

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

TFT LCD Tentative Specification

MODEL NO.: M170E5 -L02

Liqu	Liquid Crystal Display Division							
QRA Dept.	QRA Dept. TDD I Dept. PDD I Dept.							
Approval	Approval	Approval						
<u>課</u> 115 水一	李王泽 92.1.3	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						

1/	25
----	----

www.panelook.com

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

CHIME OPTOELECTRONICS CORE

Ter

- CONTEN	ITS -	
REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT		7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT		11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT		12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		17
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS		23
9. MECHANICAL CHARACTERISTICS		24

2 / 25

www.panelook.com

屏库:全球液晶屏交易中心

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

REVISION HISTORY

Version	Date	Section	Description
Version	Date Jan., 08 '03	-	Description M170E5-L02 Specifications was first issued •

3 / 25

CHINEL OPTOELECTRONICS CORP.

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The M170E5 -L02 model is a 17.0" TFT-LCD module with a 4-CCFL Backlight Unit and a 30-pin 2ch-LVDS interface. This module supports 1280 x 1024 SXGA mode and displays 16M colors. The inverter module for the Backlight Unit is not built in.

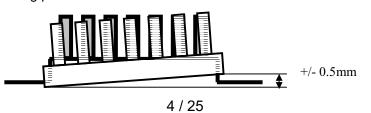
1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- Fast response time
- High color saturation (EBU Like Specifications)
- SXGA (1280 x 1024 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface

1.3 APPLICATION

- TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS


Item Specification			
ea 337.92 (H) x 270.34 (V) (17.0" diagonal)		(1)	
341.9 (H) x 274.4 (V)	mm	(1)	
a-si TFT active matrix	-	-	
1280 x R.G.B. x 1024	pixel	-	
0.264 (H) x 0.264 (V)	mm	-	
RGB vertical stripe	-	-	
16M	color	-	
Normally white	-	-	
Hard coating (3H), Anti-glare (Haze 25)	-	-	
	337.92 (H) x 270.34 (V) (17.0" diagonal) 341.9 (H) x 274.4 (V) a-si TFT active matrix 1280 x R.G.B. x 1024 0.264 (H) x 0.264 (V) RGB vertical stripe 16M Normally white	337.92 (H) x 270.34 (V) (17.0" diagonal) mm 341.9 (H) x 274.4 (V) mm a-si TFT active matrix - 1280 x R.G.B. x 1024 pixel 0.264 (H) x 0.264 (V) mm RGB vertical stripe - 16M color Normally white -	

1.5 MECHANICAL SPECIFICATIONS

l	tem	Min. Typ. Max.			Unit	Note
	Horizontal(H)	358.0	358.5	359.0	mm	
Module Size	Vertical(V)	296.0	296.5	297.0	mm	(1)
	Depth(D)	-	17.0	17.5	mm	
W	Weight		1995	TBD	g	-
I/F connec	tor mounting	The mounting ir		(2)		
ро	sition	the screen cente	r within ±0.5mm a	as the horizontal.		(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

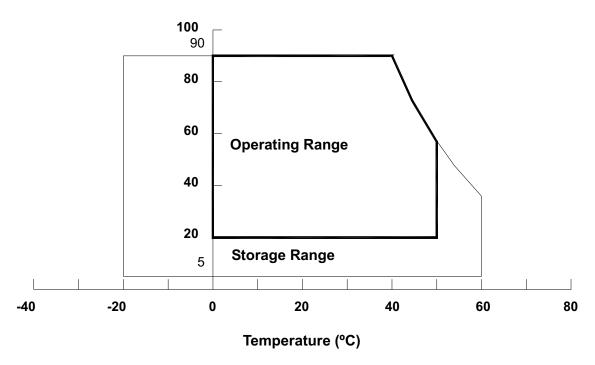
Tentative

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
liem	Symbol	Min.	Max.	Unit	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V _{NOP}	-	1.5	G	(4), (5)
LCD Cell Life Time	L _{CELL}	50,000	-	Hrs	MTBF based

Note (1) Temperature and relative humidity range is shown in the figure below.


(a) 90 %RH Max. (Ta \leq 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

- Note (2) The temperature of panel surface should be 0 °C Min. and 60 °C Max.
- Note (3) 11ms, half-sine wave, 1 time for ± X, ± Y, ± Z.
- Note (4) 10 ~ 300 Hz, sweep rate 10 min, 30 min for X,Y,Z axis
- Note (5) Upon the Vibration and Shock tests, the fixture used to hold the module must be firm and rigid enough to prevent the module from twisting or bending by the fixture.

Relative Humidity (%RH)

5/25

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

ltom	Svmbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	4.3	V	(1)

2.2.2 BACKLIGHT UNIT

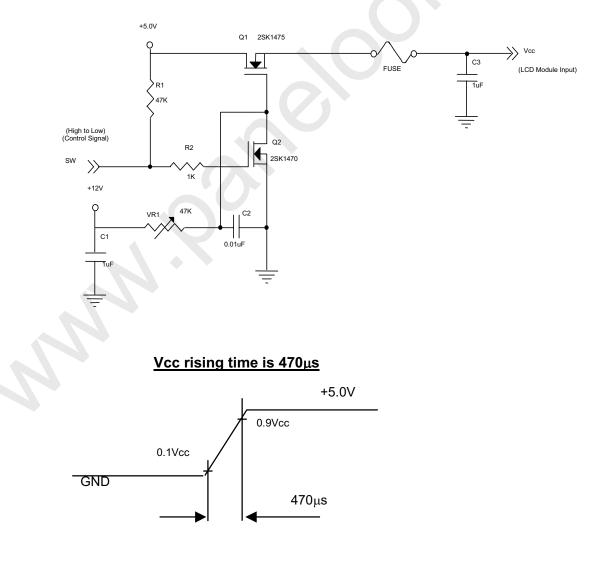
Item	Symbol	Symbol Value			Note	
nem	Symbol	Min.	Max.	Unit	Note	
Lamp Voltage	VL	-	2.5K	V _{RMS}	(1), (2), I _L = 6.5 mA	
Lamp Current	١	-	7.5	mA _{RMS}	(1) (2)	
Lamp Frequency	FL	-	80	KHz	(1), (2)	

Note (1) Permanent damage might occur if the module is operated at conditions exceeding the maximum values.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

6 / 25

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02 Tentative


3. ELECTRICAL CHARACTERISTICS

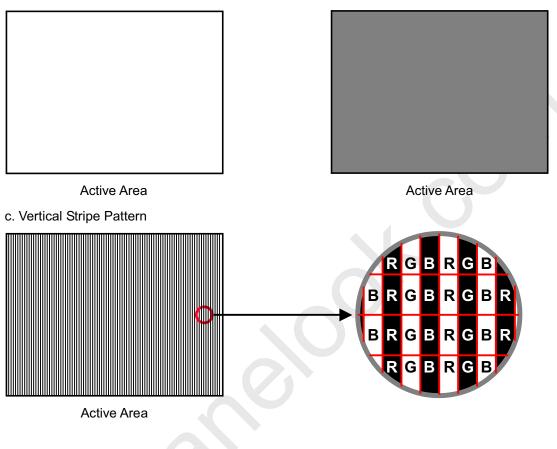
3.1 TFT LCD MODULE

1 TFT LCD MODULE						
Symbol		Value		Llnit	Note	
Symbol	Min.	Тур.	Max.	Onit		
Vcc	4.5	5.0	5.5	V	-	
V _{RP}	-		100	mV	-	
I _{RUSH}	-		TBD	Α	(2)	
	-	420	TBD	mA	(3)a	
	-	570	TBD	mA	(3)b	
I Stripe Icc	-	520	TBD	mA	(3)c	
	-	-	TBD	mA		
Vid	-100	-	+100	mV		
Vic		1.2		V	>	
S) Vil	Vss	-	0.8	V		
)	Al Stripe iHz, .5V VRP IRUSH ICC Vid Vid Vic	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c } \hline Symbol & \hline Min. & Typ. \\ \hline Min. & Typ. \\ \hline Vcc & 4.5 & 5.0 \\ \hline V_{RP} & - & \\ \hline I_{RUSH} & - \\$	$\begin{tabular}{ c c c c c c } \hline Symbol & \hline Min. & Typ. & Max. \\ \hline & Vcc & 4.5 & 5.0 & 5.5 \\ \hline & V_{RP} & - & & 100 \\ \hline & I_{RUSH} & - & & TBD \\ \hline & I_{RUSH} & - & & TBD \\ \hline & I_{RUSH} & - & & TBD \\ \hline & I_{RUSH} & - & & TBD \\ \hline & I_{RUSH} & - & & TBD \\ \hline & I_{RUSH} & - & & TBD \\ \hline & I_{RUSH} & - & - & 570 & TBD \\ \hline & I_{RUSH} & - & - & 520 & TBD \\ \hline & I_{RUSH} & - & - & TBD \\ \hline & I_{RUSH} & - & - & TBD \\ \hline & Vid & -100 & - & +100 \\ \hline & Vic & & 1.2 & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline Symbol & \hline Min. & Typ. & Max. & Unit \\ \hline Min. & Typ. & Max. & Unit \\ \hline Vcc & 4.5 & 5.0 & 5.5 & V \\ \hline V_{RP} & - & & 100 & mV \\ \hline I_{RUSH} & - & & TBD & A \\ \hline I_{RUSH} & - & & TBD & A \\ \hline & & - & 420 & TBD & mA \\ \hline & & - & 570 & TBD & mA \\ \hline & & - & 570 & TBD & mA \\ \hline & & - & 520 & TBD & mA \\ \hline & & - & 520 & TBD & mA \\ \hline & & - & - & TBD & mA \\ \hline & & SV & & & & & & & & \\ \hline & & Vid & -100 & - & +100 & mV \\ \hline & & Vic & & 1.2 & & V \\ \hline \end{tabular}$	

Note (1) The module is recommended to operate within specification ranges listed above for normal function.

Note (2) Measurement Conditions:

7 / 25

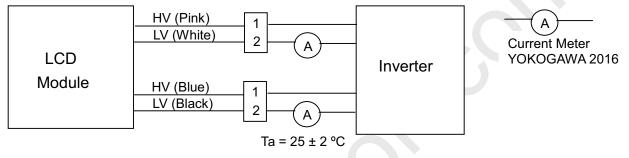


Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

- Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.
 - a. White Pattern

b. Black Pattern

8 / 25



Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

3.2 BACKLIGHT UNIT

Parameter	Symbol	Value			Unit	Noto	
Falametei	Symbol	Min.	Тур.	Max.	Unit	Note	
Lamp Input Voltage	VL	585	650	715	V _{RMS}	l _L = 6.5 mA	
Lamp Current	١L	2.0	6.5	TBD	mA _{RMS}	(1)	
	Vs	-	-	1260(25 °C)	V _{RMS}	(2)	
Lamp Turn On Voltage		-	-	1500 (0 °C)	V _{RMS}	(2)	
Operating Frequency	FL	45	50	80	KHz	(3)	
Lamp Life Time	L _{BL}	40,000	50,000	-	Hrs	(5)	
Power Consumption	PL	-	16.9	-	W	(4), I _L = 6.5 mA	

Note (1) Lamp current is measured by utilizing high-frequency current meters as shown below:

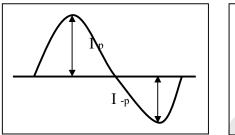
Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise, the lamp may not be turned on normally.

Note (3) The lamp frequency may produce interference with horizontal synchronization frequency from the display, which might cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronization frequency and its harmonics as far as possible.

Note (4) $P_L = I_L \times V_L$

- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = (2.0) ~ (6.5) mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

9/25



Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

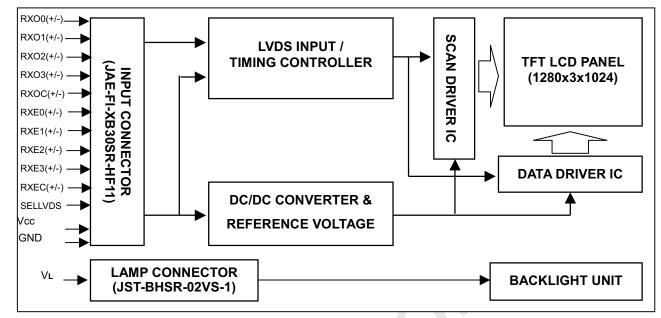
The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

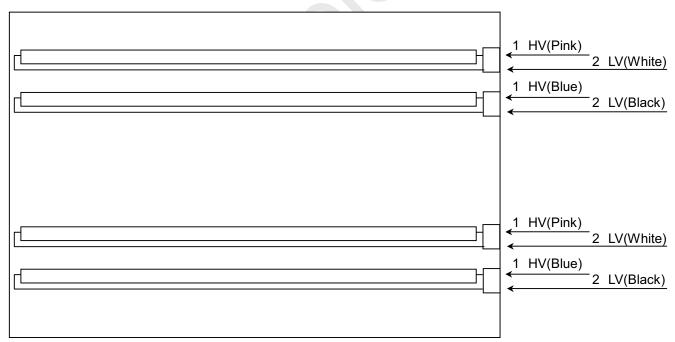
Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities.

* Asymmetry rate: | I _p – I _{–p} | / I_{rms} * 100% * Distortion rate I_p (or I_{-p}) / I_{rms}

The information described in this specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification.


10 / 25


Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02 Tentative

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

 11 / 25

 The information described in this specification is tentative and it is possible to be changed without prior notice.

 Please contact CMO 's representative while your product design is based on this specification.

 Version 0.0

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02 $\langle p \rangle$

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	TEST	Test pin should be tied to ground.
26	NC	Not connection.
27	SELLVDS	SELLVDS pin should be tied to ground or open.
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

Note (1) Connector Part No.: FI-XB30SR-HF11 or equivalent

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

12 / 25

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

SELLVDS = Low or Open										
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0		
LVDS Channel EU	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0		
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8		
LVDS Channel ET	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1		
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19		
	Data order	DE	NA	NA	EB5	EB4	EB3	EB2		
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27		
	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6		
	LVDS output	D7	D6	D4	D3	D2	D1	D0		
LVDS Channel O0	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0		
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8		
	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1		
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19		
	Data order	DE	NA	NA	OB5	OB4	OB3	OB2		
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27		
LVDS Channel OS	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6		

13 / 25

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Remark
1	HV	High Voltage	Pink
2	LV	Low Voltage	White
1	HV	High Voltage	Blue
2	LV	Low Voltage	Black

Note (1) Connector Part No.: JST-BHSR-02VS-1 or equivalent

CTRONICS CORP.

Note (2) User's connector Part No.: JST-SM02B-BHSS-1-TB (JST) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Data Signal																								
	Color				Re									reer							Blu				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Creat	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	i i		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale Of		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

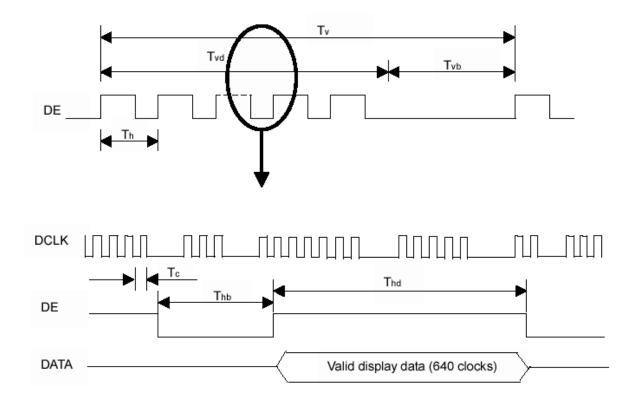
Note (1) 0: Low Level Voltage, 1: High Level Voltage

14 / 25

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02 $\langle P \rangle$

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	-	54	67.5	MHz	-
LVDS Clock	Period	Tc	14.8	18.5	-	ns	
LVD3 CIOCK	High Time	Tch	-	4/7	-	Tc	-
	Low Time	Tcl	-	3/7	-	Tc	-
LVDS Data	Setup Time	Tlvs	600	-	-	ps	-
	Hold Time	Tlvh	600	-	-	ps	
	Frame Rate	Fr	56	60	75	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Τv	1034	1066	1274	Th	-
	Display	Tvd	1024	1024	1024	Th	-
	Blank	Tvb	Tv-Tvd	42	Tv-Tvd	Th	-
	Total	Th	TBD	844	TBD	Тс	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	640	640	640	Тс	-
	Blank	Thb	Th-Thd	204	Th-Thd	Тс	-

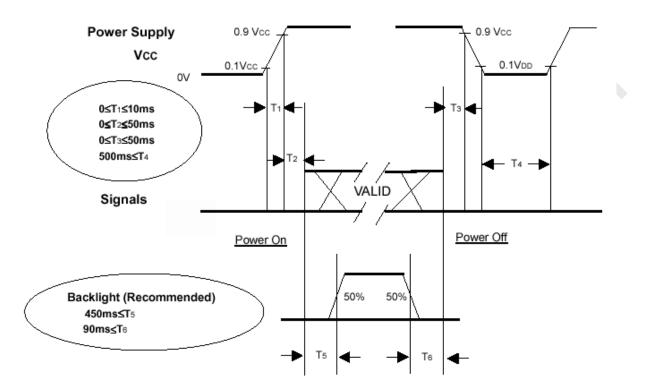
Note : (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be

set to low logic level or ground. Otherwise, this module would operate abnormally.

(2) The relationship between Fc and Th must comply with the (Th-216)/Fc>9.3 criterion.

INPUT SIGNAL TIMING DIAGRAM

15 / 25



CHIME OPTOELECTRONICS CORP.

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Please apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may, instantly, function abnormally.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power on/off periods.
- (5) Interface signal shall not be kept at high impedance when the power is on.

16 / 25

 \oslash

CHIMEI OPTOELECTRONICS CORP. Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit					
Ambient Temperature	Та	25±2	О°					
Ambient Humidity	На	50±10	%RH					
Supply Voltage	V _{CC}	5.0	V					
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS							
Inverter Current	ΙL	(6.5)	mA					
Inverter Driving Frequency	FL	50	KHz					
Inverter								

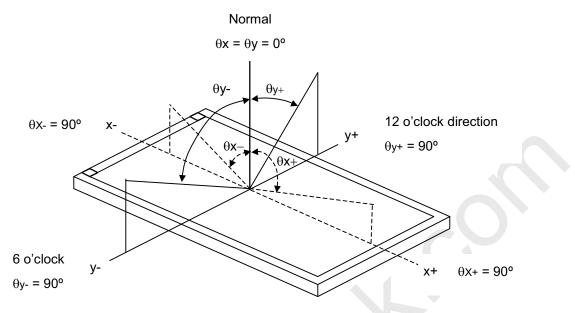
7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		(300)	(400)	-	-	(2), (6)	
Boononao Timo		T _R			(5)	TBD	ms		
Response Time		T _F		-	(11)	TBD	ms	(3)	
Center Luminan	ce of White	L _C		(250)	(300)	-	cd/m ²	(4), (6)	
White Variation		δW		-	(1.25)	(1.40)	-	(6), (7)	
Cross Talk		СТ	θ _x =0°, θ _Y =0°	-	-	(5.0)	%	(5), (6)	
	Red	Rx	Viewing Normal Angle		(0.649)		-	(1), (6)	
	- Tieu	Ry	viewing Normal Angle		(0.350)		-		
	Green	Gx		Тур - 0.03	(0.297)		-		
Color		Gy			(0.600)	Тур	-		
Chromaticity	Blue	Bx			(0.140)	+ 0.03	-		
		By			(0.070)		-		
	White	Wx			(0.313)		-		
		Wy			(0.329)		-		
	Horizontal	θ_{x} +		(60)	(70)	-			
Viewing Angle	Horizoniai	θ _x -	CR≥10	(60)	(70)	-	Dog	(1) (6)	
viewing Angle	Vertical	θ _Y +		(50)	(60)	-	Deg.	(1), (6)	
	ventical	θ _Y -		(50)	(60)	-	-		
TCO'99 Luminance									
Uniformity		L _R	-	-	-	1.7	-	(8)	
(Angular-de									
TCO'99 Lumina (Angular-de		C _m	-	0.5	-	-	-	(9)	
, 9 -1-1-				1					

17 / 25

The information described in this specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification.


One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

 \oslash

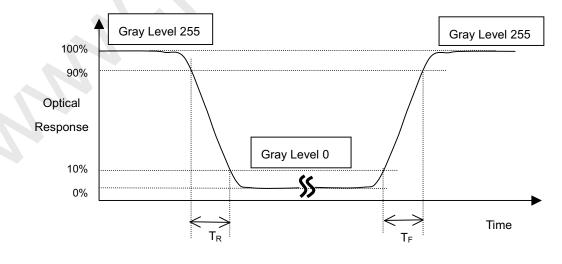
Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F) :

18 / 25

OPTOELECTRONICS CORP.

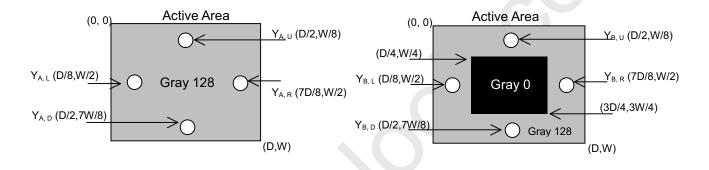
Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

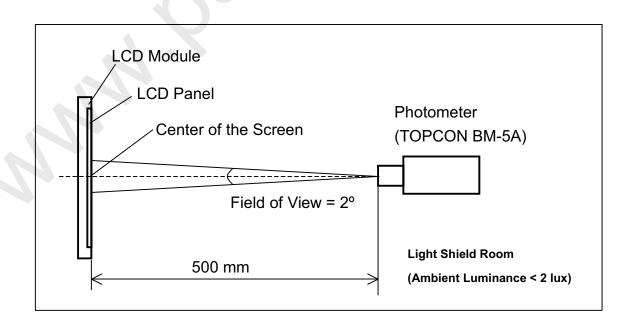
 $L_{C} = L(5)$

L (x) is corresponding to the luminance of the point X at Figure in Note (7).


Note (5) Definition of Cross Talk (CT):

 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

Where:


 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

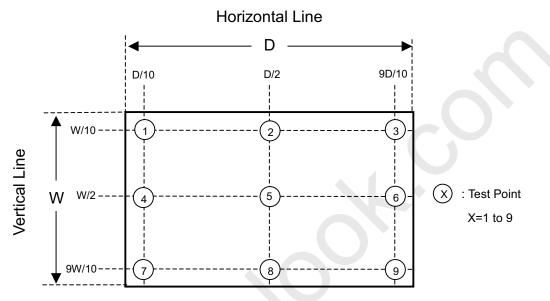
 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

The information described in this specification is tentative and it is possible to be changed without prior notice. Please contact CMO 's representative while your product design is based on this specification.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com


CHINEL OPTOELECTRONICS CORP.

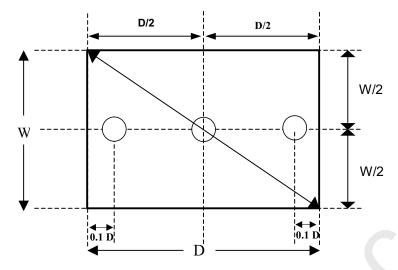
Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

$$\delta W = \frac{Maximum [L (1), L (2), L (3), L (4), L (5), L (6), L (7), L (8), L (9)]}{Minimum [L (1), L (2), L (3), L (4), L (5), L (6), L (7), L (8), L (9)]}$$

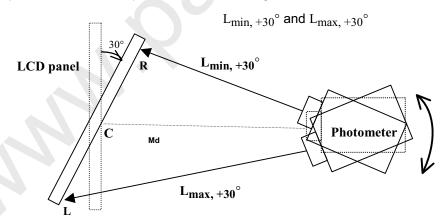
Active Area



Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

Tent

Note (8) Definition of TCO 99 Luminance Uniformity (Angular-dependent) (LR):



Luminance is measured at the center measurement position "C" on the LCD panel. The optical axis of the luminance meter shall be aligned with the normal of the panel surface. The measuring distance between the photometer and the surface of the panel is defined as:

Md (cm) = diagonal of the panel (cm) X 1.5 with minimum distance 50 cm.

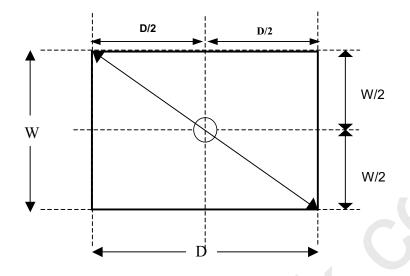
The panel is rotated around a vertical axis which passes the center of the display by changing the azimuthal angle to +30°. The distance between the panel and the photometer remains unchanged and the measured point is exact the same as the previous measured point.

The photometer is then rotated by changing its azimuthal angle with the fixed distance to the panel. Luminance at points "L" and "R" are given:

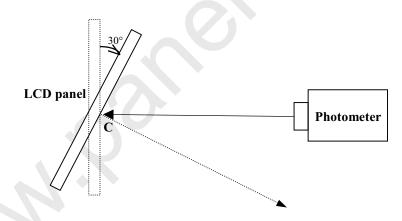
The LCD panel is then rotated to another azimuthal angle to -30°; and $L_{min, -3\theta}^{\circ}$ and $L_{max, -30}^{\circ}$ are obtained by using the same procedure.

The Luminance Uniformity (LR) is calculated as follow:

 $LR = ((L_{max, +30}^{\circ}/L_{min, +30}^{\circ})+(L_{max, -30}^{\circ}/L_{min, -30}^{\circ})) / 2.$


21 / 25

Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02



Note (9) Definition of TCO 99 Luminance Contrast (Angular-dependent) (Cm):

Luminance contrast is measured at the center point of the LCD panel "C" along with the normal of the display with the same distance described in Note 13. The display is then rotated around the vertical axis by changing its azimuthal axis to +30°; and this gives:

 $L_{255 \text{ G.L.}, +30}^{\circ}$ and $L_{0 \text{ G.L.}, +30}^{\circ}$.

The LCD panel is then rotated to azimuthal angle to -30°; and $L_{0 \text{ G L}., -30^{\circ}}$ and $L_{255 \text{ GL}., -30^{\circ}}$ are obtained by using the same procedure. The Luminance Contrast (Cm) is calculated:

 $Cm = (L_{255 G L} - L_{0 G.L})/(L_{255 G L} + L_{0 G.L})$

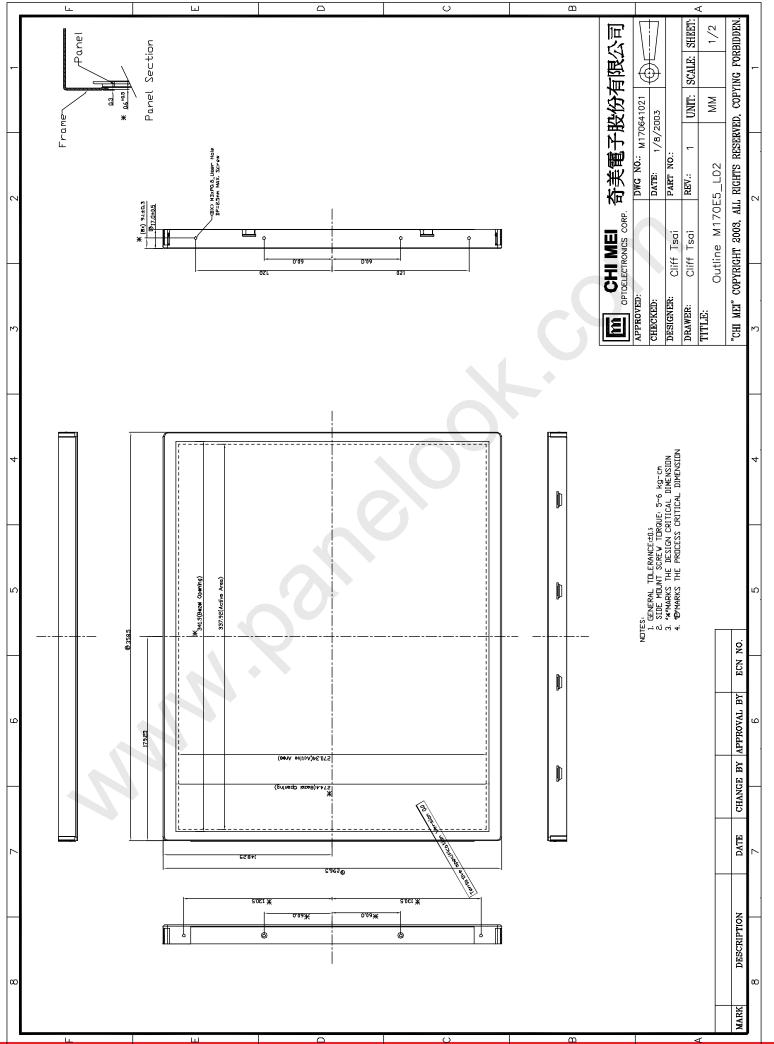
For both +30° and -30°. The lower value for Cm is reported.

22 / 25

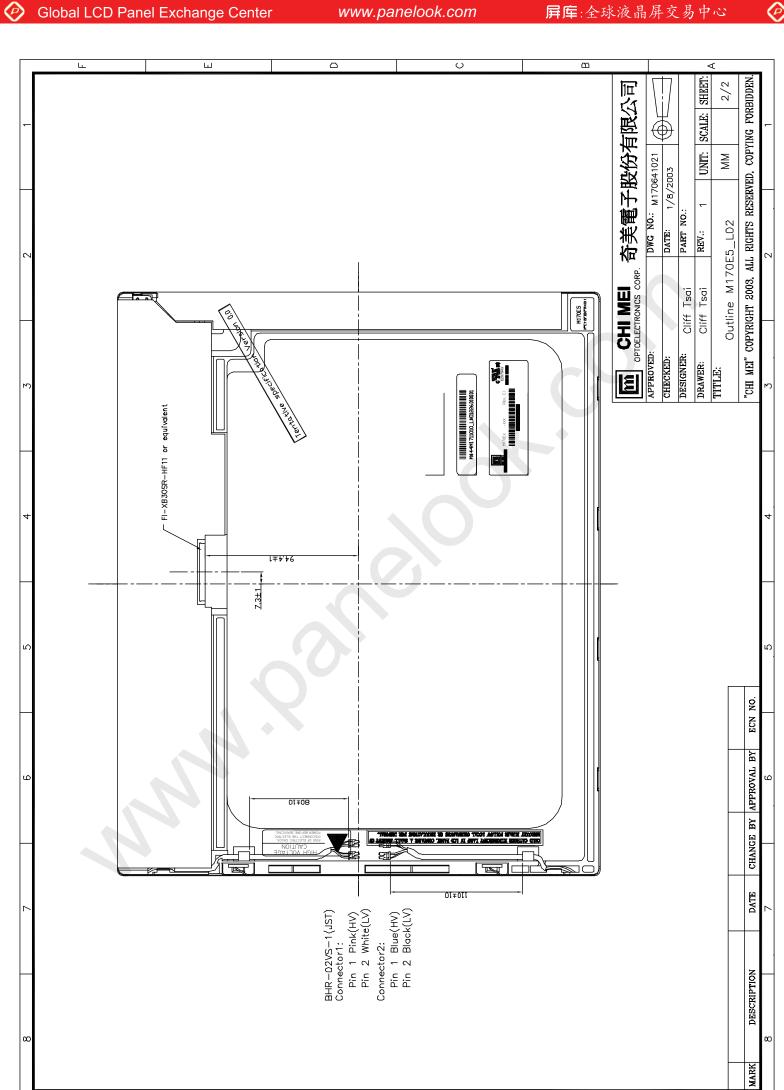
Issued Date: Jan. 08, 2003 Model No.: M170E5 -L02

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS


- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

8.2 SAFETY PRECAUTIONS


- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

23 / 25

 \oslash

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

ന