

Issued Date: Feb. 09, 2009 Model No.: M190A1-L10 Approval

TFT LCD Approval Specification

MODEL NO.: M190A1-L10

Customer: _	Fujitsu	
Approved by:		
Note:		

記錄	工作	審核	角色	投票
2009-02-20 15:01:24 CST		kevin_wu(吳柏勳 /56520/54894)	Director	Accept

Approval

- CONTENTS -

- 1. GENERAL DESCRIPTION
 - 1.1 OVERVIEW
 - 1.2 FEATURES
 - 1.3 APPLICATION
 - 1.4 GENERAL SPECIFICATIONS
 - 1.5 MECHANICAL SPECIFICATIONS
- 2. ABSOLUTE MAXIMUM RATINGS
 - 2.1 ABSOLUTE RATINGS OF ENVIRONMENT
- 2.2 ELECTRICAL ABSOLUTE RATINGS
 - 2.2.1 TFT LCD MODULE
 - 2.2.2 BACKLIGHT UNIT
- 3. ELECTRICAL CHARACTERISTICS
 - 3.1 TFT LCD MODULE
 - 3.2 BACKLIGHT UNIT
- 4. BLOCK DIAGRAM
 - 4.1 TFT LCD MODULE
 - **4.2 BACKLIGHT UNIT**
- 5. INPUT TERMINAL PIN ASSIGNMENT
 - 5.1 TFT LCD MODULE
 - 5.2 BACKLIGHT UNIT
 - 5.3 COLOR DATA INPUT ASSIGNMENT
- 6. INTERFACE TIMING
 - 6.1 INPUT SIGNAL TIMING SPECIFICATIONS
 - 6.2 POWER ON/OFF SEQUENCE
- 7. OPTICAL CHARACTERISTICS
 - 7.1 TEST CONDITIONS
 - 7.2 OPTICAL SPECIFICATIONS
- 8. PACKAGING
 - 8.1 PACKING SPECIFICATIONS
 - 8.2 PACKING METHOD
- 9. DEFINITION OF LABELS
- 10. PRECAUTIONS
 - 10.1 ASSEMBLY AND HANDLING PRECAUTIONS
 - 10.2 SAFETY PRECAUTIONS
 - 10.3 SAFETY STANDARDS
 - **10.4 OTHER**
- 11. MECHANICAL CHARACTERISTICS

Approval

REVISION HISTORY

	Date	Section	Description
2.0	Apr, 25, 07' Jun, 15, 07'		M190A1-L10 Specifications was first issued. MECHANICAL SPECIFICATIONS Add I/F connector mounting position → The mounting inclination of the connector makes the screen center within ±0.5mm as the horizontal ABSOLUTE RATINGS OF ENVIRONMENT Relative humidity min:10%→5% BACKLIGHT UNIT Lamp Turn On Voltage: 1300Vrms(25)/ 1400 Vrms (0) INPUT SIGNAL TIMING SPECIFICATIONS Vertical Active Display Term: frame rate Max:75Hz→77Hz POWER ON/OFF SEQUENCE Vcc Power Dip Condition: 0.8Vcc: Vcc < 0.9Vcc, Td: 20ms
3.1	Oct, 8, 07'	9.1	CMO module label From M190A1-L10 Rev. XX (LEOO) (ROHS) XXXXXXXYMDLNNNN CM19A16XXXXXXXXLXXLYM DNNNN CP355561-01 change to
3.2	Feb.09, '09	2.22	M190A1L10 Rev. XX CHI MEI OPTOELECTRONICS OXA XXXXXXXYMDLNNNN CP355561-01 Add lamp frequency minimum value "40". Modify the graphic of note(1) Modify the description of note (2), adding "It is the value output voltage"
		8. 10.3 10.4	of NF circuit." Change package from 5pcs/box to 7pcs/box. Add "Safety Standards" Add "Other" 3 / 25

Issued Date: Feb. 09, 2009 Model No.: M190A1-L10 Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

M190A1-L10 is a 19" wide TFT Liquid Crystal Display module with 4 CCFL Backlight unit and 30 pins 2ch-LVDS interface. This module supports 1440 x 900 WXGA+ mode and can display 16.7M colors. The inverter module for Backlight is not built in.

1.2 FEATURES

- Super Wide viewing angle.
- Super High contrast ratio
- Super fast response time
- High color saturation
- WXGA+ (1440 x 900 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- RoHS Compliance

1.3 APPLICATION

- TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	483.96 (19.05" diagonal)	mm	
Active Area	410.4 (H) x 256.5 (V)	mm	(1)
Bezel Opening Area	414.36 x 260.45	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1440 x R.G.B. x 900	pixel	-
Pixel Pitch	0.285 (H) x 0.285 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Color saturation	72%NTSC (typ.)	-	-
Surface Treatment	Hard coating (3H), Glare	-	-
Module Power Consumption	25.2	Watt	(2)

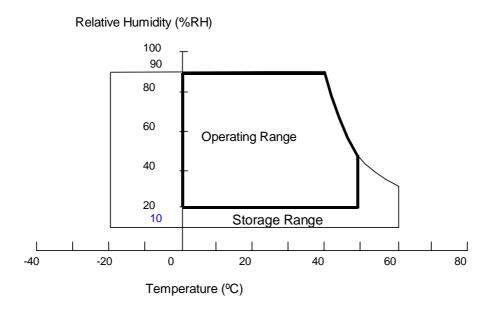
1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	426.7	427.2	427.7	mm	
Module Size	Vertical(V)	276.9	277.4	277.9	mm	(1)
	Depth(D)	-	16.0	16.5	mm	
Weight		-	1780	1800	g	-

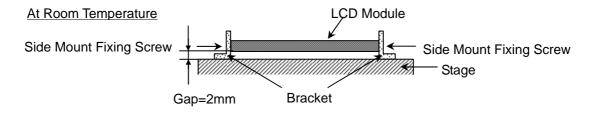
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Please refer to sec.3.1 & 3.2 for more information of power consumption.

Issued Date: Feb. 09, 2009 Model No.: M190A1-L10


Approval

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	٥C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	٥C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max.
- Note (3) 50G,11ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.
- Note (4) 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Approval

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)
Logic Input Voltage	V_{IN}	-0.3	4.3	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V_L	-	2.0K	V_{RMS}	$(1), (2), I_L = 7.0 \text{mA}$
Lamp Current	ΙL	-	7.5	mA_RMS	(1) (2)
Lamp Frequency	F∟	40	80	KHz	(1), (2)

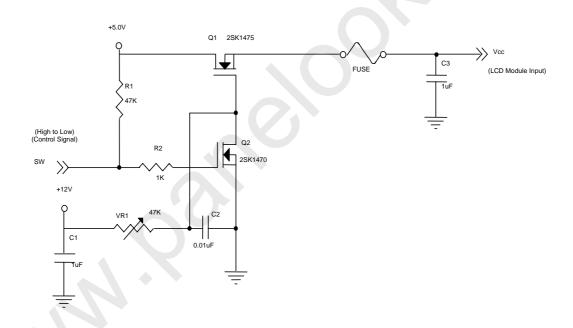
Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

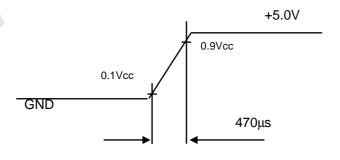
Issued Date: Feb. 09, 2009 Model No.: M190A1-L10

Approval

3. ELECTRICAL CHARACTERISTICS

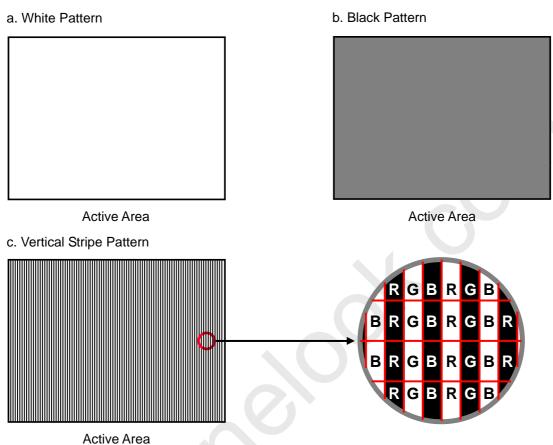

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2 \, ^{\circ}C$


Parameter		Symbol		Value	Unit	Note		
Faiaiii	elei	Symbol	Min.	Тур.	Max.	Offic	Note	
Power Supply Voltage		Vcc	4.5	5.0	5.5	V	-	
Ripple Voltage		V_{RP}	-	-	100	mV	-	
Rush Current		I _{RUSH}	-	1.6	3	Α	(2)	
	White		-	0.5	0.7	Α	(3)a	
Power Supply Current	Black	lcc	-	0.7	1.0	Α	(3)b	
	Vertical Stripe		-	0.7	1.0	Α	(3)c	
Power Consumption		PLCD		3.5	5.5	Watt	(4)	
LVDS differential input voltage		Vid	100	-	600	mV		
LVDS common input voltage		Vic	-	1.2	-	V		
Logic "L" input voltage		Vil	Vss	-	0.8	V		

Note (1) The module should be always operated within above ranges.

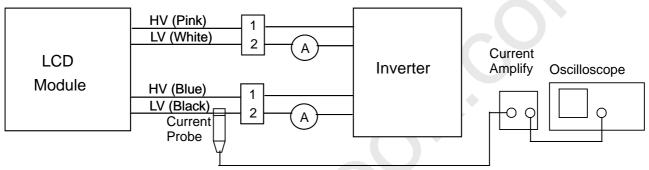
Note (2) Measurement Conditions:


Vcc rising time is 470μs

Issued Date: Feb. 09, 2009 Model No.: M190A1-L10 Approval

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, $Ta = 25 \pm 2 \, ^{\circ}\text{C}$, $f_v = 60 \, ^{\circ}\text{C}$ Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.


Approval

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Symbol		Value	Linit	Note	
Symbol	Min.	Тур.	Max.	Offic	Note
V_{L}		775	853	V_{RMS}	$I_{L} = 7.0 \text{ mA}$
L	2.0	7.0	7.5	mA_{RMS}	(1)
Vs			1300(25)	V_{RMS}	(2)
			1400(0)	V_{RMS}	(2)
F_L	40		80	KHz	(3)
L_BL	40000			Hrs	(5)
P_L		21.7		W	$(4), I_L = 7.0 \text{ mA}$
	I _L V _S F _L L _{BL}	$\begin{array}{c cccc} & & & & & & \\ & V_L & & & & & \\ & & I_L & & 2.0 & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	Symbol Min. Typ. V _L 775 I _L 2.0 7.0 V _S F _L 40 L _{BL} 40000	Symbol Min. Typ. Max. V _L 775 853 I _L 2.0 7.0 7.5 V _S 1300(25) 1400(0) F _L 40 80 L _{BL} 40000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

Measure equipment:

Current Amplify: Tektronix TCPA300 Current probe: Tektronix TCP312

Oscilloscope: TDS3054B

 $Ta = 25 \pm 2$ °C

- Note (2) The voltage that must be larger than Vs should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on. It is the value output voltage of NF circuit.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L \times 4 \text{ CCFLs}$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition

 Ta = 25 \pm 2 °C and I_L = 7.0 mA rms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 80% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for

Issued Date: Feb. 09, 2009

Global LCD Panel Exchange Center

the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

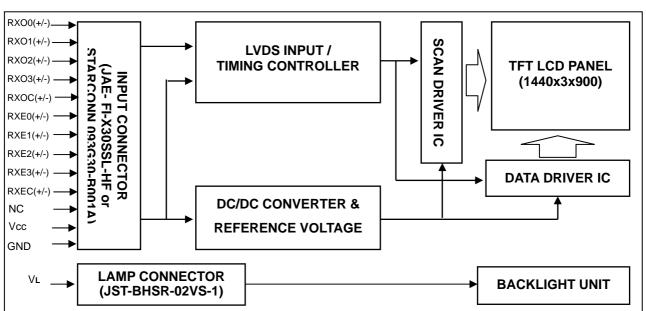
Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

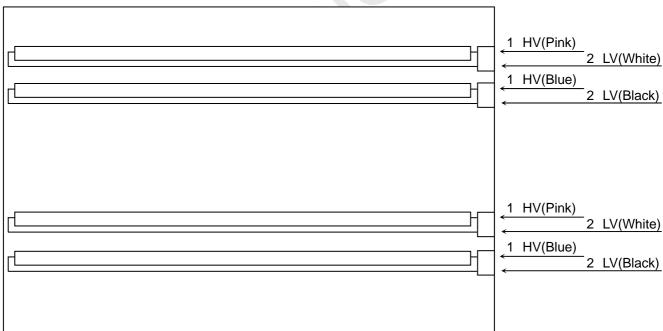
- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within
 - c. The ideal sine wave form shall be symmetric in positive and negative polarities.

Asymmetry rate:

$$|I_p - I_{-p}| / I_{rms} * 100\%$$

* Distortion rate


$$I_p (or I_{-p}) / I_{rms}$$


Issued Date: Feb. 09, 2009 Model No.: M190A1-L10 Approval

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Note: On the same side, the same-polarity lamp voltage design for lamps is recommended.

Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	Not connection, this pin should be open.
26	NC	Not connection, this pin should be open.
27	NC	Not connection, this pin should be open.
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

Note (1) Connector Part No.: 093G30-B001A (STARCONN) or FI-X30SSL-HF (JAE) or equivalent.

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

Issued Date: Feb. 09, 2009 Model No.: M190A1-L10

Approval

LVDS Channel E0	LVDS output	וט	סט	D4	სა	DZ	וטן	טט
LVD3 Channel EU	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Channel E2	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6
LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel 00	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel O2	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channal O2	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS Channel O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6

Approval

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Remark
1	HV	High Voltage	Pink
2	LV	Low Voltage	White
1	HV	High Voltage	Blue
2	LV	Low Voltage	Black

Note (1) Connector Part No.: BHSR-02VS-1 (JST) or equivalent

Note (2) User's connector Part No.:SM02B-BHSS-1-TB (JST) or equivalent

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

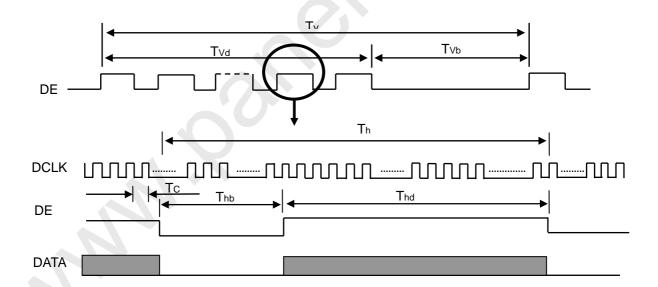
	crous data input.											_		<u> </u>	-										—,
						Da		Sigr																	
	Color				Re				l = -		100	0-		reer							Bl			I = . '	
	In	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3		B1	-
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	•	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: Feb. 09, 2009 Model No.: M190A1-L10

Approval

6. INTERFACE TIMING

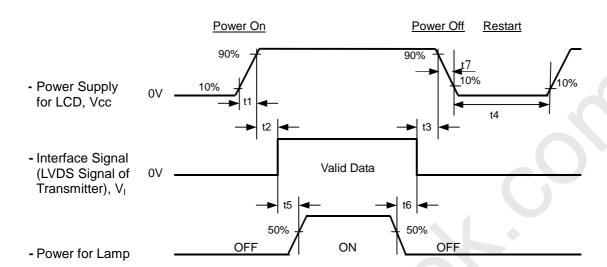

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

			_				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	-	44.5	65	MHz	-
LVDS Clock	Period	Tc	17.9	22.5	-	ns	
LVD3 Clock	High Time	Tch	-	4/7	-	Tc	ı
	Low Time	Tcl	-	3/7	-	Тс	1
LVDS Data	Setup Time	Tlvs	600	1	-	ps	-
	Hold Time	Tlvh	600	-	-	ps	-
	Frame Rate	Fr	50	60	77	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Tv	905	926	1050	Th	-
Vertical Active Display Terri	Display	Tvd	900	900	900	Th	-
	Blank	Tvb	Tv-Tvd	26	Tv-Tvd	Th	-
	Total	Th	750	800	960	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	720	720	720	Tc	-
	Blank	Thb	Th-Thd	80	Th-Thd	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

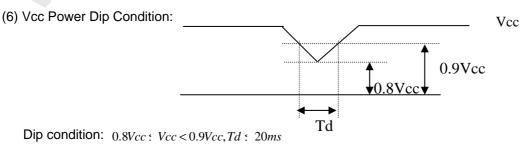


Issued Date: Feb. 09, 2009 Model No.: M190A1-L10 Approval

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.



Timing Specifications:

0.5< t1 10 msec 0 < t250 msec 0 < t350 msec 500 msec t4 450 msec t5 t6 90 msec 5 t7 100 msec

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Issued Date: Feb. 09, 2009 Model No.<u>: M190A1-L10</u>

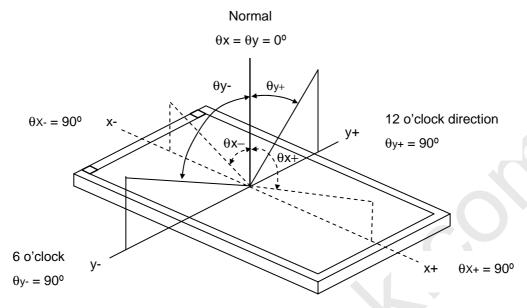
Approval

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	Ha	50±10	%RH			
Supply Voltage	V_{CC}	5.0	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Lamp Current	IL	7.0	mA			
Inverter Operating Frequency	FL	55	KHz			
Inverter	Darfon VK.13165.101					

7.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			0.647				
	Red	Ry			0.334				
	Green	Gx			0.284				
Color	Gleen	Gy		Тур –	0.607	Тур +		(1), (5)	
Chromaticity	Blue	Bx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	0.03	0.151	0.03		(1), (3)	
	Blue	Ву	CS-1000T		0.071				
	\ \ \ / l= : t =	Wx			0.313				
	White	Wy			0.329				
Center Luminance of White		L _C		230	300		cd/m ²	(4), (5)	
Contrast Ratio		CR		500	850		1	(2), (5)	
Response Time		T _R	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		1.5	6.5	ms	(3)	
response fille	onse rime		υ _χ =υ , υγ =υ		3.5	8.5	ms	(3)	
White Variation		δW	θ_x =0°, θ_Y =0°		1.3	1.5	-	(5), (6)	
Viewing Angle	Horizontal	θ_x +		75	85				
	Tionzoniai	θ_{x} -	CR 10	75	85		Dog	(1) (5)	
	Vertical	θ _Y +	ON IU	70	80		Deg.	(1), (5)	
	vertical	θ _Y -		70	80				

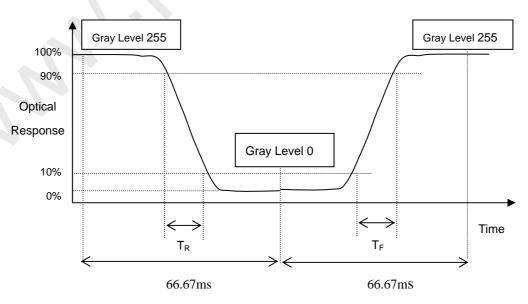
Issued Date: Feb. 09, 2009 Model No.: M190A1-L10 Approval

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

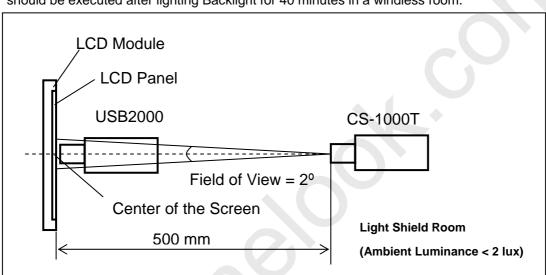
CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Issued Date: Feb. 09, 2009 Model No.: M190A1-L10 Approval

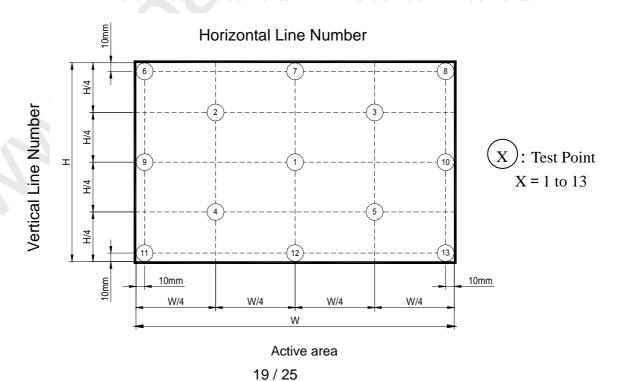
Note (4) Definition of Luminance of White (L_C):


Measure the luminance of gray level 255 at center point

$$L_C = L(1)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 13 points

 $\delta W = Maximum [L (1), L (2) L (4), L (13)] / Minimum [L (1), L (2) L (4), L (13)]$

Version 3.2

Approval

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 7 LCD modules / 1 Box
- (2) Box dimensions: 525(L) X 300 (W) X 360 (H) mm
- (3) Weight: approximately 14.78 Kg (7 modules per box)

8.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 1 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Corner, 3 Edge, 6 Face, 61cm	Non Operation

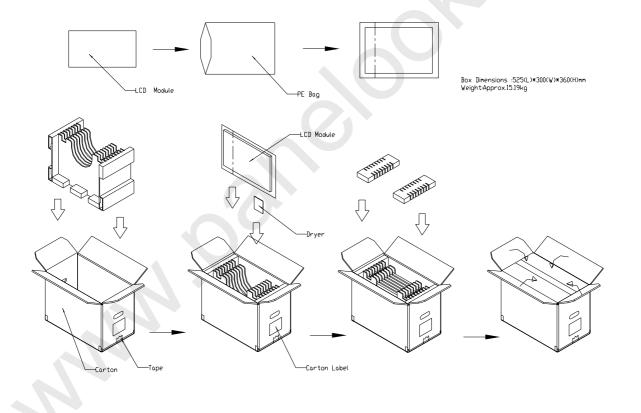
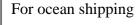
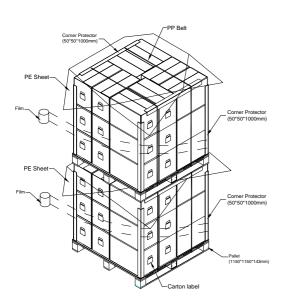




Figure. 8-1 Packing method

Approval

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (40ft Container)

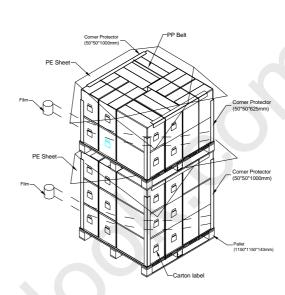


Figure. 8-2 Packing method

For air transport

Air Transportation

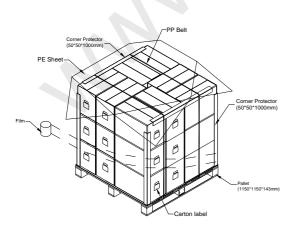


Figure. 8-3 Packing method

Approval

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

Global LCD Panel Exchange Center

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: M190A1-L10

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) CMO barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
Х	CMO internal use	- (// 1 Y
	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4
YMD		Month: 1~12=1, 2, 3, ~, 9, A, B, C
		Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) Customer's barcode definition:

Serial ID: CM-19A10-X-X-X-X-X-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	CMO=CM
19A10	Model number	M190A1-L10=19A10
X	Revision code	Non ZBD: 1,2,~,8,9 / ZBD: A~Z
X	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan, Taiwan=TN
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN; Ningbo China=NP
L	Module line #	1,2,~,9,A,B,~,Y,Z
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31= 1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	Manufacturing sequence of product

Issued Date: Feb. 09, 2009 Model No.: M190A1-L10 Approval

(e) FAB ID(UL Factory ID):

Region	Factory ID
TWCMO	GEMN
NBCMO	LEOO
NBCME	CANO
NHCMO	CAPG

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

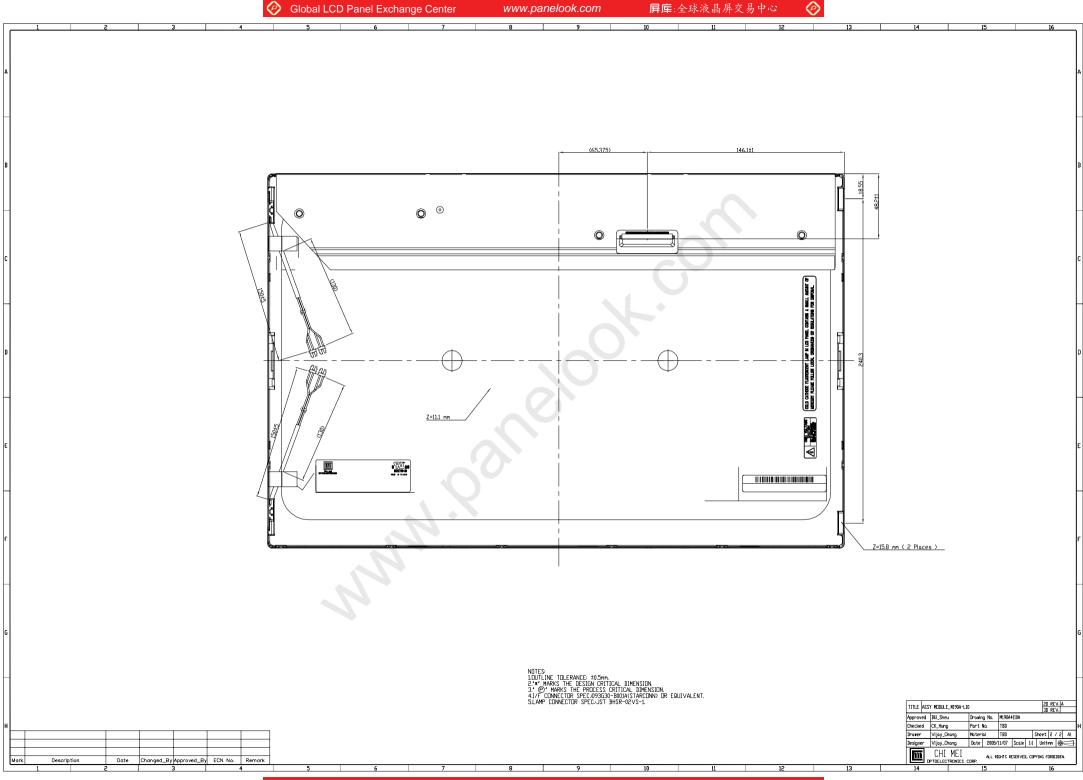
- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS


The LCD module should be certified with safety regulations as follows:


- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

10.4 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

<u>23 / 25</u>

