHz		3		pF
Channel Bandwidth		BW			35		MHz
Termination Sink Current, per	r Channel	ISINK	$V_{OUT} = 4V$	7	11		mA



LX5111A/5112A

ULTRA 9-CHANNEL SCSI TERMINATOR

PRELIMINARY DATA **S** н е е т

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Cable transmission theory suggests to optimize signal speed and quality, the termination should act both as an ideal voltage reference when the line is released (deasserted) and as an ideal current source when the line is active (asserted). Common active terminators, which consist of Linear Regulators in series

with resistors (typically 110Ω), are a compromise. As the line voltage increases, the amount of current decreases linearly by the equation V = I * R. The LX5111A/5112A, with their unique new architecture applies the maximum amount of current regardless of line voltage until the termination high threshold (2.85V) is reached.

demands by delivering 24mA on assertion, and by imposing 2.85V on deassertion. In order to disable the device, the DISCONNECT pin (DISCONNECT pin for the LX5112A) must be driven logic Low (logic High for the LX5112A). This mode of operation places the devices in a sleep state where a meager

TOWER OF 7 TOWER DOWNT ONCHOIN TABLE								
LX5111A DISCONNECT	LX5112A DISCONNECT	Outputs	Quiescent Current					
Н	L	Enabled	6mA					
L	н	HI Z	275µA					
Open	Open	HI Z	275µA					

POWER LIP / POWER DOWN FUNCTION TABLE

275uA of quiescent current is consumed. Additionally, all outputs are in a Hi-Z (impedance) state. Sleep mode can be used for power conservation or to completely eliminate the terminator from the SCSI chain. In the second case, termination node capacitance is important to consider. The terminators will appear as a parasitic distributed capaci-

UltraMAX

Acting as a near ideal line terminators, the LX5111A/5112A closely reproduce the optimum case when the devices are enabled. To enable the device the DISCONNECT pin (DISCONNECT pin for the LX5112A) must be pulled logic High (logic Low for the LX5112A). During this mode of operation, quiescent current is 6mA and the devices will respond to line tance on the line, which can detract from bus performance. For this reason, the LX5111A/5112A have been optimized to have only 3pF of capacitance per output in the sleep state.

An additional feature of the LX5111A/5112A IC's are their compatibility with active negation drivers.

UltraMAX is a trademark of Linfinity Microelectronics Inc

PRELIMINARY DATA - Information contained in this document is pre-production data, and is proprietary to LinFinity. It may not modified in any way without the express written consent of LinFinity. Product referred to herein is offered in sample form only, and Linfinity reserves the right to ch ange or discontinue this pro sed product at

