TFT LCD Approval Specification

MODEL NO.: M236H3-P02

Customer : TPV
Approved by :
Note:

核准時間	部門	審核	角色	投票
2009-12-02 19:04:51	MTR 產品管理處	吳 2009.12.02 柏 勳	Director	Accept

- CONTENTS -

REVISION HISTORY 1. GENERAL DESCRIPTION	3 4
1.1 OVERVIEW	
1.2 FEATURES 1.3 APPLICATION	
1.4 GENERAL SPECIFICATIONS	
1.5 MECHANICAL SPECIFICATIONS	
2. ABSOLUTE MAXIMUM RATINGS	5
2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO M 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL) 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	MODULE M236H3-L02)
3. ELECTRICAL CHARACTERISTICS	6
3.1 TFT LCD MODULE 3.2 Vcc POWER DIP CONDITION	
4. BLOCK DIAGRAM	8
4.1 TFT LCD MODULE	
5. INPUT TERMINAL PIN ASSIGNMENT	9
5.1 TFT LCD MODULE 5.2 LVDS DATA MAPPING TABLE	
5.3 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	1
6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	
7. OPTICAL CHARACTERISTICS	1
7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	
7.3 FLICKER ADJUSTMENT	
8. PACKAGING	
8.1 PACKING SPECIFICATIONS 8.2 PACKING METHOD	
9. DEFINITION OF LABELS	2
9.1 OPEN CELL LABEL 9.2 CARTON LABEL	
10. RELIABILITY TEST	2
11. PRECAUTIONS	2
11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS 11.3 OTHER	
12. MECHANICAL DRAWING	

Version	Date	Section	Description
Ver. 3.0	Nov 23, '09	-	M236H3-P02 Approval Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The M236H3-P02 is a 23.6-inch wide TFT LCD open cell with driver ICs and a 30-pins-2ch-LVDS circuit board. The product supports 1920 x 1080 Full HD mode and can display up to 16.7M colors. The backlight unit is not built in.

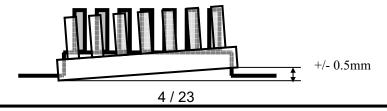
1.2 FEATURES

- Super wide viewing angle
- High contrast ratio
- Fast response time
- High color saturation
- Full HDTV (1920 x 1080 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- RoHS Compliance

1.3 APPLICATION

- TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS


Item	Specification	Unit	Note
Diagonal Size	23.547	inch	-
Active Area	521.28 (H) x 293.22 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.2715 (H) x 0.2715 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 25%)	-	-
Power Consumption	5.5	Watt	(3)

1.5 MECHANICAL SPECIFICATIONS

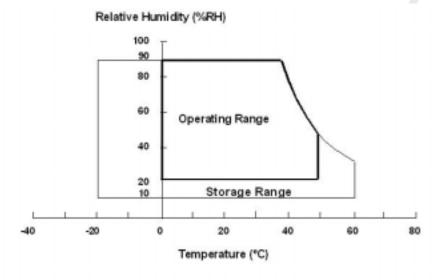
Item	Min.	Тур.	Max.	Unit	Note
Weight	-	-	710	g	-
I/F connector mounting		(2)			
position	-	(2)			

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

- (2) Connector mounting position
- (3) Please refer to sec.3.1 for more information of power consumption.

sued Date: Nov. 23, 2009 Model No.: M236H3-P02

2. ABSOLUTE MAXIMUM RATINGS


2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE M236H3-L02)

Item	Svmbol	Va	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	ç	(1), (2)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C)
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C)
- (c) No condensation.

Note (2) The temperature of panel display surface area should be 0 $^{\circ}$ C Min. and 60 $^{\circ}$ C Max.

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing

Storage temperature range: 25±5 °C

Storage humidity range: 50±10%RH

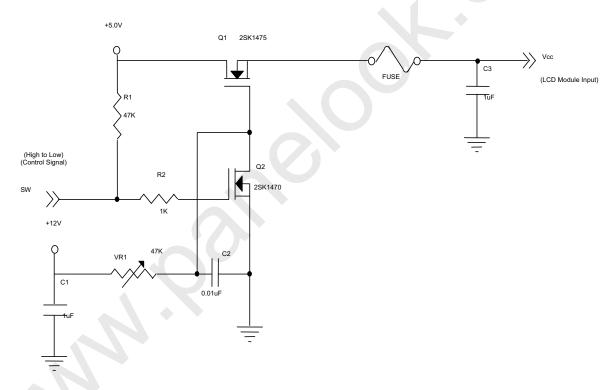
Shelf life: 30days

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

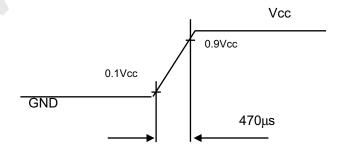
Item	Symbol Value			Unit	Note	
item	Symbol	Min	Max	Offic	Note	
Power Supply Voltage	V_{CC}	-0.3	+6.0	V	(1)	
Logic Input Voltage	Vlogic	-0.3	+3.6	-	-	

Note (1) Permanent damage might occur if the module is operated at conditions exceeding the maximum values.

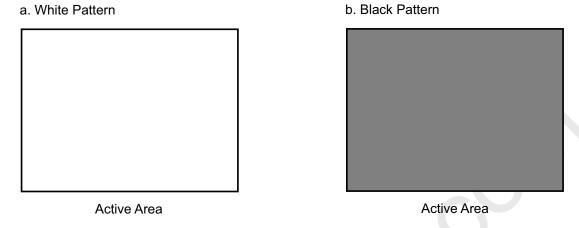
3. ELECTRICAL CHARACTERISTICS

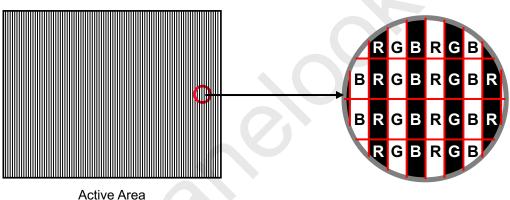

3.1 TFT LCD OPEN CELL

Ta = 25 ± 2 °C

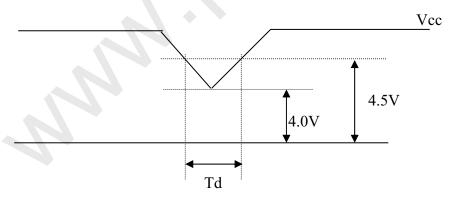

Parameter		Symbol		Value	Unit	Note	
		Symbol	Min.	Typ.	Max.	Offic	Note
Power Supply Voltage		Vcc	4.5	5.0	5.5	V	-
Ripple Voltage		V_{RP}	•	-	300	mV	-
Power On Rush Current		I _{RUSH}	ı	ı	3	Α	(2)
	White		ı	0.5	0.6	Α	(3)
Power Supply Current	Black	lcc	ı	1.1	1.32	Α	(3)
	Vertical Stripe		-	0.9	1.08	Α	(3)
Power Consumption		PLCD	•	5.5	6.6	Watt	(4)
LVDS differential input voltage		Vid	100	ı	600	mV	-
LVDS common input voltage		Vic	1.0	1.2	1.4	V	-
Logic High Input Voltage		VIH	2.64	-	3.6	V	-
Logic Low Input Voltage		VIL	0	-	0.66	V	-

Note (1) The product should be always operated within above ranges.


Note (2) Measurement Conditions:


Vcc rising time is 470μs

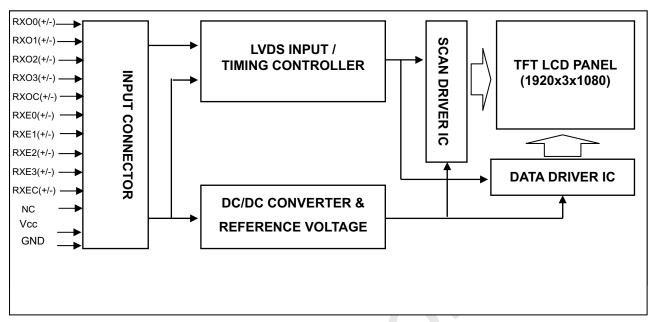
Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $Fv = 60 \,^{\circ}\text{Hz}$, whereas a power dissipation check pattern below is displayed.



c. Vertical Stripe Pattern

Note (4) The power consumption is specified at the pattern with the maximum current.

3.2 Vcc Power Dip Condition:



Dip condition: 4.0*V* : *Vcc* : 4.5*V*,*Td* : 20*ms*

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	Not connection, this pin should be open.
26	NC	Not connection, this pin should be open.
		Not connection, this pin should be open.
27	NC/Agmode	When use Agmode pin, input voltage should be 3.3±0.1V, otherwise connected
		to ground if not used.
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.: STM MSCKT2407P30HA or Starconn 093G30-B2001A

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

Note (4) Permanent damage might occur if the Agmode is operated at conditions exceeding the maximum values.

5.2 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Charmer 00	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Charmer OT	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Charmer 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0

LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
	LVDS output	D26	D25	D24	D22	D21	D20	D19
	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

5.3 COLOR DATA INPUT ASSIGNMENT

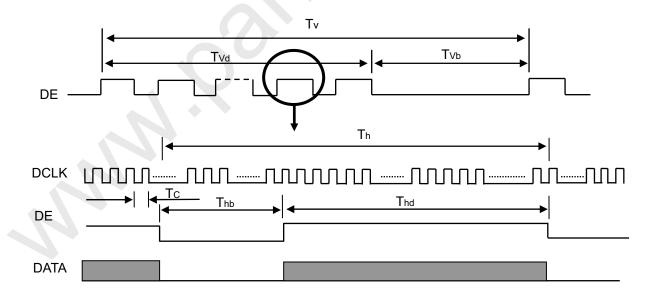
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da		Sigr											
	Color				Re									reer							Blu				
	T	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	B4	В3	B2		B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	•	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:		1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:				:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0 (0) / D !	_		^	•		_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale			:	:	Ŋ.	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	: (050)	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	;	;	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

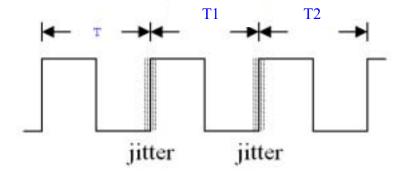
Note (1) 0: Low Level Voltage, 1: High Level Voltage

Model No.: M236H3-P02

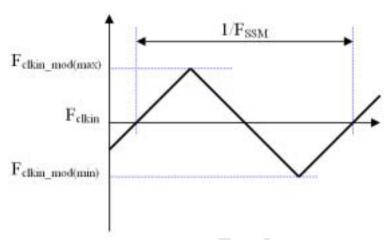
6. INTERFACE TIMING


6.1 INPUT SIGNAL TIMING SPECIFICATIONS

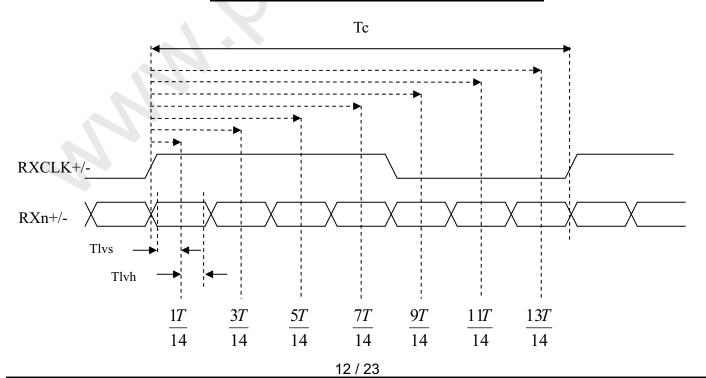
The input signal timing specifications are shown as the following table and timing diagram.


Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	58.54	74.25	98	MHz	-
	Period	Tc	-	13.47	-	ns	-
	Input cycle to cycle jitter	T _{rcl}	-0.02*Tc	ı	0.02*Tc	ns	(1)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod	0.98*Fc	ı	1.02*Fc	MHz	
	Spread spectrum modulation frequency	F _{SSM}	1	-	200	KHz	(2)
	High Time	Tch	-	4/7	- (Tc	-
	Low Time	Tcl	-	3/7	-	Tc	-
LV/DC Dete	Setup Time	Tlvs	600	-		ps	(2)
LVDS Data	Hold Time	Tlvh	600	-	1	ps	(3)
	Frame Rate	Fr	50	60	75	Hz	Tv=Tvd+Tvb
Vertical Active Display Torm	Total	Tv	1115	1125	1136	Th	-
Vertical Active Display Term	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	56	Th	-
Harizantal Active Display	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	960	960	960	Tc	-
leiiii	Blank	Thb	90	140	190	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.


INPUT SIGNAL TIMING DIAGRAM

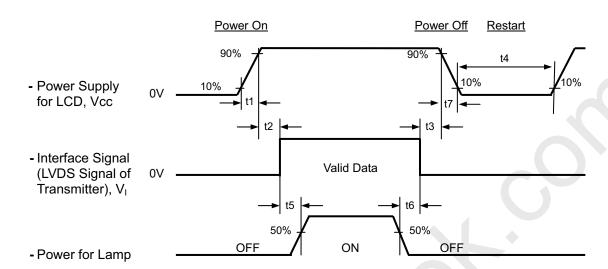
Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$



Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM


Version 3.0

Global LCD Panel Exchange Center

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Timing Specifications:

 $0.5 < t1 \le 10 \text{ msec}$

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \, \text{msec}$

 $t5 \ge 450 \, \text{msec}$

t6 ≥ 90 msec

 $5 \le t7 \le 100 \text{ msec}$

Note:

- (1) The supply voltage of the external system for the product input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) It is not guaranteed that product damage is caused by not following the Power Sequence.
- (7) It is suggested that Vcc falling time follows t7 specification, else slight noise is likely to occur when LCD turns off (even backlight is already off).

7. OPTICAL CHARACTERISTICS

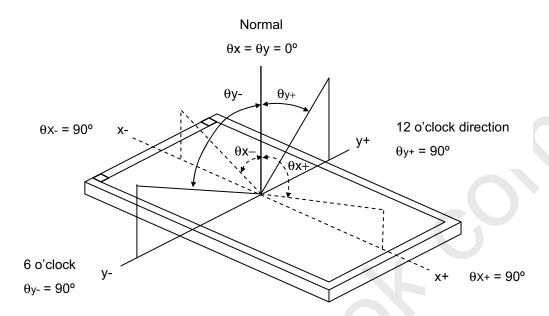
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25 ± 2	°C
Ambient Humidity	На	50 ± 10	%RH
Supply Voltage	V_{CC}	7.0	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Inverter Current	IL	7.0 ± 0.5	mA
Inverter Driving Frequency	F _L	55 ± 5	KHz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6) & (7).

Item]	Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
	Red	Rcx			0.648		ı			
	Neu	Rcy			0.327		-			
	Green	Gcx	0.00.0		0.270		-			
Color	Green	Gcy	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	Тур -	0.584	Typ +	-	(0), (1),		
Chromaticity (CIE 1931)	Blue	Всх	Standard light source "C" (Measured by DMS 803)	0.03	0.148	0.03	-	(7)		
	blue	Всу	(ivieasured by Divis 603)		0.106	-	-			
	White	Wcx			0.323		-			
	vvriite	Wcy			0.359		-			
Center	DBEFD	Т%	0 -00 0 -00	9.8	11.6	-	%	(1), (5)		
Transmittance	Diffuser	Т%	θ_x =0°, θ_Y =0° CS-2000, CMO BLU	5.1	6.1	ı	%	(1), (5)		
Contrast Ratio		CR	CS-2000, CIVIO BLU	700	1000	ı	-	(1), (3)		
Response Time		T _R	θ _x =0°, θ _Y =0°	-	1.5	2.5	ms	(4)		
rtesponse nine		T _F	0 _x =0 , 0 _Y =0	-	3.5	5.5	ms	(4)		
Transmittance u	niformity	δΤ%	θ_x =0°, θ_Y =0° USB2000	ı	-	1.33	-	(1), (8)		
Viouing Angle	Horizontal		CR≥10	150	170	-	Dog	(2) (6)		
Viewing Angle	Vertical	$\theta_{Y}^{+} + \theta_{Y}^{-}$	UR∠10	140	160	-	Deg.	(2), (6)		


Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages.

Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. SPEC is judged by CMO's golden sample.

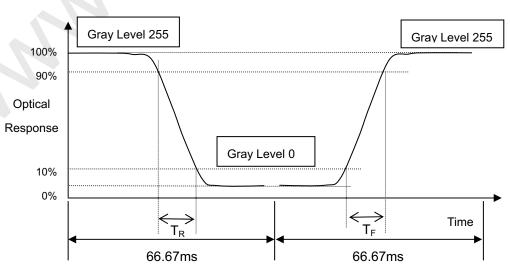
Model No.: M236H3-P02

Note (2) Definition of Viewing Angle (θx , θy):

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

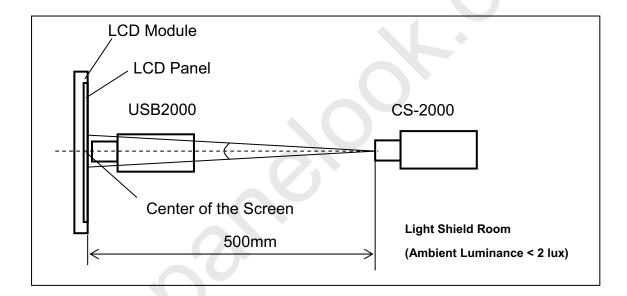

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (8).

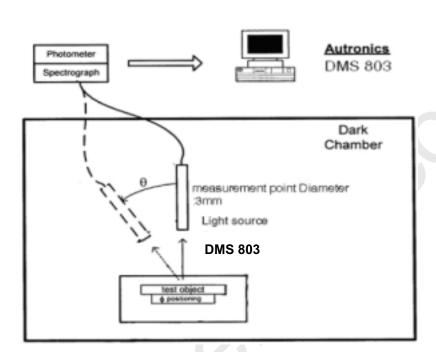
Note (4) Definition of Response Time (T_R, T_F):


Note (5) Definition of Transmittance (T%):

Module is without signal input.

L(x) and $L_{\text{BLU}}(X)$ are corresponding to the luminance of the point X at Figure in Note (8).

Note (6) Measurement Setup:

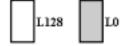

The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Note (7) Measurement Setup:

The LCD Panel should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after light source "C" for 30 minutes in a windless room.

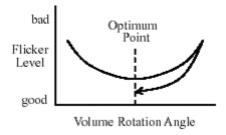
Note (8) Definition of Transmittance Variation ($\delta T\%$):

Measure the transmittance at 9 points.


Model No.: M236H3-P02

7.3 Flicker Adjustment

Flicker must be finely adjusted after module assembling and aging. Please follow the instructions below.


(1) Adjustment Pattern: 2H1V checker pattern as follows.

R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	в	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В

(2) Adjustment Method:

Flicker should be adjusted by turning the volume for flicker adjustment by the ceramic driver. It is adjusted to the point with least flickering of the whole screen. After making it surely overrun at once, it should be adjusted to the optimum point.

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 24 open cells / 1 Box
- (2) Box dimensions: 670(L)x575(W)x325(H)mm
- (3) Weight: approximately 24Kg (24 open cells per box)

8.2 PACKING METHOD

Figures 8-1 and 8-2 are the packing methods.

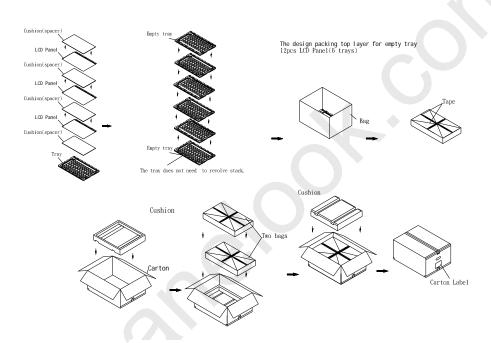
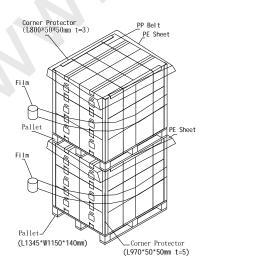



Figure.8-1 Packing Method

Sea / Land Transportation (40ft Container)

Air Transportation

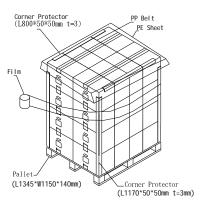


Figure.8-2 Packing Method

19 / 23

9. DEFINITION OF LABELS

9.1 CMO OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMO internal control.

Barcode definition:

Serial ID: CM-23H32-X-X-X-X-X-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	CMO=CM
23H32	Model number	M236H3-P02=23H32
Х	Revision code	C1:1, C2:2
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan, Taiwan=TN
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN; Ningbo China=NP
L	Module line #	1,2,~,9,A,B,~,Y,Z
	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4
YMD		Month: 1~12=1, 2, 3, ~, 9, A, B, C
		Day: 1~31= 1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	Manufacturing sequence of product

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

(a) Model Name: M236H3–P02(b) Carton ID: CMO internal control

(c) Quantities: 24 pcs

10. RELIABILITY TEST

Environment test conditions are listed as following table.

Items	Required Condition	Note			
Temperature Humidity Bias (THB)	Ta= 50°ℂ, 80%RH, 240hours				
High Temperature Operation (HTO)	Ta= 50°ℂ , 50%RH , 240hours				
Low Temperature Operation (LTO)	Ta= 0°C, 240hours	(1)			
High Temperature Storage (HTS)	Ta= 60°ℂ, 240hours				
Low Temperature Storage (LTS)	Ta= -20℃, 240hours				
Package Vibration Test	ISTA STANDARD 1.14Grms Random, Frequency Range: 1 ~ 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	(2)			
Thermal Shock Test (TST)	-20°C/30min, 60°C / 30min, 100 cycles				
On/Off Test	25°C, On/10sec, Off /10sec, 30000 cycles				
Altitude Test	Operation: 10000 ft / 24hours Non-Operation: 30000 ft / 24hours	(1)			

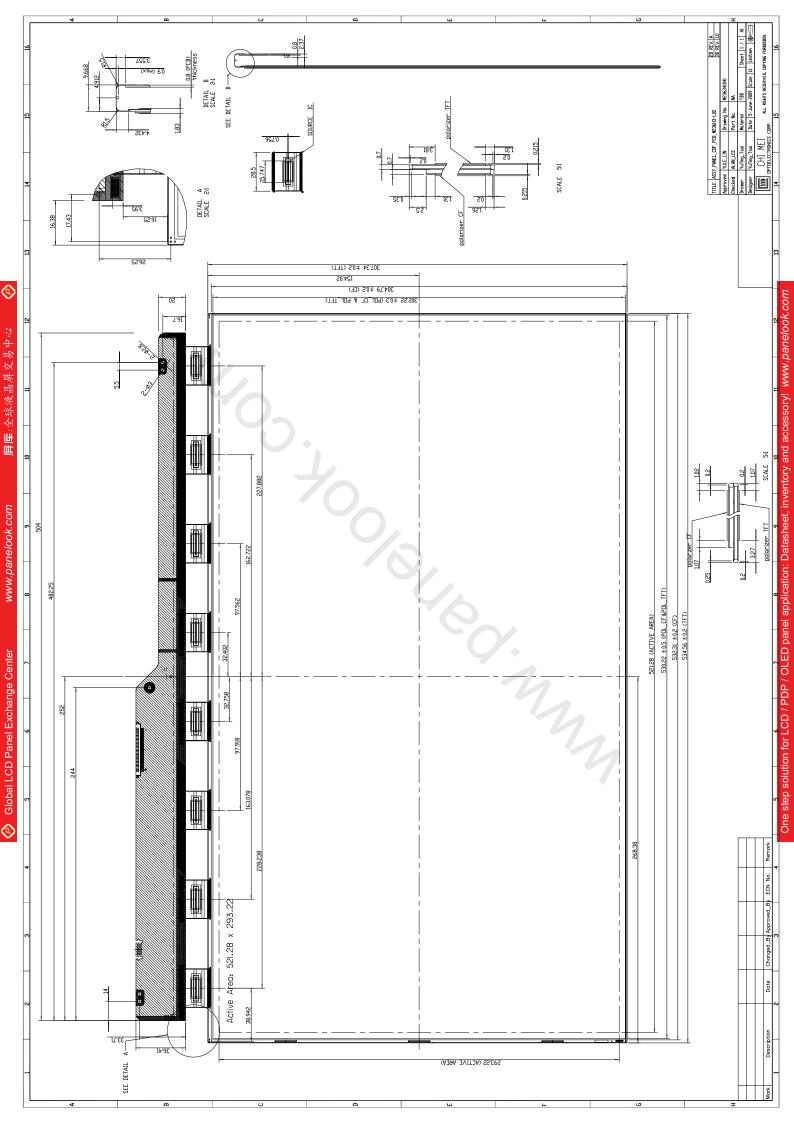
Note (1) The tests are done with LCD modules.

Note (2) The test is done with a package (24 open cells / 1 Box) shown in Section 8.

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. Dust and oil may cause electrical short or worsen the polarizer.
- (3) It is not permitted to have pressure or impulse on the product because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull I / F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture comes into or contacts the product because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C, it may reduce display quality. For example, the response time will become slow.


11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from eyes or mouth. In case of contacting with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

11.3 OTHER

(1) When fixed patterns are displayed for a long time, remnant image is likely to occur.

12. MECHANICAL DRAWING

