

Issue Date: June.01'2001 Model: M170E1 -04 Approval

TFT-LCD Approval Specification

Model No.: M170E1 -04

Customer : Pro ARCH TECHNOLOGY IN	<u>c.</u>
Approved by :	
Note :	

QRA Dept.	RD Dept.	System Dept
Approval	Approval	Approval
翁		(#
90. 6. 4	T T	90.6.1

1/24

CONTENTS REVISION HISTORY

GENERAL DESCRIPTION

- 1. ABSOLUTE MAXIMUM RATINGS 1.1 ABSOLUTE RATINGS OF ENVIRONMENT 1.2 ELECTRICAL ABSOLUTE RATINGS
- 2. ELECTRICAL SPECIFICATIONS 2.1 TFT LCD MODULE 2.2 BACKLIGHT UNIT
- 3. BLOCK DIAGRAM 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT
- 4. INTERFACE SPECIFICATIONS 4.1 THE LVDS INTERFACE SIGNAL DESCRIPTION 4.2 AC TIMING SPECIFICATIONS (DE only mode) 4.3 COLOR DATA INPUT ASSIGNMENT
- 5. OPTICAL CHARACTERISTICS 5.1 TEST CONDITIONS 5.2 OPTICAL SPECIFICATIONS
- 6. OUTLINE DIMENTION
- 7. PRECAUTION 7.1 ASSEMBLY AND HANDLING PRECAUTION 7.2 SAFETY PRECAUTION
- 8.8. PACKAGING
 - **8.1 PACKING SPECIFICATIONS**
 - 8.2 PACKING Method

2/24

Issue Date: June.01'2001 Model: M170E1 -04 Approval

9. INCOMING INSPECTION DA

10. DEFINITION OF SHIPPING LABEL ON MODULE

3/24

Issue Date: June.01'2001 Model: M170E1 -04

		REVISION HISTORY
Version Ver3.0	Date	Description Issue Approval Specification for Pro ARCH.
Ver3.0	Jun.01,'00	Issue Approval Specification for Pro ARCH.

4/24

GENERAL DESCRIPTION

OVERVIEW

This product is a 17.0" TFT Liquid Crystal Display Module with 2 dual CCFLs Backlight unit and 30 pins LVDS interface. This module supports 1280 x 1024 SXGA mode and can display 16 million colors. The inverter module for Backlight is not built in.

FEATURES

-SXGA (1280x1024 pixels) resolution -2 dual CCFLs (Cold Cathode Fluorescent Lamp) -DE only Mode -LVDS (Low Voltage Differential Signaling) Interface

APPLICATION

-TFT-LCD Monitor

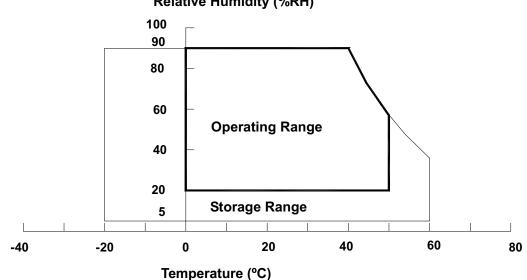
GENERAL SPECIFICATIONS

Item	Spec.	Unit
Screen Size	17.0 Diagonal	inch
Bezel Opening Area	342.0(H) x 274.4(V)	mm
Effective Display Area	337.92(H) x 270.34(V)	mm
Driver Element	a-si TFT active matrix	-
Pixel Number	1280 x R.G.B. x 1024	pixel
Pixel Pitch	0.264(H) x 0.264(W)	mm
Pixel Arrangement	RGB vertical stripe	-
Display Colors	16M	color
Transmissive Mode	Normally White	-
Surface Treatment	Haze 25%, Hard-Coating, Anti-static	-

MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit
	Horizontal(H)	403.5	404	404.5	mm
Module Size	Vertical(V)	321.7	322.2	322.7	mm
	Depth(D)	-	-	21	mm
Weight		-	2,000	2,150	g

1. ABSOLUTE MAXIMUM RATINGS


1.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Values		Note	
liem	Symbol	Min.	Max.	Unit	NOLE	
Storage temperature	Tst	-20	+60	°C	(1)	
Operating temperature (Ambient Temperature)	Тор	0	+50	°C	(1),(2)	
Shock(non-operating)	Snop	-	30	G	(3),(5)	
Vibration(non-operating)	Vnop	-	1.5	G	(4),(5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The temperature of panel surface should be 0 °C Min. and 60 °C Max.
- Note (3) 6 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 500 Hz, 0.5 Hr each X, Y, Z.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

6/24

 $\langle p \rangle$

Issue Date: June.01'2001 Model: M170E1 -04

1.2 ELECTRICAL ABSOLUTE RATINGS

(1)TFT LCD MODULE

Itom	Svmbol	Val	ues	Unit	Note
Item	Symbol	Min.	Max.	Unit	NOLE
Power Supply Voltage	Vcc	-0.3	6.0	V	Ta = 25 ± 2 ℃
Input Signal Voltage	V _{IN}	-0.3	4.3	V	1a - 25 ± 2 ° C

(2)BACKLIGHT UNIT

Item	Symbol		Value		Unit	Note
liem	Symbol	Min.	Тур.	Max.	Unit	NOLE
Lamp Current	١L	6.0	13.0	14.0	m A _{RMS}	(1),(2)
Lamp Frequency	FL	30	45	80	KHz	(1)

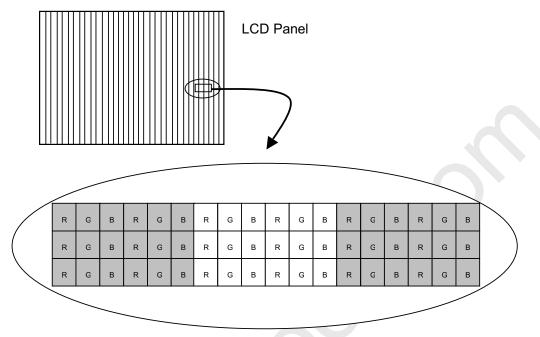
Note (1) Permanent damage to device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for a dual lamp (Refer to the Note (1) of 2.2 BACKLIGHT UNIT for further information).

2. ELECTRICAL SPECIFICATIONS

2.1 TFT LCD MODULE

MODULE						
Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage	V _{cc}	4.5	5.0	5.5	V	-
Power Supply Current	I _{cc}	-	-	1000	mA	(1)
Ripple Voltage	Vrp	-	-	100	mV	-
LVDS differential input voltage	Vid	100	-	600	mV	
LVDS common input voltage	Vic	-	1.2	-	V	
Logic "H" input voltage (SELLVDS)	Vih	2.0	-	3.6	V	-
Logic "L" input voltage (SELLVDS)	Vil	Vss	-	0.8	V	-
Rush Current	Irush	-	-	1.5	А	(2)

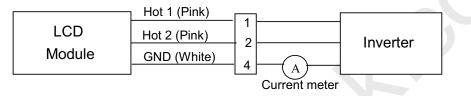

7/24


Issue Date: June.01'2001 Model: M170E1 -04

Note (1) Measured with 2 lines vertical stripe pattern.

Slash area is lighted off. The other white area is lighted on.

Note (2) Measurement Conditions



Issue Date: June.01'2001 Model: M170E1 -04

2.2 BACKLIGHT UNIT

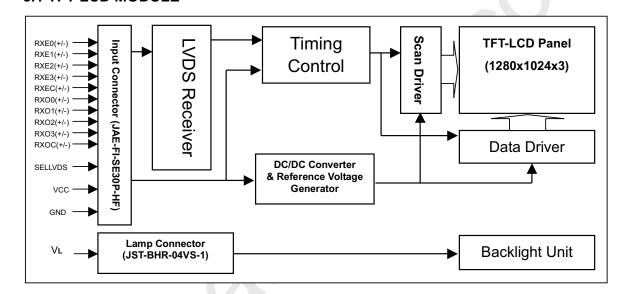
	BACKLIGHT (2 Dual CCFLs)					
Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp Input Voltage	VL	640	720	800	V _{RMS}	(1)
Lamp Current	١L	6.0	13.0	14.0	mA _{RMS}	(1)
Lamp Turn On Voltage	V	-	-	1150	V _{RMS}	25°C
Lamp Turn On Voltage	Vs	-	-	1500	V _{RMS}	0°C
Operating Frequency	FL	30	45	80	KHz	(1)
Lamp Life Time	L _{BL}	50,000	-	-	Hrs	13mA
Power Consumption	PL	-	9360	-	mW	(4)

Note (1) Lamp current is measured by utilizing a current meter for high frequency as shown below:

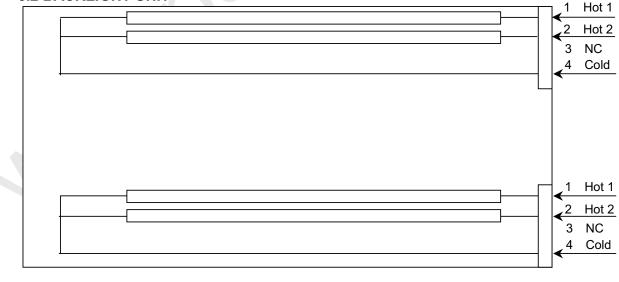
- Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

Note (4) $P_L = I_L \times V_L$.

- Note (5) The lifetime (Hr) of a lamp can be defined as the time in which it continues to operate under the condition Ta = $25\pm2^{\circ}$ C and I_L = 14.0 mArms until one of the following event occurs:
 - (a) When the brightness becomes 50% or lower than its original,
 - (b) When the effective ignition length becomes 80% or lowers than its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be designed with care so as not to produce too much current leakage from high-voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the backlight and the inverter (miss-lighting, flicker, etc.) never occurs. When the above situation is confirmed, the module should be operated in the same manners as it is installed in your instrument.


Issue Date: June.01'2001 Model: M170E1 -04

The connector information of Blacklight unit.					
Pin	Symbol	Description	Remark		
1	HV1	High Voltage	Pink		
2	HV2	High Voltage	Pink		
3	NC	No Connection	-		
4	LV	Ground	White		


Note (1) Connector Part No.: BHR-04VS-1 (JST)

Note (2) User's connector Part No.: SM04 (4.0) B-BHS-1-TB (JST)

3. BLOCK DIAGRAM 3.1 TFT LCD MODULE

3.2 BACKLIGHT UNIT

CHIMEI OPTOELECTRONICS CORP.

Issue Date: June.01'2001 Model: M170E1 -04 Approval

4. INTERFACE SPECIFICATIONS

4.1 THE LVDS INTERFACE SIGNAL DESCRIPTION

Pin	Name	Description
1	VCC	+5.0V power supply
2	VCC	+5.0V power supply
3	VCC	+5.0V power supply
4	GND	Ground
5	GND	Ground
6	GND	Ground
7	SELLVDS	Select LVDS data order. Connect this pin to low. See the following table.
8	TEST	Test pin should be tied to ground.
9	GND	Ground
10	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
11	RXO3-	Negative LVDS differential data input. Channel O3(odd)
12	RXOC+	Positive LVDS differential clock input. (odd)
13	RXOC-	Negative LVDS differential clock input. (odd)
14	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
15	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
16	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
17	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
18	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
19	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
20	RXE3+	Positive LVDS differential data input. Channel E3 (even)
21	RXE3-	Negative LVDS differential data input. Channel E3 (even)
22	RXEC+	Positive LVDS differential clock input. (even)
23	RXEC-	Negative LVDS differential clock input. (even)
24	RXE2+	Positive LVDS differential data input. Channel E2 (even)
25	RXE2-	Negative LVDS differential data input. Channel E2 (even)
26	RXE1+	Positive LVDS differential data input. Channel E1 (even)
27	RXE1-	Negative LVDS differential data input. Channel E1 (even)
28	RXE0+	Positive LVDS differential data input. Channel E0 (even)
29	RXE0-	Negative LVDS differential data input. Channel E0 (even)
30	GND	Ground

Note (1) Connector Part No.: FI-SE30P-HF (JAE)

Note (2) The first pixel is even.

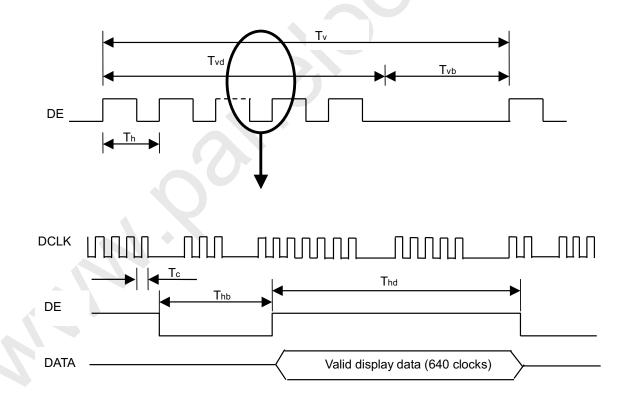
Note (3) Input signal of even and odd clock should be the same timing.

11/24

Issue Date: June.01'2001 Model: M170E1 -04 Approval

SELLVDS = Low or Open											
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0			
LVDS Channel EU	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0			
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8			
LVDS Channel ET	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1			
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19			
	Data order	DE	NA	NA	EB5	EB4	EB3	EB2			
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27			
	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6			
LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0			
	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0			
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8			
LVDS Channel OT	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1			
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19			
	Data order	DE	NA	NA	OB5	OB4	OB3	OB2			
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27			
	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6			

12/24


Issue Date: June.01'2001 Model: M170E1 -04 Approval

4.2 AC TIMING SPECIFICATIONS (D	E only mode)
---------------------------------	--------------

		•		,			
Signal	ltem	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	31	54	(67.5)	MHz	
LVDS clock	Period	Тс	14.8	18.5	32.2	ns	
	High Time	Tch	-	4/7	-	Тс	
	Low Time	Tcl	-	3/7	-	Тс	
LVDS data	Setup time	Tlvs	600	-	-	ps	
	Hold time	Tlvh	600	-	-	ps	
	Frame rate	Fr	-	-	75	Hz	
Vertical active	Total	Τv	1025	1066	1274	Th	Tv=Tvd+Tvb
display term	Display	Tvd	1024	1024	1024	Th	
	Blank	Tvb	1	42	250	Th	
Horizontal active	Total	Th	650	844	960	Тс	Th=Thd+Thb
display term	Display	Thd	640	640	640	Тс	
	Blank	Thb	10	204	320	Тс	

Note: HS and VS input signals should be fixed to low for stable operation. Otherwise, the module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

13/24

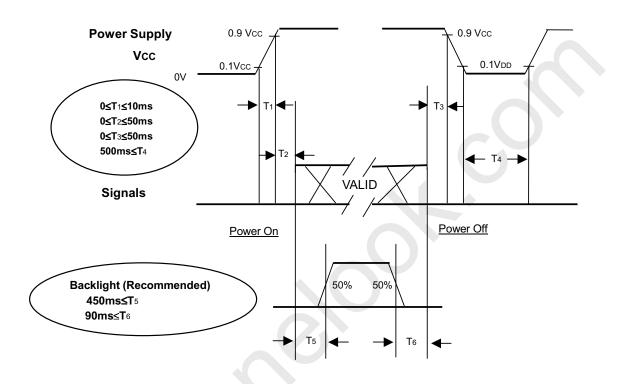
CHINEL OPTOELECTRONICS CORP.

Issue Date: June.01'2001 Model: M170E1 -04

4.3 COLOR DATA INPUT ASSIGNMENT

	Data Signal																								
	Color		Red Green Blue																						
	I	R7	R6	R5	R4	R3	R2	R1	R0		R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	B3	B2		
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1		:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:		:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:		Ċ.	÷	÷	•		:	:	:	:	•			:	•	:	:	
Of	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	•	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	-	÷	<u> (</u>	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:		:
Of	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:			:		:	
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

14/24


 $\langle p \rangle$

Issue Date: June.01'2001 Model: M170E1 -04 Approval

4.4 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

NOTE.

- The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of Vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

15/24

 $\langle p \rangle$

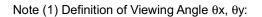
Issue Date: June.01'2001 Model: M170E1 -04 Approval

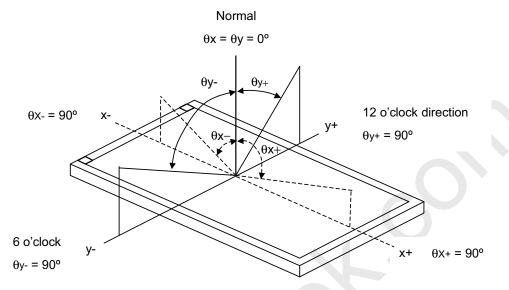
5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	D°				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{cc}	5.0	V				
Input Signal	According to typ	ical value in "Electrical	Characteristics"				
Inverter Current	١ _L	13.0	mA				
Inverter Driving Frequency	FL	40	K Hz				
Inverter	Sumida H05-4785						

The measuring method is shown in 5.2 OPTICAL SPECIFICATIONS. The following items are measured under stable conditions about 20 minutes after the module works. The optical characteristics should be measured under lamp current $I_L = 13.0$ m Arms and in a dark environment (≤ 2 lux) or equivalent state with the methods shown in Note (6).


5.2 OPTICAL SPECIFICATIONS


Item		Symbol	Conditions	Sp	ecificatio	ns	Unit	Note
item			Conditions	Min.	Тур.	Max.	Unit	Note
Contrast R	Contrast Ratio			250	300	-	-	(2),(6)
Response	Response Time			-	15	30	ms	(3)
Response				-	35	50	ms	(3)
	Luminance of white (Average Luminance)			200	230	-	cd/m ²	(4),(6)
Cross Ta	lk	СТ		-	-	5.0	%	(5),(6)
	Red	Rx	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$	0.61	0.63	0.65		
	Neu	Ry		0.34	0.36	0.38		
	Green	Gx	Viewing normal angle	0.28	0.30	0.32		
Luminance Uniformity	Green	Gy		0.57	0.59	0.61		
Chromaticity	Blue	Bx		0.13	0.15	0.17		
, ,	Diue	Ву		0.07	0.09	0.11		(1) (6)
	White	Wx		0.30	0.32	0.34		(1), (6)
	vvinte	Wy		0.31	0.33	0.35		
		θ_{x} +		50	60	-		
	Hor.	θx-	CR≥10	50	60	-	Dee	
Viewing Angle	Vor	θy+	CR210	30	40	-	Deg.	
	Ver.	θγ-		50	60	-		
White Variation		δW	θ_x =0°, θ_Y =0° Viewing normal angle	-	1.25	1.4		(6),(7)

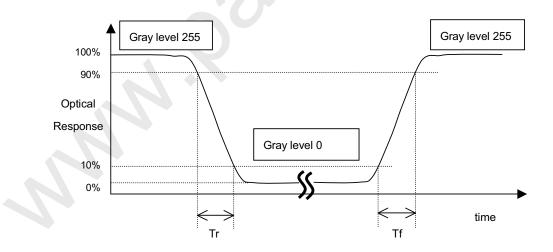
16/24

CHINEL OPTOELECTRONICS CORP. Issue Date: June.01'2001 Model: M170E1 -04

Note (2) Definition of Contrast Ratio:

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance on the white raster (gray level 255)

L 0: Luminance on the black raster (gray level 0)

CR = CR (5)

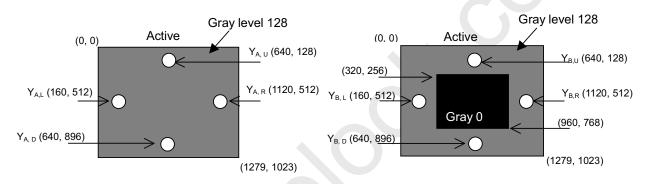
CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Note (3) Definition of Response time:

Measure the luminance of gray level 255 at 5 points

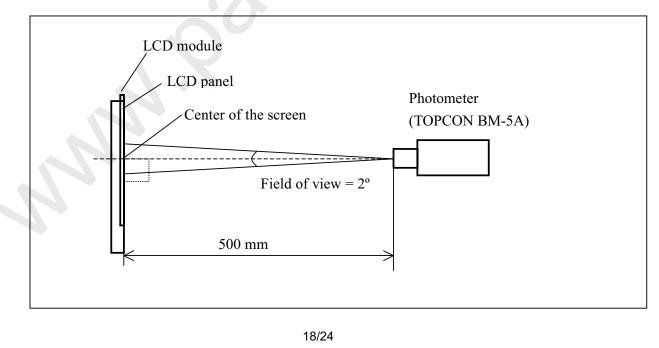
 $L_{AVE} = [L (1)+L (2)+L (3)+L (4)+L (5)] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (7).


Note (5) Definition of Cross Talk (CT):

 $CT = |Y_B - Y_A| / Y_A \times 100 (\%)$

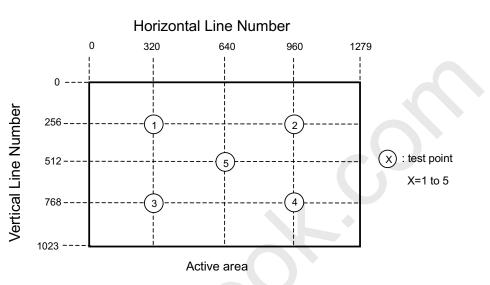
Where:


 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measuring setup:

The measurement supposes to be executed after stabilizing the panel at given temperature during 20 minutes in the case of abrupt temperature change. The measurement shall be executed after lighting at rating 20 minutes. In order to stabilize the luminance, LCD shall not be gotten winds.


 $\langle \! \! \rangle$

Issue Date: June.01'2001 Model: M170E1 -04 Approval

Note (7) Definition of luminance uniformity δW (5 points, gray level 255):

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]

Horizontal Line Number [pixel]

6. MECHNICAL DRAWING

Please refer to the attached drawings.

19/24

7. PRECAUTION

7. 1 ASSEMBLY AND HANDLING PRECAUTION

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assembly and install module into user's system are only in clean working areas. The dust and oil may cause an electrical short or worsen the polarizer.
- (3) It's not permitted to pressure or impulse the module because the LCD panel and backlight,
- (4) Always follow the correct power sequence when user connects and operates the LCD module to prevent damage to the CMOS LSI chips during latchup.
- (5) Do not pull the I/F connectors in or out while the module is operation.
- (6) Do not disassembly the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Any moisture come into contact with the LCD module is dangerous because LCD modules is turned on with moisture on its surface may cause it damage.
- (9) The high temperature or humidity may reduce the performance of module, to store LCD module within the specified storage condition.
- (10)The ambient temperature is lower than 10°C may reduce the display quality, for example, response time become slowly, the starting voltage of CCFL is higher than room temperature.

7.2 SAFETY PRECAUTION

- (1) The startup voltage of backlight is approximately 1000 Volts. It may cause electrical shock during assembly with inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

20/24

Issue Date: June.01'2001 Model: M170E1 -04

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 5 LCD modules / 1 Box
- (2) Box dimensions : 534(L) X 316(W) X 462(H) mm
- (3) Weight : approximately 8.0Kg (5 modules per box)

8.2 PACKING Method

Figures 8-1and 8-2 are the packing method.



Figure. 8-1 Packing method

21/24

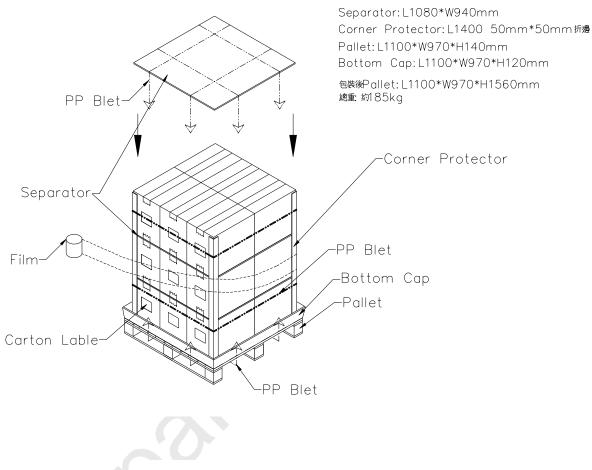


Figure. 8-2 Packing method

22/24

P

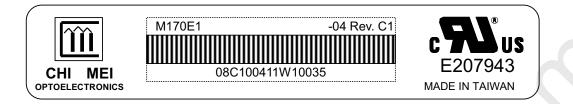
Issue Date: June.01'2001 Model: M170E1 -04 Approval

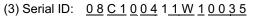
9. INCOMING INSPECTION DAY

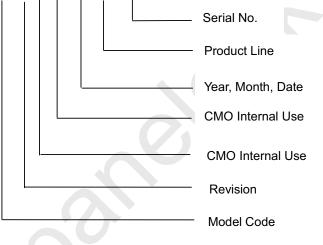
The Supplier should be acquainted the inspection results (acceptance or rejection) by Customer, and the results are in accordance with the incoming inspection standard within 30 days after the date of the bills of lading.

Should Customer fail to so notify the Supplier within the said 30 days period. The Customer's right to reject the LCMS shall then lapse, and the said LCMS shall be deemed to have been accepted by the customer.

23/24

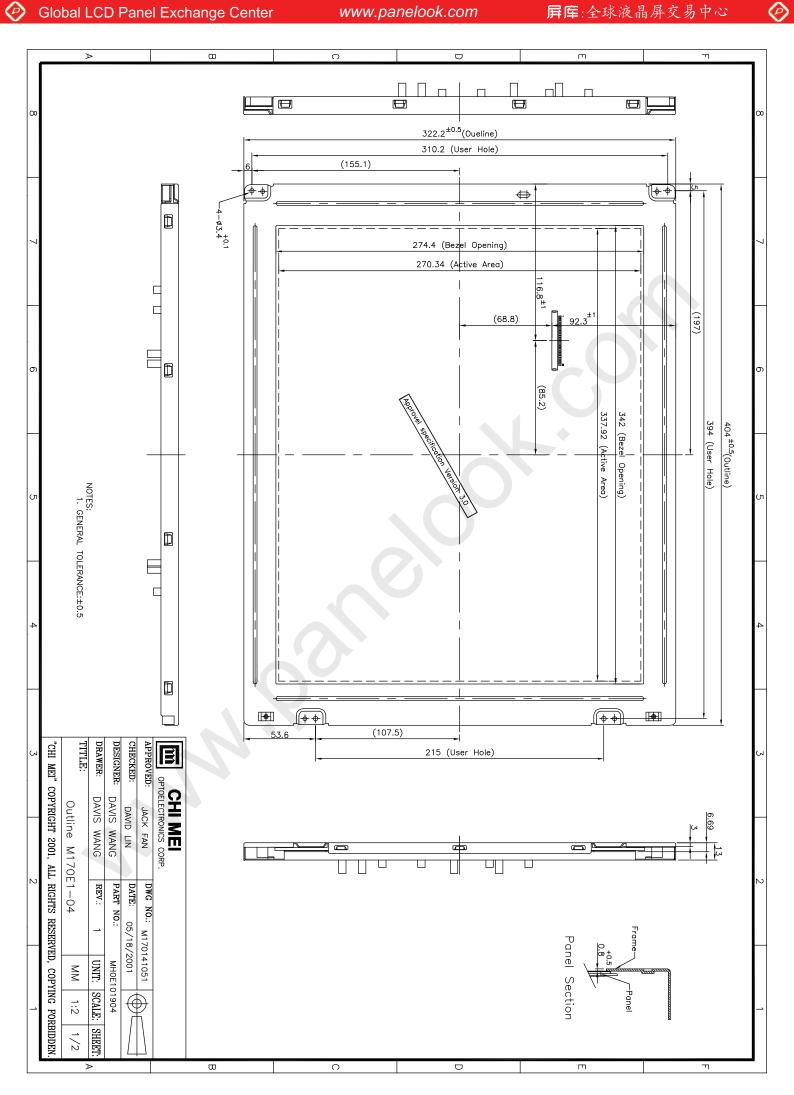

 $\langle P \rangle$

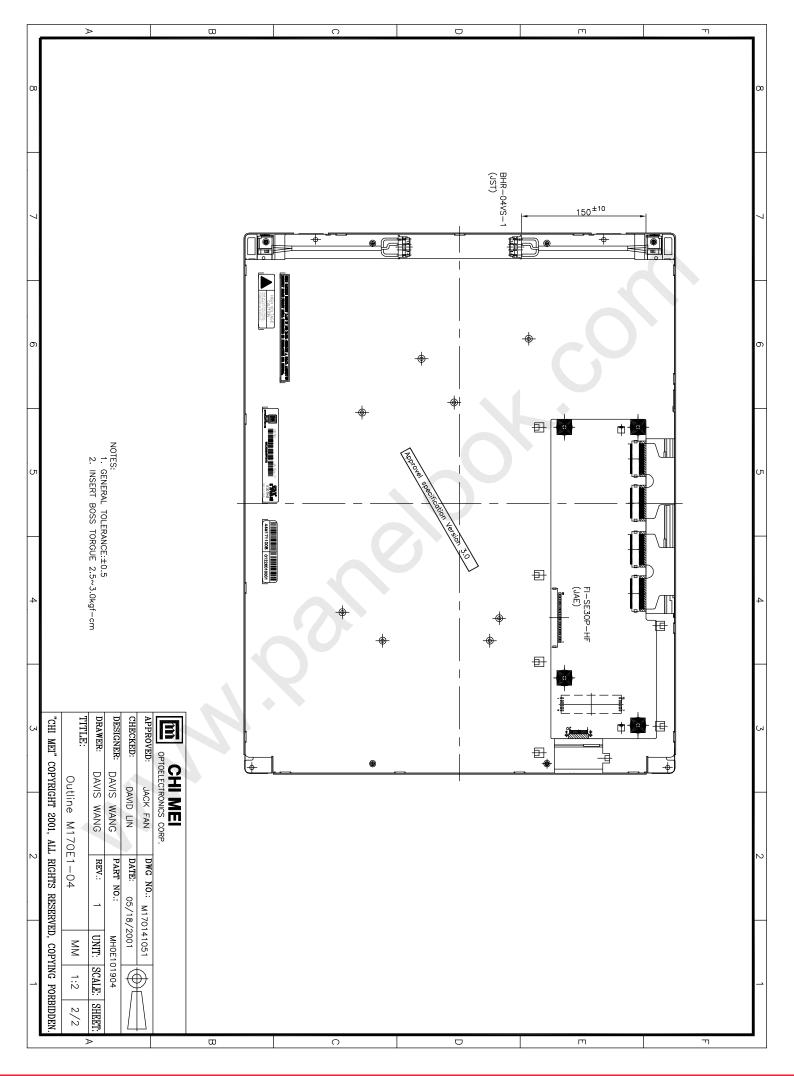

Issue Date: June.01'2001 Model: M170E1 -04 Approval


10. DEFINITION OF SHIPPING LABEL ON MODULE

The barcode nameplate is pasted on each module as illustration, and its definition is as following explanation.

- (1) Model Name : M170E1 -04
- (2) Revision: Rev.XX, for example : C1, C2 ...etc.


Serial ID included the information as follow:


- 1. Manufactured Date: Year: 0~9, for 2000~2009
 - Month: 0~9, A~C, for Jan. ~ Dec.

Day: 0~9, A~Y, for 1st to 31st, exclude I and O

- 2. Revision Code: cover all the change
- 3. Model code
- 4. Serial No.: Manufacturing sequence of product
- 5. Product Line: 1 -> Line1, 2 -> Line 2, etc.

24/24

