NOS INTEGRATED CIRCUITS

PRELIMINARY DATA

024 BIT - NON VOLATILE RANDOM ACCESS MEMORY

256 x 4 ORGANIZATION, FULLY DECODED

OPERATING MODES: READ, MODIFY

MODIFY MODE PERFORMS SIMULTANEOUS WRITING AND ERASURE ON THE ADDRESSED WORD

INPUT LATCHES FOR ADDRESSES AND DATA IN

OUTPUT DATA LATCHED

ACCESS TIME: M 120-2: 450 ns - M 120: 700 ns

WORD MODIFY TIME: LESS THAN 100 msec. END OF MODIFY OPERATION IS INDICATED BY A FLAG (MODIFY END)

104 MODIFY CYCLES PER WORD

DATA RETENTION ONE ORDER OF MAGNITUDE HIGHER THÁN MNOS TECHNOLOGY N-CHANNEL, SI-GATE, DOUBLE POLY-SILICON MOS TECHONOLOGY TTL-COMPATIBLE, OPEN DRAIN OUTPUTS POWER SUPPLY V_{DD} = 12V ± 10%, V_{PP} = 25V ± 5% LOW POWER CONSUMPTION: 300 mW PEAK POWER FROM V_{PP} (DURING WRITE OPER-ATION ONLY)

350 mW ACTIVE POWER FROM V_{DD} STANDBY POWER LESS THAN 100 mW

he M 120 is a non volatile memory which the user can consider as a RAM with a fast access time and an **tuch** slower write cycle. The device operates with an address strobe control (\overline{AS}) and has no limit on the **aximum** period of \overline{AS} . The \overline{AS} control performs the Chip Select (CS) function as well; the device is **e**-selected (standby mode) by a high level on \overline{AS} . Both read and modify cycles begin on the falling edge \overline{AS} ; if \overline{RW} remains true, while \overline{AS} is active, a read cycle occurs; if, instead, \overline{RW} is false while \overline{AS} is true a modify cycle starts. Data on the data bus are latched during the rising edge of $\overline{R/W}$, then an intral circuitry performs a comparison between "old", and "new" data and, according to the result, rites or erases or leaves unchanged each single bit of the word. If writing is necessary on one bit and an **rasure** on another, both operations are performed simultaneously. After the rising edge of $\overline{R/W}$, addresses and data are latched internally and no external holding is necessary during the modify time. Since **odify** time lengthens during the device lige, the "modify eon" control, which outputs a high level at **the** end of the cycle, can be used to speed up system operations. As long as ME is low the device is in-**rnally** disconnected from buses and controls. The device is available in 18-lead dual in-line ceramic **ackage** (metal seal) and ceramic package (frit seal).

BSOLUTE MAXIMUM RATINGS

1	Input voltage	-0.5 to 20	v
hot	Total power dissipation	0.5	w
ato	Storage temperature range	-65 to 150	°C
600	Operating temperature range	0 to 70	°C

RDERING NUMBERS:	M 120	F1	for dual in-line ceramic package (frit seal)
	M 120	D1	for dual in-line ceramic package (metal seal)
	M 120-2	F1	for dual in-line ceramic package (frit seal)
	M 120-2	D1	for dual in-line ceramic package (metal seal)

MECHANICAL DATA (dimensions in mm)

Dual in-line ceramic package metal-seal

PIN CONNECTIONS

DC AND OPERATING CHARACTERISTICS $V_{pp} = 25V \pm 5\%$

Parameter		Test conditions				
			Min.	Typ.	Max.	
IDD1	V _{DD} supply current				30	mA
I _{PP1}	Vpp supply current				12	mA
IDD2	Standby V _{DD} supply current				10	mA
I _{PP2}	Standby V _{PP} supply current		_		5	mA
VIH	Input high voltage		2.4	5		V
VIL	Input low voltage		-0.3	0	0.6	V
VOL	Output low voltage	I_= 1.6 mA			0.4	V
1 _{L1}	Input load current				10	μA
LO	Output leakage current				10	μA

 $(T_{amb} = 0^{\circ}C \text{ to } 70^{\circ}C, V_{DD} = +12V \pm 10\%$

4

25.12

M 120 M 120-2

AC CHARACTERISTICS

4		M 120-2		M 120		
Parameter		Min.	Max.	Min.	Max.	Unit
tACC	Access time from address strobe		450		700	ns
tASL	Address strobe active time	450		700		ns
tASH	Address strobe inactive time	160		300		ns
tOFF	Output buffer turn-off delay		100		150	ns
ts	Set-up time		20		40	ns
th	Hold time		80		150	ns
twR	Write time (1)	2	100	2	100	ms
t _{D1}	AS to R/W delay (2) (3) (4)	100	350	200	600	ns
tp	Modify pulse width (3) (4)	200		300		ns
tsw	R/W to AS rising edge	200		300		ns
t _{D2}	ME turn-on delay		100		200	ns

lotes:

ALC: NO

)) $t_{WR max}$ is 2 ms for the first 10 modify cycles and increases to 100 ms according to Figure 1.)) R/W is internally disabled up to $t_{D1 min}$ but can change before $t_{D1 min}$ and even before the falling edge of \overline{AS} .

1 If $t_{D1} \le t_{D1}$ max then D_{OUT} remains floating and there is no conflict between D_{OUT} and D_{IN} ; in this mode, D_{IN} can be stable within tASL min; otherwise it must be

yhere

ţ

and a superior of the state

i.

 t_{tr} is the transition time for the data bus.

)) It must be $t_p + t_{D1} \ge t_{ASL \min}$.

Fig. 1 - Plot of modify time vs. number of modify cycles

M 120 M 120-2

TIMING WAVEFORMS

Read Cycle

* The first negative edge of AS following the end of a modify cycle must commence at least t_{ASH} after the positive edge of ME.

1