

Product Specification AU OPTRONICS CORPORATION

- (V) Preliminary Specifications() Final Specifications

Module	15.4" WXGA Color TFT-LCD	
Model Name	M154EW01 V0(Glare)	

Customer Date	Approved by	Date
	Vincent CH Chen	06/27/2007
Checked & Approved by	Prepared by	
	Wilson Tan	06/27/2007
Note: This Specification is subject to change without notice.	Desktop Display I AU Optronic	Business Group / s corporation

document version 0.1 1/24

2/24

NUO

document version 0.1

Product Specification AU OPTRONICS CORPORATION

Contents

2 2 3. F 4. <i>A</i> 4 4 4	General Description 2.1 General Specification 2.2 Optical Characteristics Functional Block Diagram Absolute Maximum Ratings 4.1 Absolute Ratings of TFT LCD Module. 4.2 Absolute Ratings of Backlight Unit 4.3 Absolute Ratings of Environment.	
3. F 4. 4 4 4	Functional Block Diagram Absolute Maximum Ratings 4.1 Absolute Ratings of TFT LCD Module. 4.2 Absolute Ratings of Backlight Unit	10 11
3. F 4. 4 4 4	Functional Block Diagram Absolute Maximum Ratings 4.1 Absolute Ratings of TFT LCD Module. 4.2 Absolute Ratings of Backlight Unit	10 11
4. 4 4 4	Absolute Maximum Ratings 4.1 Absolute Ratings of TFT LCD Module	11
4 4	4.2 Absolute Ratings of Backlight Unit	
4	4.2 Absolute Ratings of Backlight Unit	
4	4.3 Absolute Ratings of Environment	
	Electrical characteristics	
5	5.1 TFT LCD Module	
5	5.2 Backlight Unit	
6. S	Signal Characteristic	15
	6.1 Pixel Format Image	
6	6.2 The input data format	
	6.3 Signal Description/Pin Assignment	
	6.4 Interface Timing	
	Connector Description	
	7.1 TFT LCD Module	
7	7.2 Backlight Unit	
7	7.3 Signal for Lamp connector	
	Reliability Test	
9. N	Mechanical Characteristics	

Product Specification AU OPTRONICS CORPORATION

Record of Revision

Version and Date	Page	Old description	New Description	Remark
0.1 2007/06/27	All	First Edition for AUO internal		

document version 0.1	3/24

Product Specification

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spot.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL reflector edge. Instead, press at the far ends of the CCFL Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Cold cathode fluorescent lamp in LCD contains a small amount of mercury. Please follow local ordinances or regulations for disposal.
- 13) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 14) The LCD module is designed so that the CCFL in it is supplied by Limited Current Circuit (IEC60950 or UL1950). Do not connect the CCFL in Hazardous Voltage Circuit.

document version 0.1	4/24

Product Specification

AU OPTRONICS CORPORATION

2. General Description

M154EW01 V0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and backlight system. The screen format is intended to support the WXGA (1280(H) x 800(V)) screen and 262k colors (RGB 6-bits data driver). All input signals are LVDS interface compatible. Inverter of backlight is not included.

2.1 General Specification

The following items are characteristics summary on the table at 25 °C condition:

Items	Unit	Specifications
Screen Diagonal	[mm]	391 (15.4W")
Active Area	[mm]	331.2 X 207.0
Pixels H x V		1280x3(RGB) x 800
Pixel Pitch	[mm]	0.2588X0.2588
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		Normally White
White Luminance (ICCFL=6.5mA)	[cd/m ²]	200 cd/m ² @ 6.5mA (Typ)
Luminance Uniformity		80% (9 points)
Contrast Ratio		400 typ
		240 min.
Optical Rise Time/Fall Time	[msec]	6/2 typ.
Nominal Input Voltage VDD	[Volt]	+3.3 typ.
Power Consumption	[Watt]	PDD=1.6W, PCFL=9.7W (Max.)
Weight	[Grams]	1180 max.
Physical Size	[mm]	354.12 x 227.4 x 12.0(max)
Electrical Interface		1 channel LVDS
Surface Treatment		Glare, Hardness 3H,
Sunace mealment		Reflectance 4.3%
Support Color		262K colors (RGB 6-bit)
Temperature Range		
Operating	[°C]	0 to +50
Storage (Non-Operating)	[°C]	-20 to +60
RoHS Compliance		RoHS Compliance

document version 0.1 5/24

6/24

AUO 2 Optical Character

Product Specification

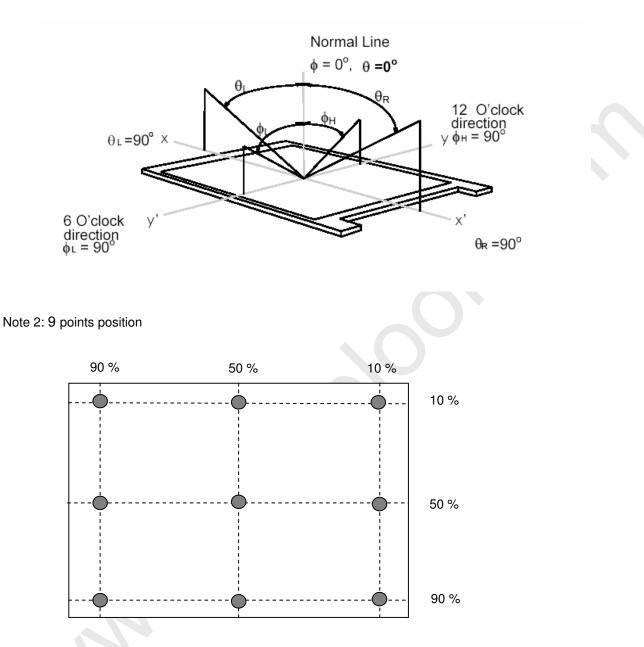
AU OPTRONICS CORPORATION

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature) :

Item	Unit	Cond	litions	Min.	Тур.	Max.	Note
White Luminance ICCFL=6.5mA	[cd/m ²]			160	200	-	4
		Horizontal	(Right)	-	45	-	\frown
		CR = 10	(Left)	-	45	-	
		Vertical	(Upper)	-	15		
Viewing Angle	[degree]	CR = 10	(Lower)	-	35	-	-
violinių viigio		Horizontal	(Right)	-	60		I
		CR = 5	(Left)	-	60	-	
		Vertical	(Upper)	-	35	-	
		CR = 5	(Lower)	-	55	-	
Luminance Uniformity	[%]	9 Points		70%	80%		2,3
CR: Contrast Ratio				240	400	-	4
Cross talk	[%]					4	5
	[msec]	Rising		-	6	10	
Response Time		Falling		-	2	5	4,6
		Rising + Falling			8	15	
		Red x		0.560	0.590	0.620	
		Red y		0.315	0.345	0.375	
		Green x		0.285	0.315	0.345	
Color / Chromaticity Coordinates		Green y		0.520	0.555	0.585	
(CIE 1931)		Blue x		0.125	0.155	0.185	4
()		Blue y		0.125	0.155	0.185	
		White x		0.283	0.313	0.343	
		White y		0.299	0.329	0.359	
Flicker	[dB]			-		-20	7

Note 1. Definition of viewing angle


Viewing angle is the measurement of contrast ratio ≥ 10 and ≥ 5 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

document version 0.1

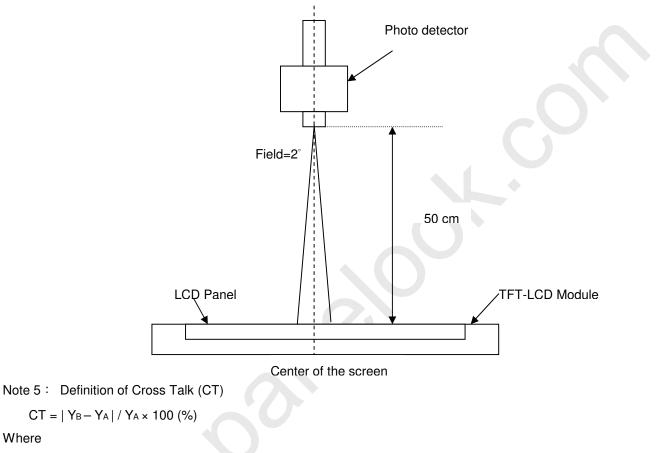
NUO

Product Specification AU OPTRONICS CORPORATION

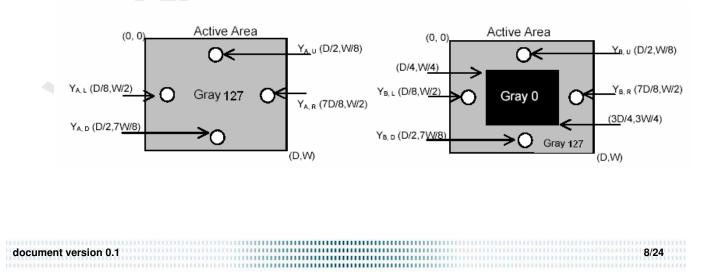
Note 3: The luminance uniformity of 9 points is defined by dividing the maximum luminance values by the minimum test point luminance

> Minimum Brightness of 9 points $\delta_{\rm W9}$ = Maximum Brightness of 9 points

....................... document version 0.1 7/24



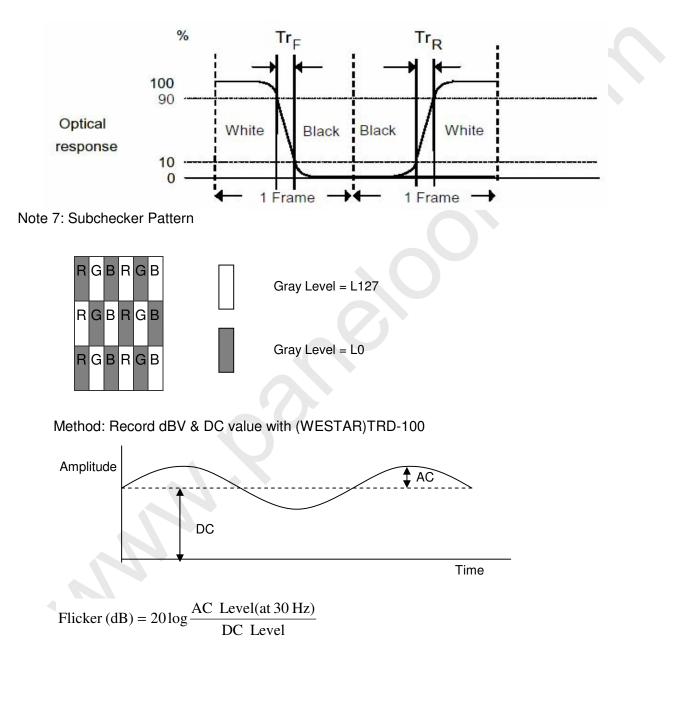
Product Specification


AU OPTRONICS CORPORATION

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)



Product Specification

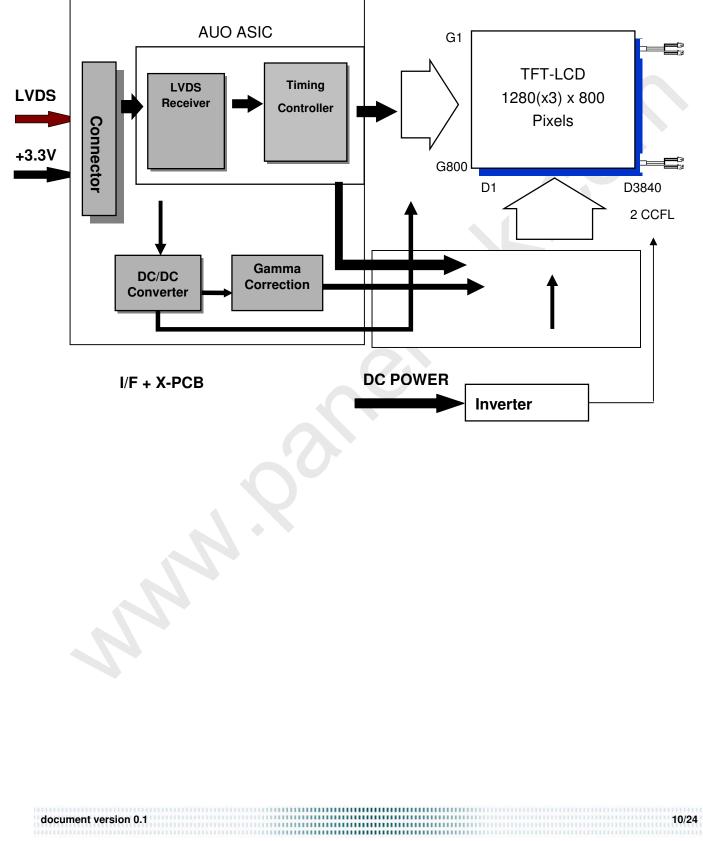
AU OPTRONICS CORPORATION

Note 6: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black "(falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below.

document version 0.1 9/24

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com



Product Specification

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 15.4 inches wide Color TFT/LCD Module:

Product Specification

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

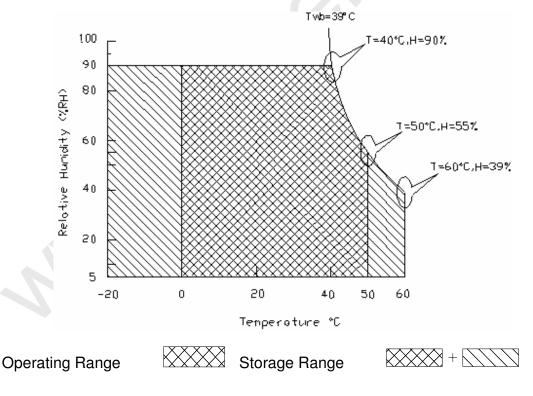
Absolute maximum ratings of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
CCFL Current	ICCFL	-	7.0	[mA] rms	Note 1,2


4.3 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating	TOP	0	+50	[°C]	Note 3
Operation Humidity	HOP	5	90	[%RH]	Note 3
Storage	TST	-20	+60	[°C]	Note 3
Storage Humidity	HST	5	90	[%RH]	Note 3

Note 1: At Ta (25 $^\circ\!\mathrm{C}$)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS(Incoming Inspection Standard).

document version 0.1 11/24

12/24

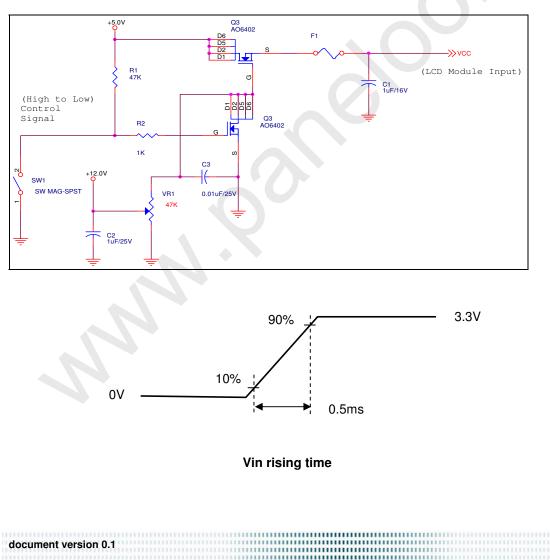
NDO

Product Specification

AU OPTRONICS CORPORATION

5. Electrical characteristics

5.1 TFT LCD Module


5.1.1 Power Specification

Input power specifications are as follows:

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power			1.6	[Watt]	Note 1
IDD	IDD Current		350	450	[mA]	Note 1
IRush	Inrush Current			2000	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	

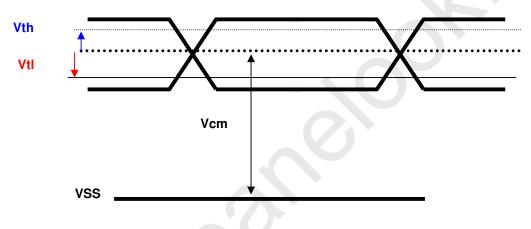
Note 1 : Maximum Measurement Condition : Black Patterm

Note 2 : Measure Condition

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

JO

Product Specification AU OPTRONICS CORPORATION


5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

It is recommended to refer the specifications of THC63LVDF84A(Thine Electronics Inc.) in detail. Signal electrical characteristics are as follows:

Parameter	Condition	Min	Max	Unit
	Differential Input High			
Vth	Threshold (Vcm=+1.2V)		100	[mV]
	Differential Input Low			
Vtl	Threshold (Vcm=+1.2V)	-100		[mV]
Vcm	Differential Input	1.125	1.075	[V]
vcm	Common Mode Voltage	1.120	1.375	[v]

Note: LVDS Signal Waveform

5.2 Backlight Unit

Parameter guideline for CCFL Inverter is under stable conditions at 25°C (Room Temperature) :

Parameter	Min	Тур	Max	Units	Condition
CCFL Standard Current (ISCFL)	6.0	6.5	7.0	[mA] rms	Note 2
CCFL Operation current (IRCFL)	3.0	6.5	7.0	[mA] rms	NOLE 2
CCFL Frequency (FCFL)	40	50	80	[KHz]	Note 3,4,8
CCFL Ignition Voltage (VicFL, Ta= 0° C)	1290			[Volt] rms	Note 5
CCFL Ignition Voltage (VicFL, Ta= 25° C)	990			[Volt] rms	NOLE 5
CCFL Voltage (VCFL)	-	643 @6.5mA	734	[Volt] rms	Note 6
CCFL Power consumption (PCFL)	-	8.36	9.7	[Watt]	Note 6
CCFL Life Time (LTCFL)	40,000	50,000	_	[Hour]	Note 7

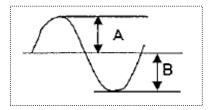
document version 0.1 13/24

Product Specification

AU OPTRONICS CORPORATION

Note 1: Typ. are AUO recommended design points.

- *1 All of characteristics listed are measured under the condition using the AUO test inverter.
- *2 In case of using an inverter other than listed, it is recommended to check the inverter carefully. Sometimes, interfering noise stripes appear on the screen, and substandard luminance or flicker at low power may happen.
- *3 In designing an inverter, it is suggested to check safety circuit very carefully. Impedance of CCFL, for instance, becomes more than 1 [M ohm] when CCFL is damaged.
- *4 Generally, CCFL has some amount of delay time after applying kick-off voltage. It is recommended to keep on applying ignition voltage for 1 [Sec] until discharge.
- *5 Reducing CCFL current increases CCFL discharge voltage and generally increases CCFL discharge frequency. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter.
- Note 2: It should be employed the inverter which has "Duty Dimming", if IRCFL is less than 3mA.
- Note 3: CCFL discharge frequency should be carefully determined to avoid interference between inverter and TFT LCD.
- Note 4: The frequency range will not affect to lamp life and reliability characteristics.
- Note 5: CCFL inverter should be able to give out a power that has a generating capacity of over 1290 voltage. Lamp units need 1290 voltage minimum for ignition.
- Note 6: The variance of CCFL power consumption is ±10%. Calculator value for reference (ISCFL × VCFL × 2= PCFL)
- Note 7: Definition of life: brightness becomes 50%. The typical life time of CCFL is under the condition at 6.5 mA lamp current.
- Note 8: Requirement for system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It should help increase the lamp lifetime and reduce its leakage current.

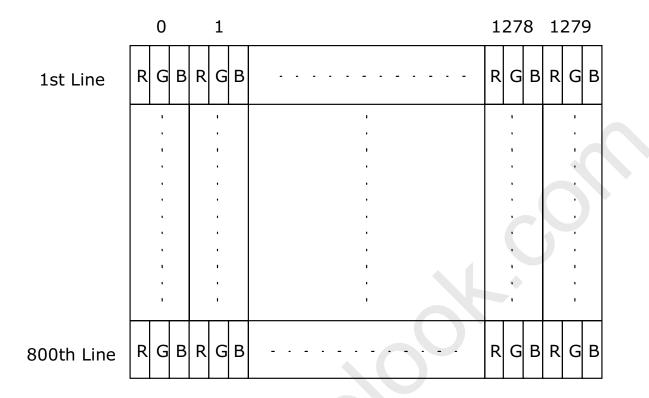

The frequency range will not affect to lamp lifetime and reliability characteristics. (Reference value) The rate of unsymmetrical of lamp lighting waveform is shown (Lamp current waveform and lamp voltagewaveform) at 5% or less.

Asymmetrical : (|A| - |B|) / $|C| \leq 5 \%$

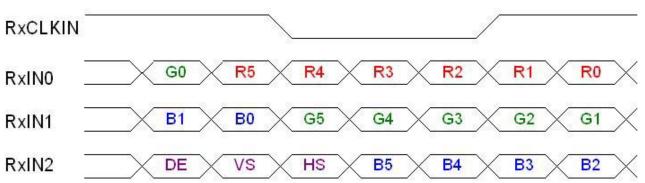
document version 0.1

- A: Lamp current or lamp voltage o-p of +side
- B: Lamp current or lamp voltage o-p of -side
- C: Max(A,B) this is bigger in A or B

Recommendation lighting frequency : 50 ~ 60 KHz



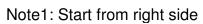
14/24

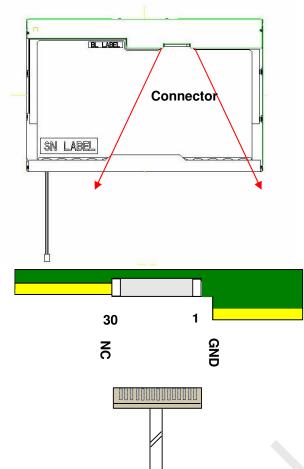

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

Signal Name	Description	
R5 R4 R3 R2 R1 R0	Red Data 5 (MSB) Red Data 4 Red Data 3 Red Data 2 Red Data 1 Red Data 0 (LSB) Red-pixel Data	Red-pixel Data Each red pixel's brightness data consists of these 6 bits pixel data.
G5 G4 G3 G2 G1 G0	Green Data 5 (MSB) Green Data 4 Green Data 3 Green Data 2 Green Data 1 Green Data 0 (LSB) Green-pixel Data	Green-pixel Data Each green pixel's brightness data consists of these 6 bits pixel data.
B5 B4 B3 B2 B1 B0	Blue Data 5 (MSB) Blue Data 4 Blue Data 3 Blue Data 2 Blue Data 1 Blue Data 0 (LSB) Blue-pixel Data	Blue-pixel Data Each blue pixel's brightness data consists of these 6 bits pixel data.
RxCLKIN	Data Clock	The typical frequency is 68.9 MHZ The signal is used to strobe the pixel data and DE signals. All pixel data shall be valid at the falling edge when the DE signal is high.
DE	Display Timing	This signal is strobed at the falling edge of RxCLKIN. When the signal is high, the pixel data shall be valid to be displayed.
VS	Vertical Sync	The signal is synchronized to RxCLKIN .
HS	Horizontal Sync	The signal is synchronized to RxCLKIN .


Note: Output signals from any system shall be low or High-impedance state when VDD is off.



LVDS is a differential signal technology for LCD interface and high speed data transfer device.

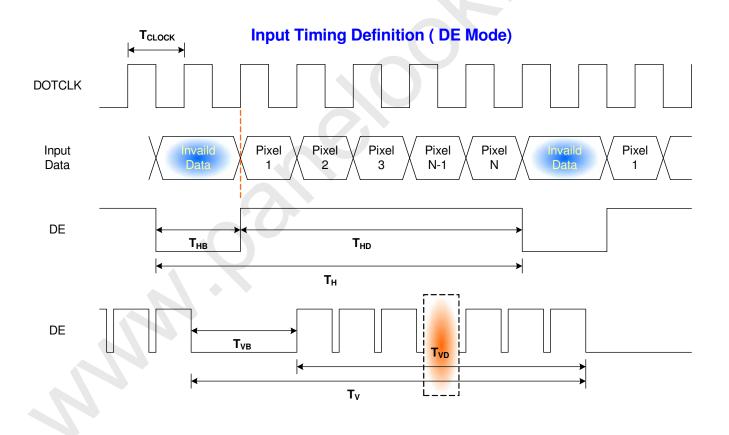
PIN#	Signal Name	Description
1	GND	Ground
2	VDD	+3.3V Power Supply
3	VDD	+3.3V Power Supply
4	V _{EDID}	+3.3V EDID Power
5	NC	No Connection (Reserve for AUO test)
6	CLK _{EDID}	EDID Clock Input
7		EDID Data Input
8	RxIN0-	LVDS differential data input(R0-R5, G0)
9	RxIN0+	LVDS differential data input(R0-R5, G0)
10	GND	Ground
11	RxIN1-	LVDS differential data input(G1-G5, B0-B1)
12	RxIN1+	LVDS differential data input(G1-G5, B0-B1)
13	GND	Ground
14	RxIN2-	LVDS differential data input(B2-B5, HS, VS, DE)
15	RxIN2+	LVDS differential data input(B2-B5, HS, VS, DE)
16	GND	Ground
17	RxCLKIN-	LVDS differential clock input
18	RxCLKIN+	LVDS differential clock input
19	GND	Ground
20	NC	No Connection (Reserve for AUO test)
21	NC	No Connection (Reserve for AUO test)
22	GND	Ground
23	NC	No Connection (Reserve for AUO test)
24	NC	No Connection (Reserve for AUO test)
25	GND	Ground
26	NC	No Connection (Reserve for AUO test)
27	NC	No Connection (Reserve for AUO test)
28	NC	No Connection (Reserve for AUO test)
29	NC	No Connection (Reserve for AUO test)
30	NC	No Connection (Reserve for AUO test)

 $\langle p \rangle$

Note2: Input signals shall be low or High-impedance state when VDD is off. internal circuit of LVDS inputs are as following.

The module uses a 100ohm resistor between positive and negative data lines of each receiver input

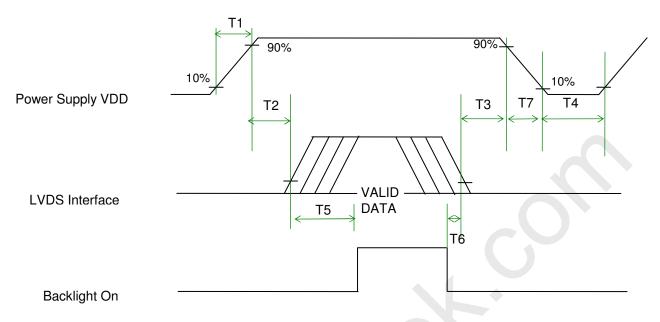
nal Input			
lo.		LVDS Receiver	1
3 RxIN0-	R		
9 RxIN0+	<u> </u>		
11 RxIN1-			
12 RxIN1+			
4 RxIN2-	R		
5 RxIN2+	T		
7 RxCLKIN-	R		
8 RxCLKIN+	T		
	lo. 8 RxIN0- 9 RxIN0+ 11 RxIN1- 2 RxIN1+ 8 RxIN2- 5 RxIN2+ 7 RxCLKIN-	lo. B RxIN0- R RXIN0+ R RXIN0+ R RXIN1+ B RXIN2- R RXIN2+ R RXIN2+ R RXIN2+ R RXIN2+	IO. RxIN0- R RxIN0+ R RxIN0+ I1 RxIN1- R R R 2 RxIN1+ R 5 RxIN2+ R 7 RxCLKIN- R


6.4.1 Timing Characteristics

Basically, interface timings should match the 1280x800 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate		-	50	60	-	Hz
Clock fre	equency	1/ T _{Clock}	50	68.9	80	MHz
	Period	Τv	803	816	1023	
Vertical	Active	T _{VD}	800	800	800	T_{Line}
Section	Blanking	Т _{vв}	3	16	223	
	Period	Т _н	1303	1408	2047	
Horizontal	Active	T _{HD}	-	1280	-	T _{Clock}
Section	Blanking	T _{HB}	23	128	767	

Note : DE mode only


6.4.2 Timing diagram

 $\langle p \rangle$

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power Sequence Timing

Parameter	Min.	Тур.	Max.	Units
T1	0.5	-	10	(ms)
T2	0	-	50	(ms)
Т3	0		50	(ms)
T4	400	-	-	(ms)
T5	200	-	-	(ms)
Т6	200	-	-	(ms)
T 7	0	-	10	(ms)

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	For Signal Connector
Manufacturer	JAE or compatible
Type / Part Number	FI-XB30SL-HF10 or compatible
Mating Housing/Part Number	FI-X30H or compatible

7.2 Backlight Unit

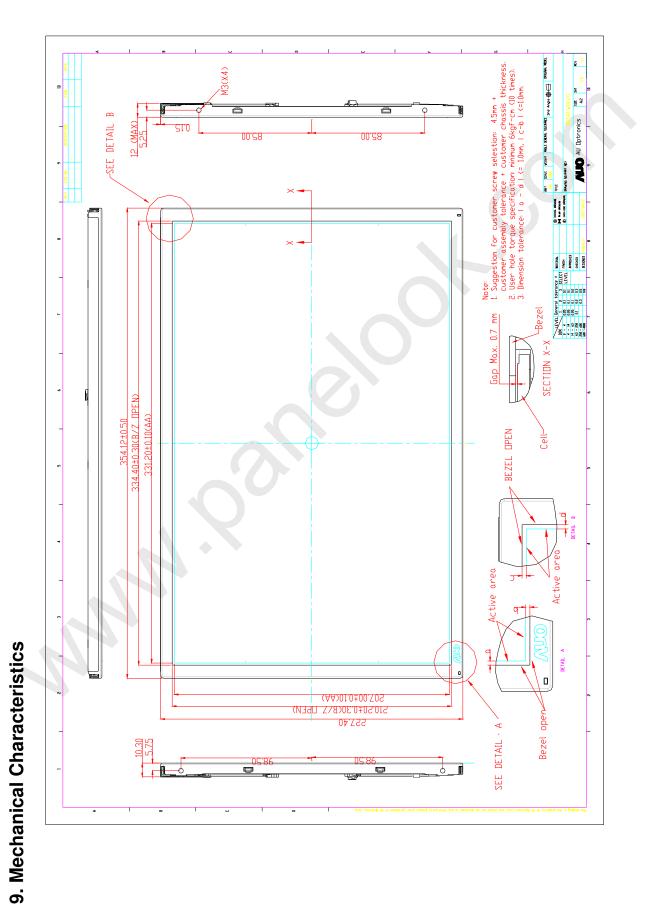
Physical interface is described as for the connector on module.

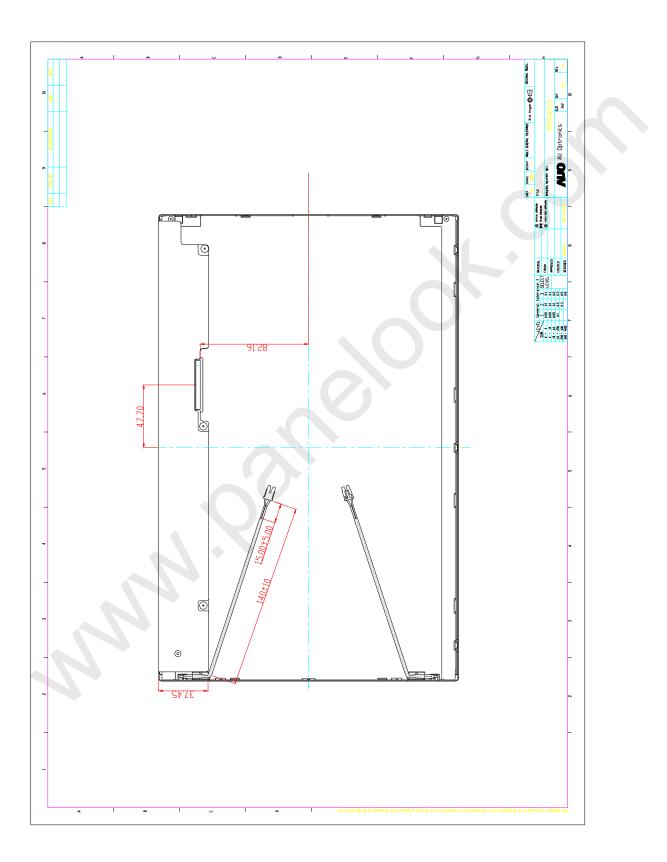
These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Lamp Connector
Manufacturer	CviLux
Type / Part Number	CP0502SL09
Mating Type / Part Number	CP0502P1ML0-LF

7.3 Signal for Lamp connector

	Connector No.	Pin No.	Input	Color	Function
	CN1	1	Hot1	Pink	High Voltage
Upper	CNT	2	Cold1	White	Low Voltage


	Connector No.	Pin No.	Input	Color	Function
Lower CN2	1	Hot1	Pink	High Voltage	
Lower	GNZ	2	Cold1	White	Low Voltage



Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 50%RH, 300hours	
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C , 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 G Wave: Random Frequency: 10 - 200 - 10 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Electro Statio Discharge)	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	2
ESD (Electro Static Discharge)	Air Discharge: ± 15KV, 150pF(330Ω) 1sec 8 points, 25 times/ point.	2
Altitude Test	Operation:10,000 ft Non-Operation:30,000 ft	

- Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.
- Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

22/24

