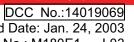
19 **44** Nga 17 1 $\langle \mathcal{P} \rangle$

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03 Approval

TFT LCD Approval Specification


MODEL NO.: M180E1 - L03

Customer: DELTA	
Approved by:	
Note:	

Liqu	id Crystal Display Div	ision
QRA Dept.	TDD I Dept.	PDD I Dept.
Approval	Approval	Approval
92 1 28 1		**************************************

1/26

;

Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

 \Diamond

- CONTER	NTS -	
REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		5
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT		6
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT		8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT		11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT		12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		17
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS		21
9. Packaging 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		22
10. INCOMING INSPECTION DAY		24
11. DEFINITION OF SHIPPING LABEL ON MODULE		25
12. MECHANICAL CHARACTERISTICS		26

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M<u>180E1 - L03</u>

 \Diamond

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Jul. 4, '01	All	All	Approval Specification was first issued.
Ver 2.1	Jan.18,'02	14	6	Input timing spec were modified.
		26	12	Mechanical characteristics were modified.
Ver 3.0	Oct. 29, '02	8	3.2	Backlight Lamp Current Specification Updated.
Ver 3.1	Jan. 24, '02	16	7.2	Contrast Ratio CR ÷ 300(Min.)/400(Typ.)→ 400(Min.)/500(Typ.)
		16		

1. GENERAL DESCRIPTION

1.1 OVERVIEW

M180E1 - L03 is an 18.0" TFT Liquid Crystal Display module with 6 CCFL Backlight unit and 30 pins 2ch-LVDS interface. This module supports 1280 x 1024 SXGA mode and can display 16.7M colors. The inverter module for Backlight is not built in.

1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- Fast response time
- High color saturation
- SXGA (1280 x 1024 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface

1.3 APPLICATION

- TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS

Specification	Unit	Note
357.12 (H) x 285.696 (V) (18.0" diagonal)	mm	(1)
361.1 (H) x 289.7 (V)	mm	(1)
a-si TFT active matrix	-	-
1280 x R.G.B. x 1024	pixel	-
0.279 (H) x 0.279 (V)	mm	-
RGB vertical stripe	-	-
16.7M	color	-
Normally black	-	-
Hard coating (3H), Anti-glare (Haze 25)	-	-
	357.12 (H) x 285.696 (V) (18.0" diagonal) 361.1 (H) x 289.7 (V) a-si TFT active matrix 1280 x R.G.B. x 1024 0.279 (H) x 0.279 (V) RGB vertical stripe 16.7M Normally black	357.12 (H) x 285.696 (V) (18.0" diagonal) mm 361.1 (H) x 289.7 (V) mm a-si TFT active matrix - 1280 x R.G.B. x 1024 pixel 0.279 (H) x 0.279 (V) mm RGB vertical stripe - 16.7M color Normally black -

1.5 MECHANICAL SPECIFICATIONS

li	Item		Тур.	Max.	Unit	Note
	Horizontal(H)	403.5	404.0	404.5	mm	
Module Size	Vertical(V)	321.7	322.2	322.7	mm	(1)
Depth(D)		-	20.2	21.2	mm	
Weight		-	2500	2550	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

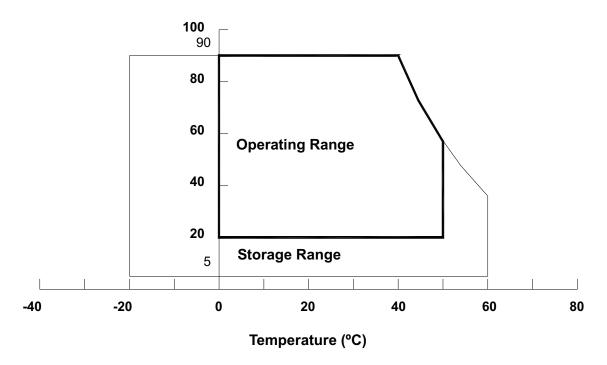
Approval

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
nem	Symbol	Min.	Max.	Unit		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V _{NOP}	-	2.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.


(a) 90 %RH Max. (Ta \leq 40 °C).

- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

(d) The measured point should be not more than 2cm from module surface.

- Note (2) The temperature of panel display area surface should be 0 °C Min. and 60 °C Max.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 500 Hz, 0.5 Hr, 4 times each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Svmbol	Va	lue	Unit	Note	
nem	Symbol	Min.	Max.	Unit	Note	
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	4.3	V	(1)	

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	ue	Unit	Note
item	Symbol	Min.	Max.	Unit	Note
Lamp Voltage	VL	-	2.5K	V _{RMS}	(1), (2), I _L = 6.0 mA
Lamp Current	١ _L	-	6.5	mA _{RMS}	(1) (2)
Lamp Frequency	FL	-	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation

should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

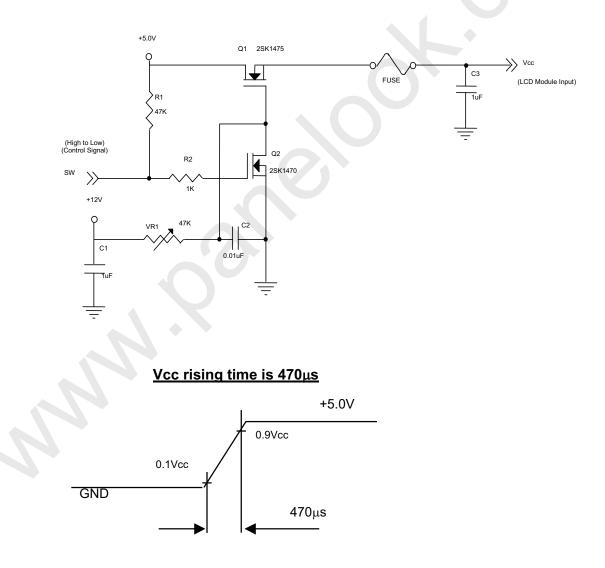
6 / 26

屏库:全球液晶屏 中心 易

> DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

 $\langle p \rangle$


3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

TFT LCD MODULE							Ta = 25 ± 2 °C	
Parame	Parameter			Value	-	Unit	Note	
			Min.	Тур.	Max.	Onit	Note	
Power Supply Voltage		Vcc	4.5	5.0	5.5	V	-	
Ripple Voltage		V _{RP}	-	-	100	mV	-	
Rush Current		I _{RUSH}	-	-	3.5	Α	(2)	
	White		-	1320	1600	mA	(3) a	
Power Supply Current	Black	lcc	-	820	980	mA	(3) b	
	Vertical Stripe	1	-	1150	1400	mA	(3) c	
LVDS differential input voltage		Vid	100	-	600	mV		
LVDS common input voltage		Vic	-	1.2	-	V		
Logic "L" input voltage (SELLVDS)	Vil	Vss	-	0.8	V		

Note (1) The module should be always operated within above ranges.

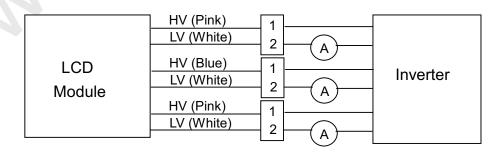
Note (2) Measurement Conditions:

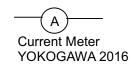
7 / 26

www.panelook.com

屏库:全球液晶屏交易中心

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03


- Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.
 - b. Black Pattern a. White Pattern Active Area Active Area c. Vertical Stripe Pattern GBRGB R В R G В R G B В GΒ G В R В R G В Active Area


3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Offic	NOLE
Lamp Input Voltage	VL	640	675	710	V _{RMS}	I _L = 6.0 mA
Lamp Current	IL A	3.0	6.0	6.5	mA _{RMS}	(1)
Lamp Turn On Voltage	Vs	-		1005 (25 °C)	V _{RMS}	(2)
Lamp Turn On Voltage	VS	-		1305 (0 °C)	V _{RMS}	(2)
Operating Frequency	FL	35	50	80	KHz	(3)
Lamp Life Time	L _{BL}	50,000	60,000	-	Hrs	(5)
Power Consumption	PL	-	24.3	-	W	(4), I _L = 6.0 mA

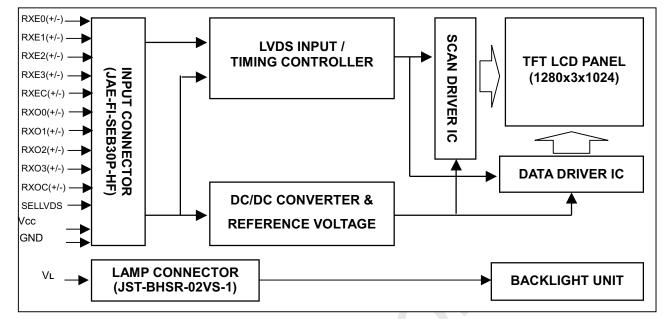
Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

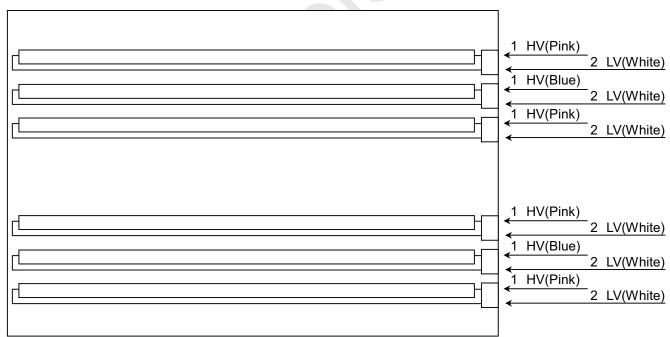
DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

- Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

Note (4) $P_L = I_L \times V_L$

- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 3.0 ~ 6.0 mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.


DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03


 \Diamond

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

 $\langle P \rangle$

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

1 VCC +5.0V power supply 2 VCC +5.0V power supply 3 VCC +5.0V power supply 4 GND Ground 5 GND Ground 6 GND Ground 7 SELLVDS SELLVDS pin should be tied to ground or open. 8 TEST Test pin should be tied to ground. 9 GND Ground 10 RX03+ Positive LVDS differential data input. Channel O3 (odd) 11 RX03- Negative LVDS differential clock input. (odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential data input. Channel O2 (odd) 14 RXO2- Negative LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O1 (odd) 16 RXO1- Negative LVDS differential data input. Channel O1 (odd) 17 RXC1- Negative LVDS differential data input. Channel O0 (odd) 18 RXO0- Negative LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data in			Description
2 VCC +5.0V power supply 3 VCC +5.0V power supply 4 GND Ground 5 GND Ground 6 GND Ground 7 SELLVDS SELLVDS pin should be tied to ground. 9 GND Ground 10 RXO3+ Positive LVDS differential data input. Channel O3 (odd) 11 RXO3- Negative LVDS differential clock input. Channel O3(odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential clock input. (odd) 14 RXO2- Negative LVDS differential data input. Channel O2 (odd) 15 RXO1- Negative LVDS differential data input. Channel O1 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel C0 (odd) 18 RXO0+ Positive LVDS differential data input. Channel C0 (odd) 19 RXO0- Negative LVDS differential data input. Channel E3 (even) 20 <td< td=""><td>Pin</td><td>Name</td><td>Description</td></td<>	Pin	Name	Description
3 VCC +5.0V power supply 4 GND Ground 5 GND Ground 6 GND Ground 7 SELLVDS SELLVDS pin should be tied to ground or open. 8 TEST Test pin should be tied to ground. 9 GND Ground 10 RXO3+ Positive LVDS differential data input. Channel O3 (odd) 11 RXO3- Negative LVDS differential data input. Channel O3 (odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential clock input. (odd) 14 RXO2+ Positive LVDS differential data input. Channel O2 (odd) 15 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO0+ Positive LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O1 (odd) 19 RXO0- Negative LVDS differential data input. Channel O3 (even) 20 RXE3+ Positive LVDS differential data input. Channel E3 (even)			
4 GND Ground 5 GND Ground 6 GND Ground 7 SELLVDS SELLVDS pin should be tied to ground or open. 8 TEST Test pin should be tied to ground. 9 GND Ground 10 RXO3+ Positive LVDS differential data input. Channel O3 (odd) 11 RXO3- Negative LVDS differential data input. Channel O3(odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential clock input. (odd) 14 RXO2+ Positive LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O1 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO1- Negative LVDS differential data input. Channel O0 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel E3 (even) 21 RXE3- Negative LVDS differential clock input. (even) 22 RXEC+ Positive LVDS differential clock input. (even)			
5 GND Ground 6 GND Ground 7 SELLVDS SELLVDS pin should be tied to ground. 9 GND Ground 10 RXO3+ Positive LVDS differential data input. Channel O3 (odd) 11 RXO3- Negative LVDS differential data input. Channel O3 (odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC+ Negative LVDS differential clock input. (odd) 14 RXO2- Negative LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O2 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO1- Negative LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel C0 (odd) 20 RXE3+ Positive LVDS differential data input. Channel E3 (even) 21 RXE3- Negative LVDS differential clock input. (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC-	-		
6 GND Ground 7 SELLVDS SELLVDS pin should be tied to ground or open. 8 TEST Test pin should be tied to ground. 9 GND Ground 10 RXO3+ Positive LVDS differential data input. Channel O3 (odd) 11 RXO3- Negative LVDS differential data input. Channel O3 (odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential clock input. (odd) 14 RXO2+ Positive LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O2 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO1- Negative LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel E3 (even) 21 RXE3+ Positive LVDS differential data input. Channel E3 (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential clock input. (even)			
7 SELLVDS SELLVDS pin should be tied to ground or open. 8 TEST Test pin should be tied to ground. 9 GND Ground 10 RXO3+ Positive LVDS differential data input. Channel O3 (odd) 11 RXO3- Negative LVDS differential data input. Channel O3 (odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential data input. Channel O2 (odd) 14 RXO2+ Positive LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O2 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO1- Negative LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel E3 (even) 21 RXE3+ Positive LVDS differential data input. Channel E3 (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential clock input. (even) 24 RXE2+ Positive LVDS differen			
8 TEST Test pin should be tied to ground. 9 GND Ground 10 RXO3+ Positive LVDS differential data input. Channel O3 (odd) 11 RXO3- Negative LVDS differential data input. Channel O3 (odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential clock input. (odd) 14 RXO2+ Positive LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O2 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO1- Negative LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel E3 (even) 20 RXE3+ Positive LVDS differential data input. Channel E3 (even) 21 RXE3- Negative LVDS differential clock input. (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential clock input. (even) 24 RXE2+ Positive LVDS differential data	_	-	
9 GND Ground 10 RXO3+ Positive LVDS differential data input. Channel O3 (odd) 11 RXO3- Negative LVDS differential data input. Channel O3 (odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential clock input. (odd) 14 RXO2+ Positive LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O2 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO1- Negative LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel E3 (even) 20 RXE3+ Positive LVDS differential data input. Channel E3 (even) 21 RXE3- Negative LVDS differential clock input. (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential data input. Channel E2 (even) 24 RXE2+ Positive LVDS differential data input. Channel E2 (even) 25 RXE2- <t< td=""><td></td><td></td><td></td></t<>			
10RXO3+Positive LVDS differential data input. Channel O3 (odd)11RXO3-Negative LVDS differential data input. Channel O3(odd)12RXOC+Positive LVDS differential clock input. (odd)13RXOC-Negative LVDS differential clock input. (odd)14RXO2+Positive LVDS differential data input. Channel O2 (odd)15RXO2-Negative LVDS differential data input. Channel O2 (odd)16RXO1+Positive LVDS differential data input. Channel O1 (odd)17RXO1-Negative LVDS differential data input. Channel O1 (odd)18RXO0+Positive LVDS differential data input. Channel O0 (odd)19RXO0-Negative LVDS differential data input. Channel O0 (odd)20RXE3+Positive LVDS differential data input. Channel E3 (even)21RXE3-Negative LVDS differential clock input. (even)22RXEC+Positive LVDS differential clock input. (even)23RXEC-Negative LVDS differential clock input. (even)24RXE2+Positive LVDS differential data input. Channel E2 (even)25RXE2-Negative LVDS differential data input. Channel E2 (even)26RXE1+Positive LVDS differential data input. Channel E1 (even)27RXE1-Negative LVDS differential data input. Channel E1 (even)28RXE0+Positive LVDS differential data input. Channel E0 (even)	8		
11 RXO3- Negative LVDS differential data input. Channel O3(odd) 12 RXOC+ Positive LVDS differential clock input. (odd) 13 RXOC- Negative LVDS differential clock input. (odd) 14 RXO2+ Positive LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O2 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO1- Negative LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel C0 (odd) 20 RXE3+ Positive LVDS differential data input. Channel C0 (odd) 21 RXE3- Negative LVDS differential data input. Channel E3 (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential clock input. (even) 24 RXE2+ Positive LVDS differential data input. Channel E2 (even) 25 RXE2- Negative LVDS differential data input. Channel E2 (even) 26 RXE1+ Positive LVDS differential data input. Channel E1 (even) <			
12RXOC+Positive LVDS differential clock input. (odd)13RXOC-Negative LVDS differential clock input. (odd)14RXO2+Positive LVDS differential data input. Channel O2 (odd)15RXO2-Negative LVDS differential data input. Channel O2 (odd)16RXO1+Positive LVDS differential data input. Channel O1 (odd)17RXO1-Negative LVDS differential data input. Channel O1 (odd)18RXO0+Positive LVDS differential data input. Channel O0 (odd)19RXO0-Negative LVDS differential data input. Channel O0 (odd)20RXE3+Positive LVDS differential data input. Channel E3 (even)21RXE3-Negative LVDS differential clock input. (even)23RXEC+Positive LVDS differential clock input. (even)24RXE2+Positive LVDS differential data input. Channel E2 (even)25RXE2-Negative LVDS differential data input. Channel E2 (even)26RXE1+Positive LVDS differential data input. Channel E1 (even)27RXE1-Negative LVDS differential data input. Channel E1 (even)28RXE0+Positive LVDS differential data input. Channel E0 (even)			
13 RXOC- Negative LVDS differential clock input. (odd) 14 RXO2+ Positive LVDS differential data input. Channel O2 (odd) 15 RXO2- Negative LVDS differential data input. Channel O2 (odd) 16 RXO1+ Positive LVDS differential data input. Channel O1 (odd) 17 RXO1- Negative LVDS differential data input. Channel O1 (odd) 18 RXO0+ Positive LVDS differential data input. Channel O0 (odd) 19 RXO0- Negative LVDS differential data input. Channel O0 (odd) 20 RXE3+ Positive LVDS differential data input. Channel E3 (even) 21 RXE3- Negative LVDS differential data input. Channel E3 (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential clock input. (even) 24 RXE2+ Positive LVDS differential data input. Channel E2 (even) 25 RXE2- Negative LVDS differential data input. Channel E1 (even) 26 RXE1+ Positive LVDS differential data input. Channel E1 (even) 27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)			
14RXO2+Positive LVDS differential data input. Channel O2 (odd)15RXO2-Negative LVDS differential data input. Channel O2 (odd)16RXO1+Positive LVDS differential data input. Channel O1 (odd)17RXO1-Negative LVDS differential data input. Channel O1 (odd)18RXO0+Positive LVDS differential data input. Channel O0 (odd)19RXO0-Negative LVDS differential data input. Channel O0 (odd)20RXE3+Positive LVDS differential data input. Channel E3 (even)21RXE3-Negative LVDS differential data input. Channel E3 (even)22RXEC+Positive LVDS differential clock input. (even)23RXEC-Negative LVDS differential clock input. (even)24RXE2+Positive LVDS differential data input. Channel E2 (even)25RXE2-Negative LVDS differential data input. Channel E2 (even)26RXE1+Positive LVDS differential data input. Channel E1 (even)27RXE1-Negative LVDS differential data input. Channel E1 (even)28RXE0+Positive LVDS differential data input. Channel E0 (even)	12		Positive LVDS differential clock input. (odd)
15RXO2-Negative LVDS differential data input. Channel O2 (odd)16RXO1+Positive LVDS differential data input. Channel O1 (odd)17RXO1-Negative LVDS differential data input. Channel O1 (odd)18RXO0+Positive LVDS differential data input. Channel O0 (odd)19RXO0-Negative LVDS differential data input. Channel O0 (odd)20RXE3+Positive LVDS differential data input. Channel E3 (even)21RXE3-Negative LVDS differential data input. Channel E3 (even)22RXEC+Positive LVDS differential clock input. (even)23RXEC-Negative LVDS differential clock input. (even)24RXE2+Positive LVDS differential data input. Channel E2 (even)25RXE2-Negative LVDS differential data input. Channel E1 (even)26RXE1+Positive LVDS differential data input. Channel E1 (even)27RXE1-Negative LVDS differential data input. Channel E1 (even)28RXE0+Positive LVDS differential data input. Channel E0 (even)	13	RXOC-	Negative LVDS differential clock input. (odd)
16RXO1+Positive LVDS differential data input. Channel O1 (odd)17RXO1-Negative LVDS differential data input. Channel O1 (odd)18RXO0+Positive LVDS differential data input. Channel O0 (odd)19RXO0-Negative LVDS differential data input. Channel O0 (odd)20RXE3+Positive LVDS differential data input. Channel E3 (even)21RXE3-Negative LVDS differential data input. Channel E3 (even)22RXEC+Positive LVDS differential clock input. (even)23RXEC-Negative LVDS differential clock input. (even)24RXE2+Positive LVDS differential data input. Channel E2 (even)25RXE2-Negative LVDS differential data input. Channel E2 (even)26RXE1+Positive LVDS differential data input. Channel E1 (even)27RXE1-Negative LVDS differential data input. Channel E1 (even)28RXE0+Positive LVDS differential data input. Channel E0 (even)	14	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
17RXO1-Negative LVDS differential data input. Channel O1 (odd)18RXO0+Positive LVDS differential data input. Channel O0 (odd)19RXO0-Negative LVDS differential data input. Channel O0 (odd)20RXE3+Positive LVDS differential data input. Channel E3 (even)21RXE3-Negative LVDS differential data input. Channel E3 (even)22RXEC+Positive LVDS differential clock input. (even)23RXEC-Negative LVDS differential clock input. (even)24RXE2+Positive LVDS differential data input. Channel E2 (even)25RXE2-Negative LVDS differential data input. Channel E2 (even)26RXE1+Positive LVDS differential data input. Channel E1 (even)27RXE1-Negative LVDS differential data input. Channel E1 (even)28RXE0+Positive LVDS differential data input. Channel E0 (even)	15	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
18RXO0+Positive LVDS differential data input. Channel O0 (odd)19RXO0-Negative LVDS differential data input. Channel O0 (odd)20RXE3+Positive LVDS differential data input. Channel E3 (even)21RXE3-Negative LVDS differential data input. Channel E3 (even)22RXEC+Positive LVDS differential clock input. (even)23RXEC-Negative LVDS differential clock input. (even)24RXE2+Positive LVDS differential data input. Channel E2 (even)25RXE2-Negative LVDS differential data input. Channel E2 (even)26RXE1+Positive LVDS differential data input. Channel E1 (even)27RXE1-Negative LVDS differential data input. Channel E1 (even)28RXE0+Positive LVDS differential data input. Channel E0 (even)	16	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
19RXO0-Negative LVDS differential data input. Channel O0 (odd)20RXE3+Positive LVDS differential data input. Channel E3 (even)21RXE3-Negative LVDS differential data input. Channel E3 (even)22RXEC+Positive LVDS differential clock input. (even)23RXEC-Negative LVDS differential clock input. (even)24RXE2+Positive LVDS differential data input. Channel E2 (even)25RXE2-Negative LVDS differential data input. Channel E2 (even)26RXE1+Positive LVDS differential data input. Channel E1 (even)27RXE1-Negative LVDS differential data input. Channel E1 (even)28RXE0+Positive LVDS differential data input. Channel E0 (even)	17	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
20 RXE3+ Positive LVDS differential data input. Channel E3 (even) 21 RXE3- Negative LVDS differential data input. Channel E3 (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential clock input. (even) 24 RXE2+ Positive LVDS differential data input. Channel E2 (even) 25 RXE2- Negative LVDS differential data input. Channel E2 (even) 26 RXE1+ Positive LVDS differential data input. Channel E1 (even) 27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	18	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
21 RXE3- Negative LVDS differential data input. Channel E3 (even) 22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential clock input. (even) 24 RXE2+ Positive LVDS differential data input. Channel E2 (even) 25 RXE2- Negative LVDS differential data input. Channel E2 (even) 26 RXE1+ Positive LVDS differential data input. Channel E1 (even) 27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	19	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
22 RXEC+ Positive LVDS differential clock input. (even) 23 RXEC- Negative LVDS differential clock input. (even) 24 RXE2+ Positive LVDS differential data input. Channel E2 (even) 25 RXE2- Negative LVDS differential data input. Channel E2 (even) 26 RXE1+ Positive LVDS differential data input. Channel E1 (even) 27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	20	RXE3+	Positive LVDS differential data input. Channel E3 (even)
23 RXEC- Negative LVDS differential clock input. (even) 24 RXE2+ Positive LVDS differential data input. Channel E2 (even) 25 RXE2- Negative LVDS differential data input. Channel E2 (even) 26 RXE1+ Positive LVDS differential data input. Channel E1 (even) 27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	21	RXE3-	Negative LVDS differential data input. Channel E3 (even)
24 RXE2+ Positive LVDS differential data input. Channel E2 (even) 25 RXE2- Negative LVDS differential data input. Channel E2 (even) 26 RXE1+ Positive LVDS differential data input. Channel E1 (even) 27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	22	RXEC+	Positive LVDS differential clock input. (even)
25 RXE2- Negative LVDS differential data input. Channel E2 (even) 26 RXE1+ Positive LVDS differential data input. Channel E1 (even) 27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	23	RXEC-	Negative LVDS differential clock input. (even)
26 RXE1+ Positive LVDS differential data input. Channel E1 (even) 27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	24	RXE2+	Positive LVDS differential data input. Channel E2 (even)
27 RXE1- Negative LVDS differential data input. Channel E1 (even) 28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	25	RXE2-	Negative LVDS differential data input. Channel E2 (even)
28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	26	RXE1+	Positive LVDS differential data input. Channel E1 (even)
28 RXE0+ Positive LVDS differential data input. Channel E0 (even)	27	RXE1-	Negative LVDS differential data input. Channel E1 (even)
29 BXE0- Negative LVDS differential data input Channel E0 (even)	28	RXE0+	
	29	RXE0-	Negative LVDS differential data input. Channel E0 (even)
30 GND Ground	30	GND	Ground

Note (1) Connector Part No.: FI-SEB30P-HF (JAE)

Note (2) The first pixel is even.

Note (3) Input signal of even and odd clock should be the same timing.

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

 \Diamond

SELLVDS = Low or Open									
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0	
	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0	
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8	
	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1	
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19	
	Data order	DE	NA	NA	EB5	EB4	EB3	EB2	
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27	
	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6	
	LVDS output	D7	D6	D4	D3	D2	D1	D0	
LVDS Channel O0	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0	
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8	
	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1	
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19	
LVDS Channel O2	Data order	DE	NA	NA	OB5	OB4	OB3	OB2	
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27	
	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6	

12 / 26

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV	High Voltage	Pink
2	LV	Low Voltage	White
1	HV	High Voltage	Blue
2	LV	Low Voltage	White
1	HV	High Voltage	Pink
2	LV	Low Voltage	White

Note (1) Connector Part No.: JST-BHSR-02VS-1 or equivalent

Note (2) User's connector Part No.: JST-SM02B-BHSS-1-TB or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

		Data Signal																							
	Color		Red Green Blue																						
	1	R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	÷	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	Ō	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

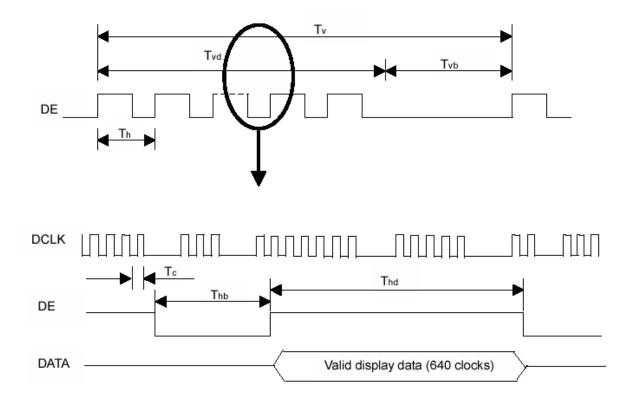
13 / 26

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

 $\langle \mathcal{P} \rangle$

6. INTERFACE TIMING

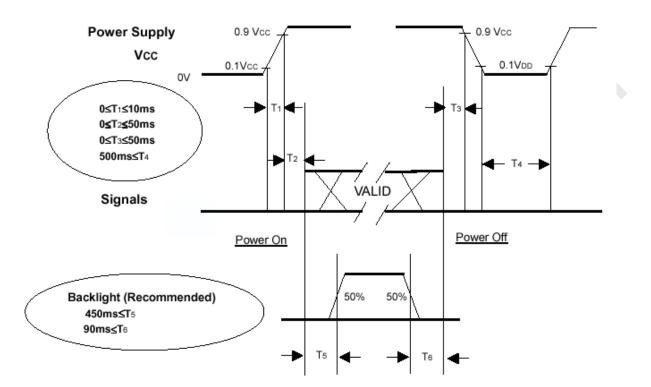

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	-	54	67.5	MHz	-
LVDS Clock	Period	Тс	14.8	18.5	-	ns	
EVDS CIOCK	High Time	Tch	-	4/7	-	Tc	-
	Low Time	Tcl	-	3/7	-	Tc	-
LVDS Data	Setup Time	Tlvs	600	-	-	ps	-
	Hold Time	Tlvh	600	-	-	ps	
	Frame Rate	Fr	50	60	75	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Τv	1034	1066	1274	Th	-
Ventical Active Display Term	Display	Tvd	1024	1024	1024	Th	-
	Blank	Tvb	10	42	Tv-Tvd	Th	-
	Total	Th	784	844	960	Тс	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	640	640	640	Тс	-
	Blank	Thb	144	204	Th-Thd	Тс	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM


DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

 $\langle \mathcal{P} \rangle$

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of vcc = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

肩库:全球液晶屏 易中心

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

 $\langle P \rangle$

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

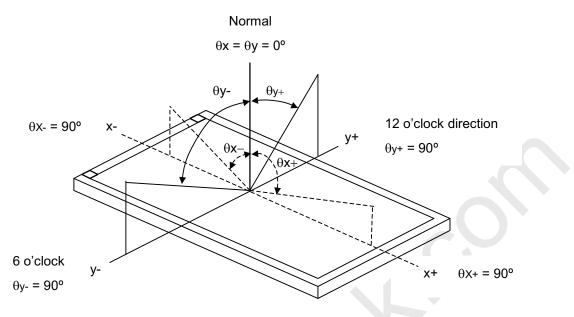
Item	Symbol	Value	Unit						
Ambient Temperature	Та	25±2	Do						
Ambient Humidity	На	50±10	%RH						
Supply Voltage	V _{CC}	5.0	V						
Input Signal	According to typical v	According to typical value in "3. ELECTRICAL CHARACTERISTICS"							
Inverter Current	ار	6.0	mA						
Inverter Driving Frequency	FL	50	KHz						
Inverter									

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Iton	-	Sympol	Condition	Min	Tur	Max		Nata	
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		400	500	-	-	(2), (6)	
Response Time		T _R		-	15 🌒	20	ms	(3)	
Response nine		T _F		-	10	15	ms	(3)	
Center Luminan	ce of White	L _C		220	250	-	cd/m ²	(4), (6)	
Average Lumina	nce of White	L _{AVE}		200	220	-	cd/m ²	(4), (6)	
White Variation					1.25	1.40	-	(6), (7) (5), (6)	
Cross Talk		СТ	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	-	-	5.0	%		
	Red	Rx	Viewing Normal Angle	0.603	0.633	0.663			
		Ry		0.323	0.353	0.383	-		
	Green	Gx		0.264	0.294	0.324	-		
Color		Gy		0.562	0.592	0.622	-		
Chromaticity	Blue	Bx		0.112	0.142	0.172	-		
		By		0.067	0.097	0.127	-	(4) (0)	
	White	Wx		0.280	0.310	0.340	-	(1), (6)	
	White	Wy		0.300	0.330	0.360	-		
	Llavimental	θ _x +		80	85	-			
	Horizontal	θ x-	00>10	80	85	-	Dea		
Viewing Angle	Vertical	θ _Y +	CR≥10	80	85	-	Deg.		
	Vertical	θ _Y -		80	85	-]		

16 / 26



DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

 $\langle P \rangle$

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F) :

17 / 26

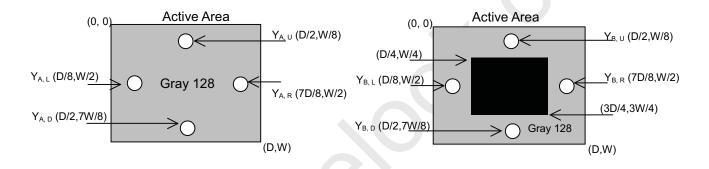
DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M<u>180E1 - L03</u>

Note (4) Definition of Luminance of White (L_C , L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

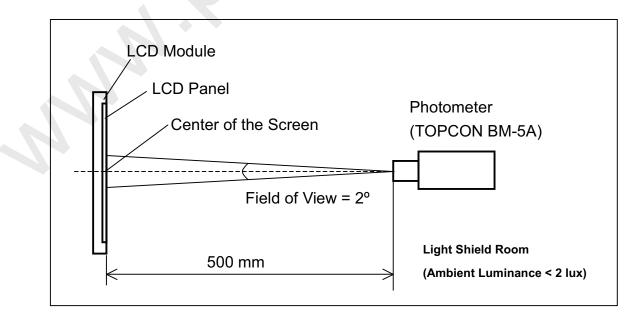
$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

L (x) is corresponding to the luminance of the point X at Figure in Note (7).


Note (5) Definition of Cross Talk (CT):

 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

Where:


 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

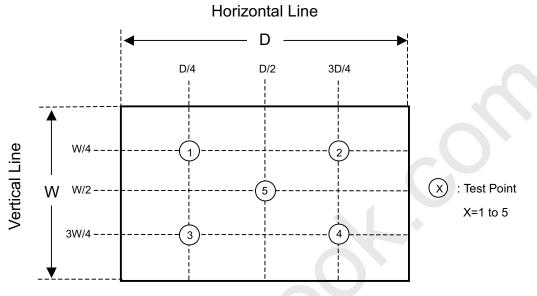
 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

18 / 26

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03


Approval

Ø

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

δW = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]

Active Area

19 / 26

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03 Approval

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 5 LCD modules / 1 Box
- (2) Box dimensions : 534(L) X 316(W) X 462(H) mm
- (3) Weight : approximately 13.5Kg (5 modules per box)

9.2 PACKING Method

Figures 9-1and 9-2 are the packing method.

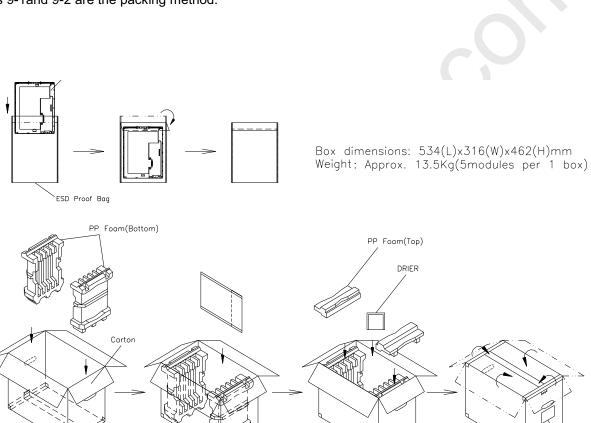


Figure. 9-1 Packing method

Version 3.1

Carton Label

www.panelook.com

屏库:全球液晶屏交易中心

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

 $\langle p \rangle$

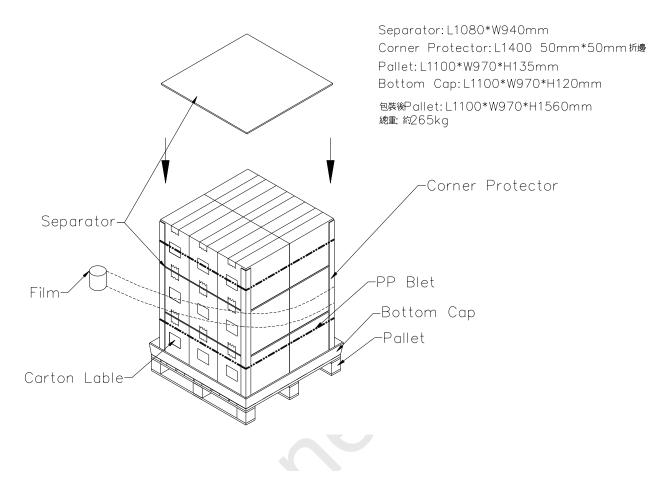


Figure. 9-2 Packing method

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

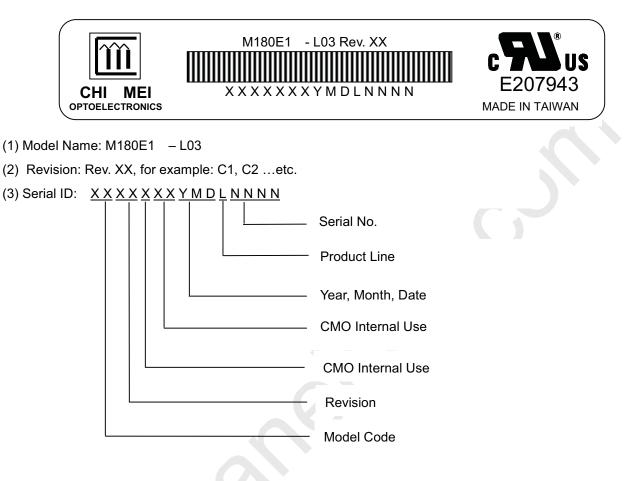
10. INCOMING INSPECTION DAY

The Supplier should be acquainted the inspection results (acceptance or rejection) by Customer, and the results are in accordance with the incoming inspection standard within 30 days after the date of the bills of lading. Should Customer fail to so notify the Supplier within the said 30 days period. The Customer's right to reject the LCMS shall then lapse, and the said LCMS shall be deemed to have been accepted by the customer.

23 / 26

www.panelook.com

屏库:全球液晶屏交易中,



DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

Approval

11. DEFINITION OF SHIPPING LABEL ON MODULE

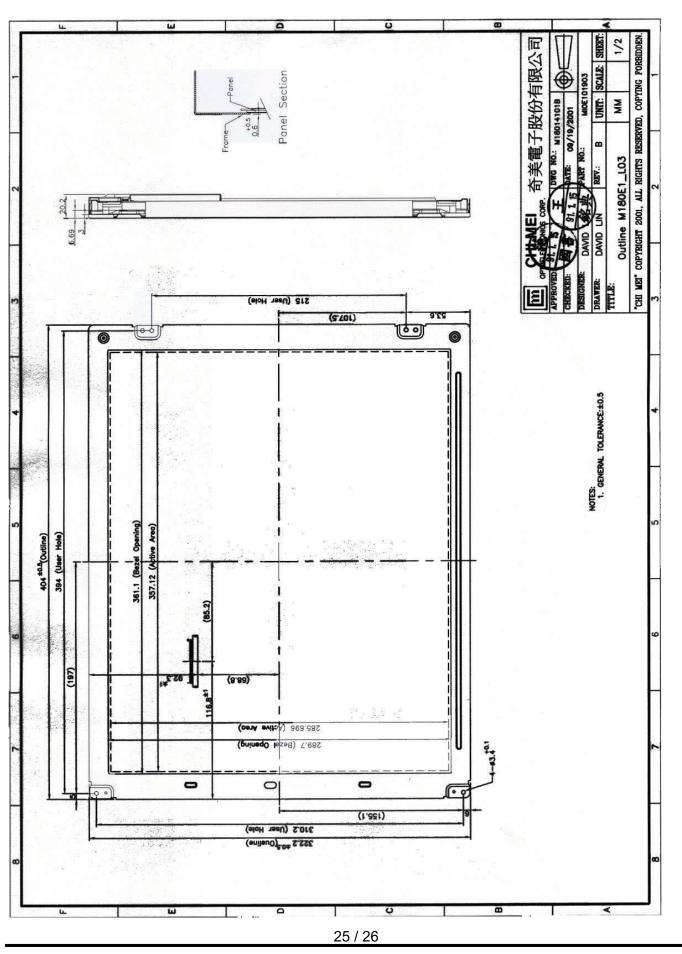
The barcode nameplate is pasted on each module as illustration, and its definition is as following explanation.

Serial ID included the information as follow:

1. Manufactured Date: Year: 0~9, for 2000~2009

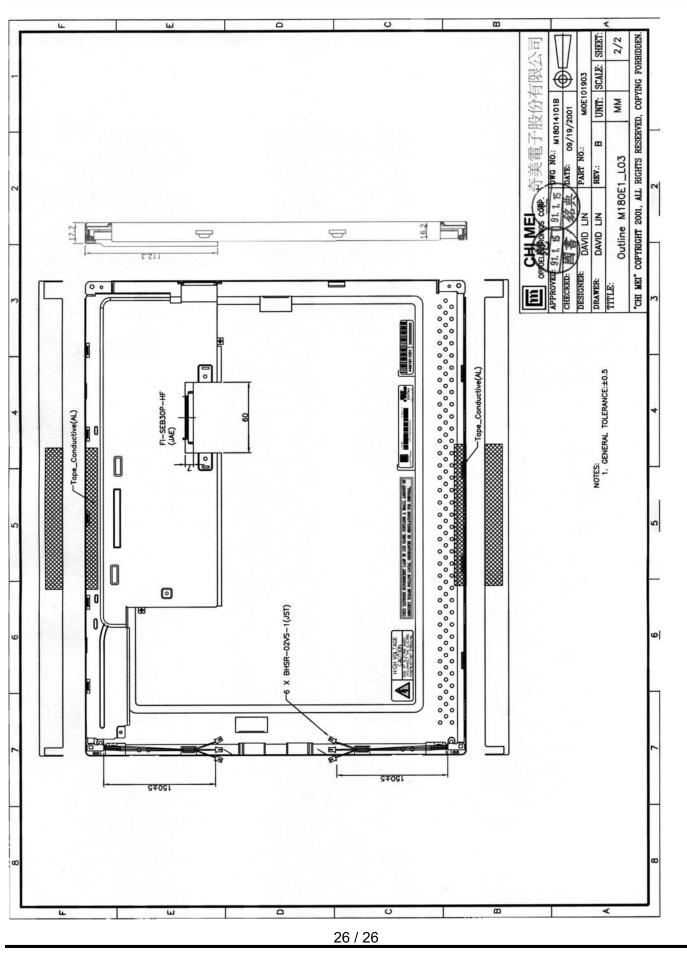
Month: 0~9, A~C, for Jan. ~ Dec.

Day: 0~9, A~Y, for 1st to 31st, exclude I and O


- 2. Revision Code: cover all the change
- 3. Model code
- 4. Serial No.: Manufacturing sequence of product

DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

 \oslash



DCC No.:14019069 Issued Date: Jan. 24, 2003 Model No.: M180E1 - L03

 \oslash

