

Doc. Number:

- □Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: M238DCJ SUFFIX: E50

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note Product Version C1	
Please return 1 copy for y signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By
梁永祥	張耀元	羅仲良

Version 2.0 1 March 2016 1 / 39

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	6
3.2.1 TFT LCD MODULE	6
3.2.2 BACKLIGHT UNIT	7
4. ELECTRICAL SPECIFICATIONS	7
4.1 FUNCTION BLOCK DIAGRAM	7
4.2. INTERFACE CONNECTIONS	8
4.3 ELECTRICAL CHARACTERISTICS	g
4.3.1 LCD ELETRONICS SPECIFICATION	9
4.3.2 BACKLIGHT UNIT	12
4.3.3 LIGHTBAR CONNECTOR PIN ASSIGNMENT	
4.4 eDP INPUT SIGNAL SPECIFICATIONS	15
4.4.1 eDP DATA MAPPING TABLE	
4.4.2 COLOR DATA INPUT ASSIGNMENT	
4.4.3 eDP Main Link Signal	16
4.4.4 eDP AUX Channel Signal	
4.4.5 eDP HPD Signal	
4.5 DISPLAY TIMING SPECIFICATIONS	20
4.6 POWER ON/OFF SEQUENCE	
5. OPTICAL CHARACTERISTICS	23
5.1 TEST CONDITIONS	23
5.2 OPTICAL SPECIFICATIONS	
6. RELIABILITY TEST ITEM	
7. MECHANICAL STRENGTH CHARACTERISTICS	27
7.1 MECHANICAL STRENGTH SPECIFICATIONS	27
7.2 TEST CONDITIONS	27
7.3 DEFINITION OF TEST POINTS	
8. PACKAGING	
8.1 PACKING SPECIFICATIONS	28
8.2 PACKAGING METHOD	28

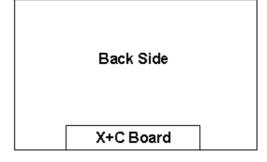
8.3 UN-PACKAGING METHOD	30
9. INX MODULE LABEL	31
10. PRECAUTIONS	32
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	32
10.2 STORAGE PRECAUTIONS	32
10.3 OPERATION PRECAUTIONS	32
10.4 SAFETY PRECAUTIONS	33
10.5 SAFETY STANDARDS	33
10.6 OTHER	33
Appendix 1. SYSTEM COVER DESIGN NOTICE	33
Appendix 2. OUTLINE DRAWING	37

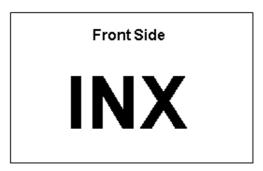
REVISION HISTORY

Version	Date	Page	Description
2.0	09, Dec., 2015		Spec Ver.2.0 was first issued.

Version 2.0 1 March 2016 4 / 39

1. GENERAL DESCRIPTION


1.1 OVERVIEW


M238DCJ-E50 is a MNT 23.8" TFT Liquid Crystal Display MNT module with WLED Backlight unit and 30 pins 4-lane eDP interface. This module supports 3840 x 2160 UHD mode and can display up to 1.07G (8-bit+FRC /color). The converter module for Backlight is not built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	23.8" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	3840 x R.G.B. x 2160	pixel	-
Pixel Pitch	0.13725 (H) x 0.13725 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.07G colors (8-bit+FRC)	color	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	AG type, 3H hard coating, Haze 25	-	-
Luminance, White	300	Cd/m2	
Color Gamut	95% of NTSC(Typ.)	-	-
Display Orientation	Signal input with "INX"		(2)
RoHS,Halogen Free &TCO 6.0	RoHS, Halogen Free TCO 6.0 compliance		
Power Consumption	Total 35.919W (Max.) @ cell 17.199 W (Max.), B (Max.)	L 18.72 W	(1)

Note (1) The specified power consumption : Total= cell (reference 4.3.1)+BL (reference 4.3.3) Note (2)

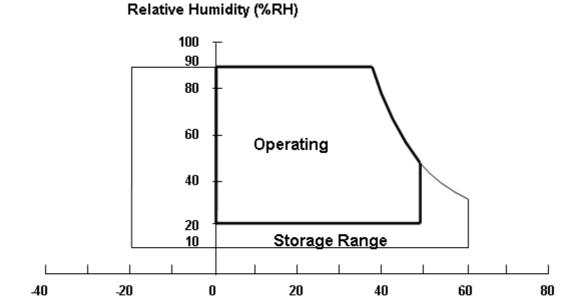
2. MECHANICAL SPECIFICATIONS

It	em	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	544.5	545	545.5	mm	
Module Size	Vertical (V)	322.9	323.4	323.9	mm	(1)
	Thickness (T)	12.2	12.7	13.2	mm	
Bezel Area	Horizontal	529.7	530.2	530.7	mm	
Dezei Alea	Vertical	299.1	299.6	300.1	mm	
Active Area	Horizontal	-	527.04	-	mm	
Active Alea	Vertical	-	296.46	-	mm	
We	eight	1760	1855	1950	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Version 2.0 1 March 2016 5 / 39

3. ABSOLUTE MAXIMUM RATINGS


3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Syllibol	Min.	Max.	Offic	
Storage Temperature	TST	-20	60	°C	(1)
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)

Note (1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) Panel surface temperature should be 0° C min. and 65° C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25° C ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 65° C.

Temperature (°C)

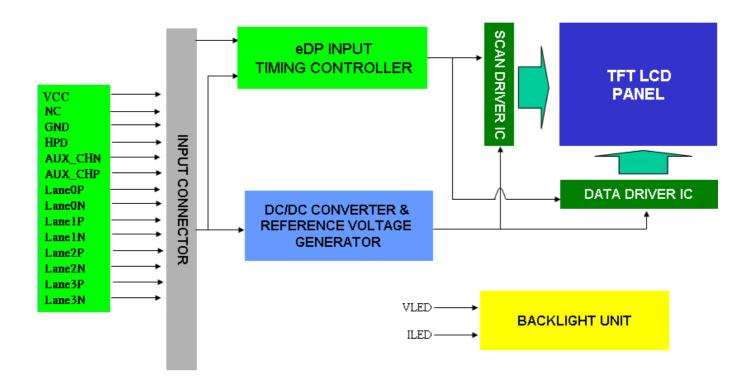
3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Val	ue	Unit	Note
Rom	Cymbol	Min.	Max.	Offic	
Power Supply Voltage	VCCS	-0.3	13.5	V	(1)
Logic Input Voltage	V_{IN}	-0.3	3.6	V	(1)

Version 2.0 1 March 2016 6 / 39

3.2.2 BACKLIGHT UNIT


Item	Symbol		Value		Unit Note	
item	Syllibol	Min.	Тур	Max.	Offic	Note
LED Forward Current Per Input Pin	I _F		90	95.4	mA	(1), (2) Duty=100%

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 ^oC (Refer to 4.3.3 and 4.3.4 for further information).

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

Version 2.0 1 March 2016 7 / 39

4.2. INTERFACE CONNECTIONS

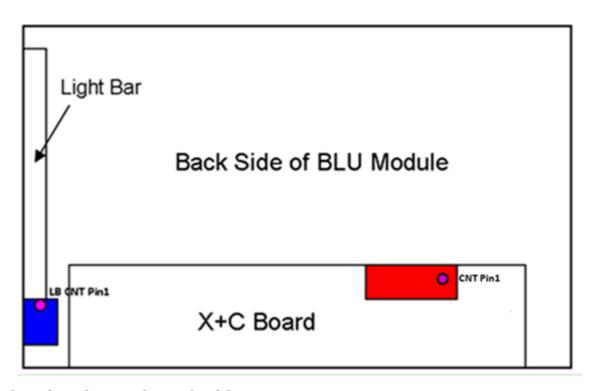
CNV1 Connector Pin Assignment:[20455-030E-76(I-PEX)]

Pin	Name	Description	Note
1	VCC	Power Supply +10.0V	
2	VCC	Power Supply +10.0V	
3	VCC	Power Supply +10.0V	
4	VCC	Power Supply +10.0V	
5	VCC	Power Supply +10.0V	
6	NC	No Connection	
7	GND	Ground	
8	NC	No Connection	(2)
9	NC	No Connection	(2)
10	GND	Ground	
11	HPD	Hot Plug Detect Signal	
12	GND	Ground	
13	AUX_CHN	Component Signal for Auxiliary Channel	
14	AUX_CHP	True Signal for Auxiliary Channel	
15	GND	Ground	
16	Lane0P	True Signal for Main Link 0	(1)
17	Lane0N	Component Signal for Main Link 0	(1)
18	GND	Ground	
19	Lane1P	True Signal for Main Link 1	(1)
20	Lane1N	Component Signal for Main Link 1	(1)
21	GND	Ground	
22	Lane2P	True Signal for Main Link 2	(1)
23	Lane2N	Component Signal for Main Link 2	(1)
24	GND	Ground	
25	Lane3P	True Signal for Main Link 3	(1)
26	Lane3N	Component Signal for Main Link 3	(1)
27	GND	Ground	
28	GND	Ground	
29	NC	No Connection	(2)
30	GND	Ground	

Connector Information

Item	Description
Manufacturer	I-PEX
Type part number	20455-030E-76

^{*}Notice: There would be compatible issues if not using the indicated connectors in the matching list.


Note (1) eDP Four Lane Main Link

Note (2) Reserved for internal use. Please leave it open.

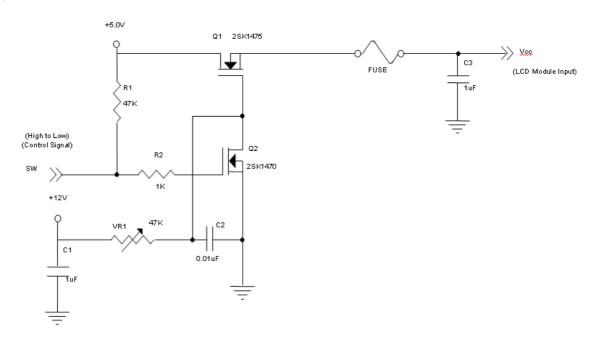
Note (3) eDP connector pin order defined as following:

Version 2.0 1 March 2016 8 / 39

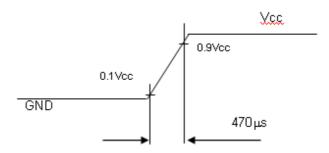
4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

	Parar	meter	Symbol		Value		Unit	Note
	Faiai	netei	Symbol	Min.	Тур.	Max.	Offic	Note
Powe	er Suppl	ly Voltage	V_{CC}	9.5	10	10.5	V	(2)
1	Rush Cu	ırrent	I _{RUSH}			3	Α	(3)
		White Pattern	P_{T}		8.09	8.76		
Power Consu	umption	Black Pattern	P _T	_	7.68	8.32	_	
		Horizontal Stripe		_	14.52	15.73		
Power Su	nnly	White Pattern		_	0.81	0.97	_	
Currer		Black Pattern	_	_	0.77	0.93	_	(4)
		Horizontal Stripe	_	_	1.45	1.73	_	
		ential Input High eshold Voltage	VRTH			+50	mV	
eDP interface		ential Input Low eshold Voltage	VRTL	-50	_	_	mV	
	Dif	Differential Input Resistor		80	100	120	ohm	
CMOS	Input	out High Threshold Voltage		2.7		3.3	V	
interface	Input	Low Threshold Voltage	VIL	0	_	0.7	V	

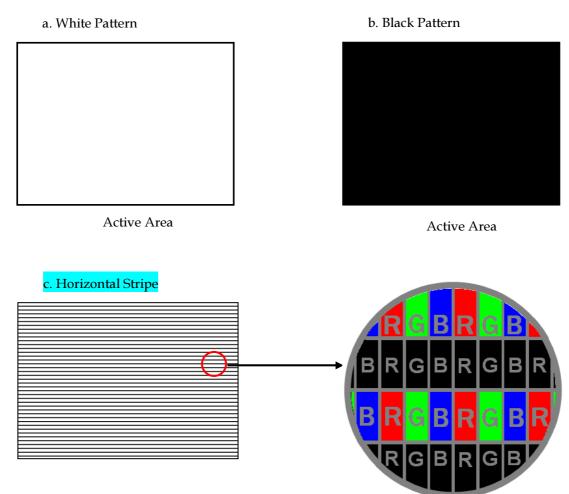

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Version 2.0 1 March 2016 9 / 39



Note (2) The module should be always operated within the above ranges. The ripple voltage should be controlled under 10 % of Vcc (Typ.)

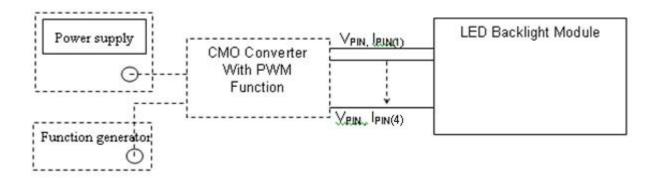
Note (3) Measurement Conditions:


Vcc rising time is 470µs

Version 2.0 1 March 2016 10 / 39

Note (4) The specified power supply current is under the conditions at Vcc = 10V, $Ta = 25 \pm 2$ °C, fv = 60 Hz, whereas a power dissipation check pattern below is displayed.

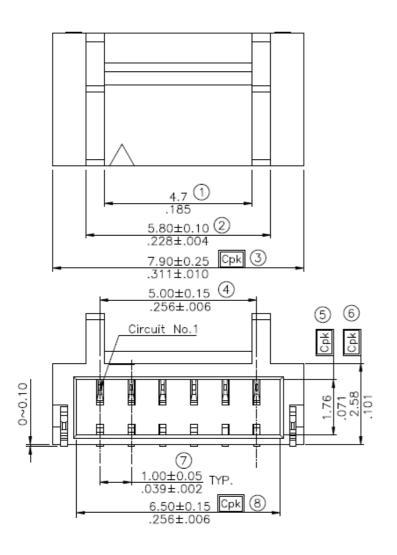
Version 2.0 1 March 2016 11 / 39

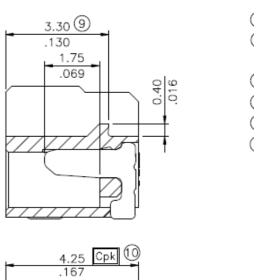


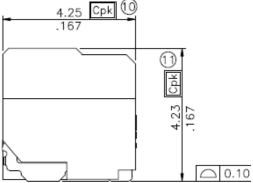
4.3.2 BACKLIGHT UNIT

Parameter	Symbol		Value		Unit	Note
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Note
LED Light Bar Input Voltage Per Input Pin	VPIN		48	52	V	(1), Duty=100%, IPIN=90mA
LED Light Bar Current Per Input Pin	IPIN	84.6	90	95.4	mA	(1), (2) Duty=100%
LED Life Time	LLED	30000			Hrs	(3)
Power Consumption	PBL		17.28	18.72	W	(1) Duty=100%, IPIN=90mA

- Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:
- Note (2) $PBL = IPIN \times VPIN \times (4)$ input pins,
- Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 \pm 2 °C and I= 90 mA (per chip) until the brightness becomes \leq 50% of its original value.
- Note (4) The module must be operated with constant driving current.
- Note (5) If converter has PWM function, the PWM Frequency setting must be over 480Hz.

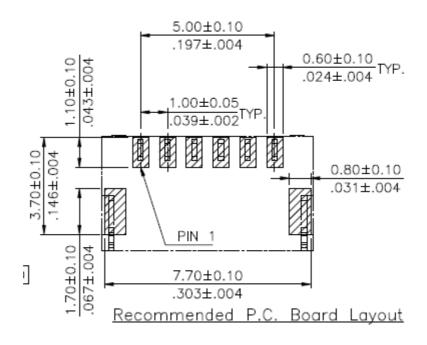

Version 2.0 1 March 2016 12 / 39

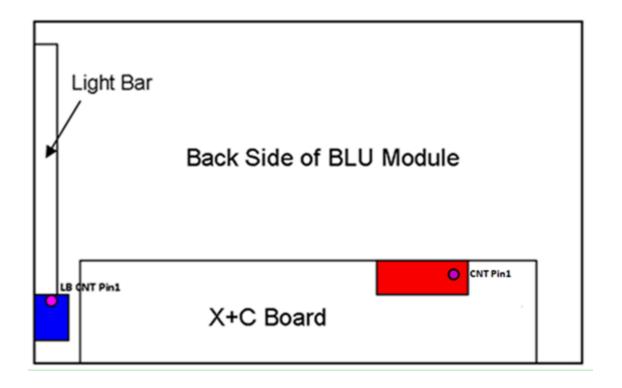



4.3.3 LIGHTBAR CONNECTOR PIN ASSIGNMENT

Connector: WM13-406-063N (FCN)

CI1406M1HRK-NH(CviLux) or Compatible, FFC or Wire Harness




Version 2.0 1 March 2016 13 / 39

CN1

Pin number	Description
1	Cathode of LED string
2	Cathode of LED string
3	VLED
4	VLED
5	Cathode of LED string
6	Cathode of LED string

Version 2.0 1 March 2016 14 / 39

4.4 eDP INPUT SIGNAL SPECIFICATIONS

4.4.1 eDP DATA MAPPING TABLE

Lane 0	Lane 1	Lane 2	Lane 3
R0-9:2	R1-9:2	R2-9:2	R3-9:2
R0-1:0 G0-9:4	R1-1:0 G1-9:4	R2-1:0 G2-9:4	R3-1:0 G3-9:4
G0-3:0 B0-9:6	G1-3:0 B1-9:6	G2-3:0 B2-9:6	G3-3:0 B3-9:6
B0-5:0 R4-9:8	B1-5:0 R5-9:8	B2-5:0 R6-9:8	B3-5:0 R7-9:8
R4-7:0	R5-7:0	R6-7:0	R7-7:0
G4-9:2	G5-9:2	G6-9:2	G7-9:2
G4-1:0 B49:4	G5-1:0 B5-9:4	G6-1:0 B6-9:4	G7-1:0 B7-9:4
B4-3:0 R8-9:6	B5-3:0 R9-9:6	B6-3:0 R10-9:6	B7-3:0 R11-9:6
R8-5:0 G8-9:8	R9-5:0 G9-9:8	R10-5:0 G10-9:8	R11-5:0 G11-9:8
G8-7:0	G9-7:0	G10-7:0	G11-7:0
B8-9:2	B9-9:2	B10-9:2	B11-9:2
B8-1:0 R12-9:4	B9-1:0 R13-9:4	B10-1:0 R14-9:4	B11-1:0 R15-9:4
R12-3:0 G12-9:6	R13-3:0 G13-9:6	R14-3:0 G14-9:6	R15-3:0 G15-9:6
G12-5:0 B12-9:8	G13-5:0 B13-9:8	G14-5:0 B14-9:8	G15-5:0 B15-9:8
B12-7:0	B13-7:0	B14-7:0	B15-7:0

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data in

Version 2.0 1 March 2016 15 / 39

															D	ata 9	ign	al.1													
	Color.,					Re	ed.₁									Gre	en.									Bl	ue.				
		R9.	R8.	R7.	R6.	R5.	R4.	R3.	R2.	R1.	R0.	G9.	G 8.	G7.	G6.	G5.	G4.	G3.	G2.	G1.	G0.	B9.	B8.	B7.	B6.	B5.	B4.	В3.	B2.	B1.	B0.
	Black	0.,	0	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.1	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	0.,	0.,	0.,	0.,
	Red.,	1.,	1	1	1.,	1	1.,	1.,	1.,	1.,	1.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	0	0.,	0.,	0.,
	Green	0.,	0.,	0.,	0.,	0	0	0.,	0.,	0.,	0.,	1.,	1.,	1	1.,	1.,	1	1	1	1.,	1	0.,	0.,	0	0.,	0.,	0.,	0.,	0	0.,	0
Basic.	Blue.	0.,	0	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	1	1.,	1	1	1.,	1	1	1	1.,	1
Colors.	Cyan.,	0.,	0	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	1.,	1.,	1.,	1.,	1.,	1.,	1.,	1	1.,	1.,	1	1.,	1.,	1	1.,	1	1	1.,	1.,	1.,
	Magenta	1	1	1	1	1		1	1	1	1	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	1	1.,	1	1	1.,	1	1	1	1.,	1
	Yellow.	1	1	1	1.,	1	1	1	1.,	1.,	1	1.,	1.,	1	1	1	1	1	1	1	1	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0
	White.	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
	Red(0)/Dark.	0.,	0.,	0.,	0.,	0	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0	0.,	0
	Red (1).	0.,	0	0.,	0.,	0	0	0.,	0.,	0.,	1.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	0.,	0.,	0	0	0.,	0.,	0	0	0.,	0
Gray.	Red (2).	0.,	0	0	0.,	0	0	0.,	0.,	1	0	0.,	0.,	0	0.,	0.,	0.,	0	0	0.,	0	0.,	0.,	0	0	0.,	0.,	0	0	0	0
Scale.	1.1	.1	1	1.1	1	1	1	1.7	1	1.1	1.1	:	1.1	1.1	1	1.7	1.1	1.1	1	1.1	1.1	1.1	1	1	:	:	1.7	1	1.1	1.1	1
Of.,	1.1	.1	1	1	1	1	1	1.1	1	1	1.1	:	1	1	1	1	1.1	1.1	1	1	1	10	:	1	1	:	1.7	1	1.1	1.1	1
Red.	Red (1021).	1	1	1	1	1	1	1	1	0	1	0.,	0	0	0.,	0	0.,	0	0	0	0	0	0.,	0	0	0.,	0.,	0	0	0.,	0
Keu.	Red (1022).	1	1	1	1	1	1	1	1	1	0	0.,	0	0	0.,	0	0.,	0	0	0	0	0	0.,	0	0	0.,	0.,	0	0	0.,	0
	Red (1023).	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	Green (0) / Dark	0.,	0	0.,	0.,	0	0	0	0	0.1	0	0.,	0.1	0.,	0.,	0.,	0	0	0	0.,	0.,	0.,	0.,	0	0	0.,	0.,	0	0	0	0
	Green (1).	0	0	0	0.,	0	0	0	0.,	0	0	0.,	0	0	0.,	0.,	0	0	0	0	1	0	0.,	0	0	0.,	0.,	0	0	0.,	0
Gray.	Green (2).	0.,	0	0	0.,	0	0	0	0.,	0.,	0	0.,	0.,	0	0.,	0	0.,	0	0	1	0	0.,	0.,	0	0	0.,	0	0	0	0.,	0
Scale.	1.0	:	1.1	1.1	1	1	1	1.7	1	1.1	1.1	:	1	1.1	1	1.7	1.1	1.1	1	1	1	1.1	:	1	1	:	1.7	1	1.1	1.1	1
Of.,	1.1	:	1.1	1	1	1	1	1.1	1.1	1	1.1	:	1.1	1	1	1	1.1	1.1	1	1.1	1	1.1	1	1	:	:	1.7	1	1.1	1.1	:
Green.	Green (1021).	0	0	0	0.,	0	0	0	0.,	0	0	1.,	1	1	1	1	1	1	1	0.,	1	0.,	0.,	0	0	0.,	0.,	0	0	0.,	0
Green.	Green (1022).	0	0	0	0.,	0	0	0	0	0	0	1.,	1	1	1	1	1	1	1	1	0	0	0.,	0	0	0.,	0.1	0	0	0.,	0
	Green (1023).	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	Blue (0) / Dark.	0	0	0	0	0.7	0	0	0	0.4	0	0	0	0	0.,	0.,	0	0	0	0.,	0.,	0	0	0	0	0.4	0.,	0	0	0	0
	Blue (1).	0	0	0	0.,	0	0	0	0	0.,	0	0.,	0.,	0	0.,	0.,	0.,	0	0	0.,	0.,	0.,	0.,	0	0	0.,	0.,	0	0	0.,	1
Cmore	Blue (2).	0.,	0	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	0	0.,	0.,	0	0.,	0.,	0	0.,	1.,	0.,
Gray Scale	1	:.,	1.1	1	:	:	:	1	1	1.1	1.7	1.1	1	1	1.1	1	:	1	:	1	1	1	:	:	:	:	1	:	1	1.,	1
Of.,	1.1	:	1.1	1	:	:	:	1.1	:	1.1	1.1	1.1	1	1	1.1	1	:	1	:	1.1	1	1.1	:	:	:	:	1	:	:	:	:
Blue.	Blue (1021)	0.,	0	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0	0.,	0.,	1	1.,	1.,	1	1.,	1	1.,	1.,	0.,	1.,
Ditte.	Blue (1022)	0.,	0	0.,	0.,	0	0	0.,	0	0.,	0	0.,	0	0.,	0.,	0	0.,	0	0	0.,	0	1	1.,	1	1	1.,	1	1	1	1.,	0
	Blue (1023).	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0.1	0.1	0.4	0.1	0.1	0.1	0.,	0.1	0.1	0.1	0.1	0.,	0.1	1.1	1.1	1.1	1.1	1.,	1.1	1.1	1.1	1.1	1.1

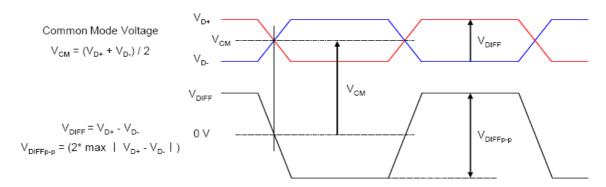
Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.4.3 eDP Main Link Signal

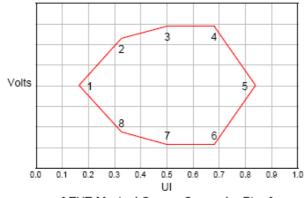
Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval for high bit rate (5.4Gbps / lane)	UI_HBR2	-	185	ı	ps	
Link Clock Down Spreading	Amplitude	0	-	0.5	%	
Link Glock Down Opicading	Frequency	30		33	kHz	
Differential peak-to-peak voltage at Sink side connector	V-DIFFp-p	150	-	1320	mV	Note 6,7
EYE width at Sink side connector	Rx-EYE-CONN	0.51	-	ı	UI	Note 6,7
Rx DC common mode voltage	Vсм	-	0	2.0	V	
Lane-to-Lane skew	Rx-skew-inter_pair	-	-	20	UI	Note 8
Lane intra-pair skew	Rx-skew-intra_pair	_	-	50	ps	Note 9
AC Coupling Capacitor	Csource_ML	75		200	nF	Source side

Note (1) Termination resistor is typically integrated into the transmitter and receiver implementations.

Version 2.0 1 March 2016 16 / 39


Note (2) In cabled embedded system, it is recommended the system designer ensure that EYE width and voltage are met at the sink side connector pins.

Note (3) Mismatched common mode voltage will occur abnormal display.


Note (4) All eDP electrical spec is measured at sink connector side.

Note (5) eDP cable Impedance should be 85ohm \pm 10%.

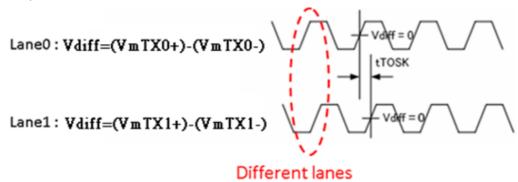
Note (6) Definition of Differential Voltage

Note (7) Main Link EYE Diagram

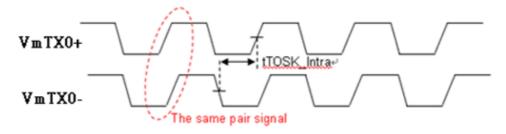
[EYE Mask at Source Connector Pins]

Volts			1			2			3		
0.	.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
						UI					
		ſ	EYE	Mas	k at S	Sink (Conn	ector	Pins	1	

Point	Н	BR2
Foilit	Time(UI)	Voltage(V)
1	0.21	0
2	0.355	0.14
3	0.5	0.175
4	0.645	0.175
5	0.79	0
6	0.645	-0.175
7	0.5	-0.175
8	0.355	-0.14


Point	Н	IBR
FOIIIL	Time(UI)	Voltage(V)
1	0.246	0.000
2	0.500	0.075
3	0.755	0.000
4	0.500	-0.075

[EYE Mask Vertices at Source Connector Pins]


[EYE Mask Vertices at embedded DP Sink Connector Pins]

Note (8) eDP Inter-pair skew

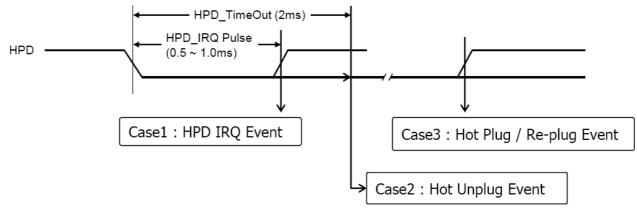
Note (9) eDP Intra-pair skew

4.4.4 eDP AUX Channel Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
AUX Unit Interval	UI	0.4	-	0.6	us	
AUX Jitter at Tx IC Package Pins	T littor	-	-	0.04	UI	Equal to 24ns
AUX Jitter at Rx IC Package Pins	T jitter	-	-	0.05	UI	Equal to 30ns
AUX Peak-to-peak voltage at Connector Pins of Receiving	V AUV DIFFE S	0.27	-	1.36	V	
AUX Peak-to-peak voltage at Connector Pins of Transmitting	V_AUX-DIFFp-p	0.29	-	1.38	V	
AUX DC common mode voltage	V_AUX-CM_Rx	0		2.0	V	
AC Coupling Capacitor	Csource_ML	75		200	nF	Source side

Note (1) Termination resistor is typically integrated into the transmitter and receiver implementations.

Note (2) V_AUX-DIFFp-p = 2* | VAUXP-VAUXN |


Note (3) Termination resistor should be ± 50 ohm at source side to AUX level.

Note (4) Mismatched common mode voltage will occur abnormal display.

Version 2.0 1 March 2016 18 / 39

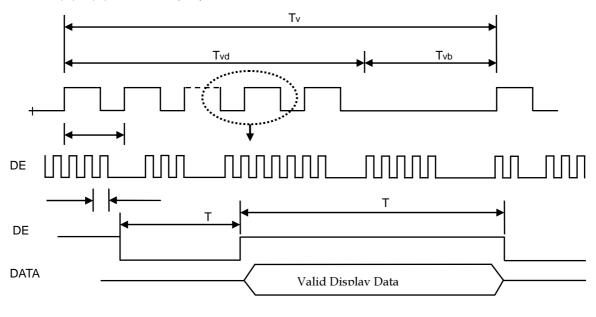
4.4.5 eDP HPD Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
HPD Voltage		2.25	-	3.6	V	Sink side Driving
Hot Plug Detection Threshold	HPD	2	-	-	٧	Source side
Hot Unplug Detection Threshold		-	-	0.8	V	Detecting
HPD_IRQ Pulse Width	HPD_IRQ	0.5	-	1	ms	
HPD_TimeOut		2	-	-	ms	HPD Unplug Event

- Note (1) HPD IRQ: Sink device wants to notify the Source device that Sink's status has changed so it toggles HPD line, forcing the Source device to read its Link / Sink Receiver DPCD field via the AUX-CH
- Note (2) HPD Unplug: The Sink device is no longer attached to the Source device and the Source device may then disable its Main Link as a power-saving measure
- Note (3) Plug / Re-plug : The Sink device is now attached to the Source device, forcing the Source device to read its Receiver capabilities and Link/Sink status Receiver DPCD fields via the AUX-CH

Version 2.0 1 March 2016 19 / 39

4.5 DISPLAY TIMING SPECIFICATIONS

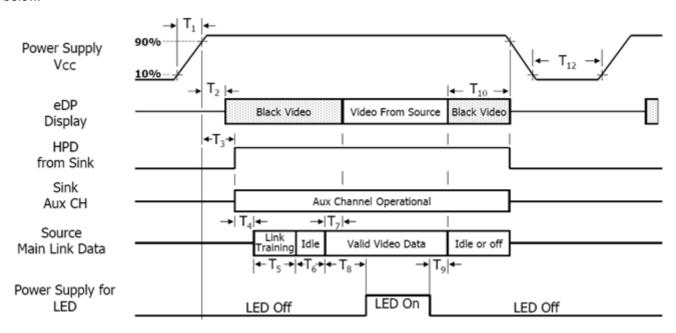

The input signal timing specifications are shown as the following table and timing diagram. (Ta = 25 ± 2 °C)

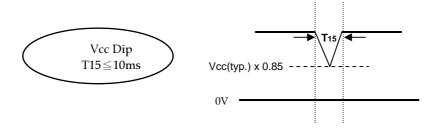
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
eDP	Frequency	Fc		533.25		MHz	(1)
	Frame Rate	Fr	59.7	60	60.3	Hz	
Vertical Display	Total	Τv	2222	2222	2222	Th	Tv=Tvd+Tvb
Term	Active Display	Tvd	2160	2160	2160	Th	-
	Blank	Tvb	62	62	62	Th	-
	Total	Th	3980	4000	4020	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	3840	3840	3840	Тс	-
	Blank	Thb	140	160	180	Tc	-

Note (1) Please make sure the range of pixel clock has follow the below equation :

$$Fclkin(max) \ge Fr \times Tv \times Th$$

$$Fr \times Tv \times Th \ge Fclkin (min)$$


Version 2.0 1 March 2016 20 / 39



4.6 POWER ON/OFF SEQUENCE

$$(Ta = 25 \pm 2 \, {}^{\circ}C)$$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Version 2.0 1 March 2016 21 / 39

Timing	Required By	Li	mits	Units	Notes
Parametr	Required by	Min	Max	Ullits	Notes
T1	Source	0.5	10	ms	
T2	Sink	10	200	ms	
Т3	Sink	15	200	ms	
T4	Source	-	-	ms	
T5	Source	-	-	ms	
Т6	Source	-	50	ms	
T7	Sink	0	50	ms	
Т8	Source	200	-	ms	
Т9	Source	-	-	ms	
T10	Source	0	500	ms	
T12	Source	500	-	ms	

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of **Vcc** is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T12 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) Vcc must decay smoothly when power-off.

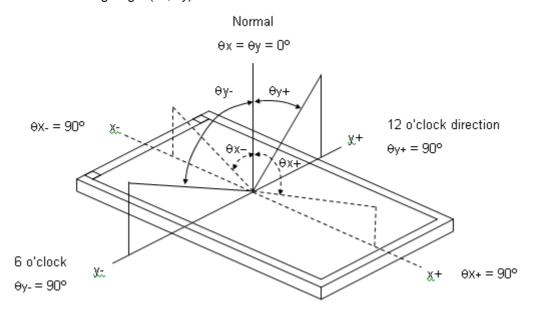
Version 2.0 1 March 2016 22 / 39

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{CC} 5		V
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS		
LED Light Bar Input Current Per Input Pin	I _{PIN}	90	mA _{DC}
PWM Duty Ratio	D	100	%
LED Light Bar Test Converter	r INX 27-D041745		

5.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx		Typ – 0.03	0.685	Typ + 0.03	-	(1), (5)
		Ry			0.310			
0.1.	Green	Gx			0.260			
Color Chromaticity	010011	Gy			0.685			
(CIE 1931)	Blue	Bx	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		0.152			
(**= *****)	Blue	Ву	CS-2000		0.055			
	White	Wx	R=G=B=255 Gray scale		0.313			
		Wy			0.329			
Center Luminance of White (Center of Screen)		L _C		240	300	-	cd/m ²	(4), (5)
Contrast Ratio (Center of Screen)		CR		700	1000	-	-	(2), (5)
Response Time			$\theta_x=0^\circ, \ \theta_Y=0^\circ$		9.5	20	ms	(3)
White Variation		W	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	-	1.42	-	(5), (6)
Viowing Angle	Horizontal	X- + X+	CR ≧ 10	160	178	-	Deg.	(1), (5)
Viewing Angle	Vertical	y- + y+		160	178	-	Deg.	(1), (3)

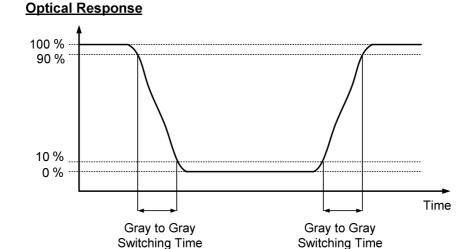
Version 2.0 1 March 2016 23 / 39

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

 $CR_C = CR$ (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

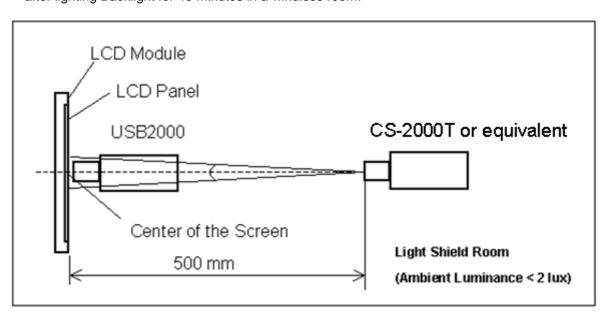
Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255.

Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 to each other

Version 2.0 1 March 2016 24 / 39

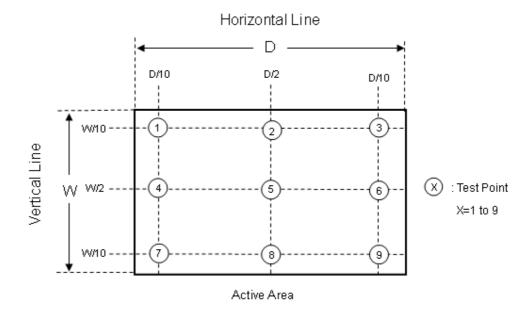
Note (4) Definition of Luminance of White (L_C):


Measure the luminance of gray level 255 at center point

$$L_{C} = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

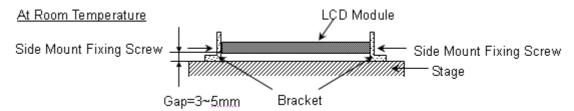
Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = Maximum [L (1) \sim L (9)] / Minimum [L (1) \sim L (9)]$

Version 2.0 1 March 2016 25 / 39

6. RELIABILITY TEST ITEM


Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C , 80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 50°C , 240hours	
Low Temperature Operation (LTO)	Ta= 0°C , 240hours	
High Temperature Storage (HTS)	Ta= 60° C , 240hours	
Low Temperature Storage (LTS)	Ta= -20 $^{\circ}$ C , 240hours	
	Acceleration: 1.5 G Wave: sine	
Vibration Test	Frequency: 10 - 300 Hz	
(Non-operation)	Sweep: 30 Minutes each Axis (X, Y, Z)	
	Acceleration: 50 G Wave: Half-sine Active Time: 11 ms	
Shock Test	Direction : $\pm X$, $\pm Y$, $\pm Z$.(one time for	
(Non-operation)	each Axis)	
	-20°C/30min , 60°C / 30min , 100	
Thermal Shock Test (TST)	cycles	
	25°C ,On/10sec , Off /10sec , 30,000	
On/Off Test	cycles	
	Contact Discharge: ± 8KV, 150pF(330Ω)	
ESD (Electro Static Discharge)	Air Discharge: ± 15KV, 150pF(330Ω)	
Altitude Test	Operation:10,000 ft / 24hours Non-Operation:30,000 ft / 24hours	

Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

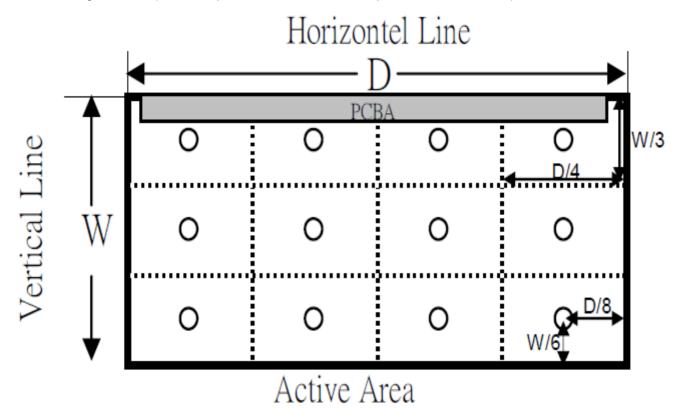
Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

Version 2.0 1 March 2016 26 / 39

7. MECHANICAL STRENGTH CHARACTERISTICS

7.1 MECHANICAL STRENGTH SPECIFICATIONS


Item	Condition	Min	Unit	Note
Mechanical Strength	128 th Gray Pattern	0.6	Kgf	

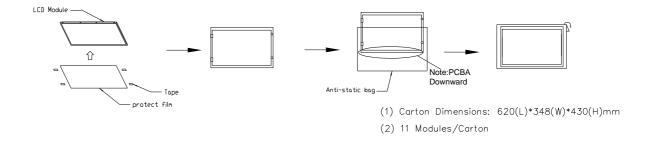
7.2 TEST CONDITIONS

Items	Description
Test Condition	1. Ambient Illumination: 10~15 lux 2. Test Pattern: 128 Gray 3. Distance of the judgment: 30cm from the surface of module 4. Viewing angle of the judgment: Front
Gage Information	1. Push pull guage a. Model name: HF-50, maker: ALGOL b. Shape of gage tip - Diameter: 2mm - Thickness: 2mm
Definition of Minimum force	To measure minimum force when operator detects any white spot and light leakage that have occurred while operator presses on back side of module with push pull gage.

7.3 DEFINITION OF TEST POINTS

Measure the minimum force of test points at 128th Gray pattern. The test points at back side of module area is showing as below (If the test points on the PCBA, these points are not included).

Version 2.0 1 March 2016 27 / 39



8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 11 LCD modules / 1 Box
- (2) Box dimensions: 620(L) X 348(W) X 430(H) mm
- (3) Weight: approximately: 28.3kg (11 modules per box)

8.2 PACKAGING METHOD

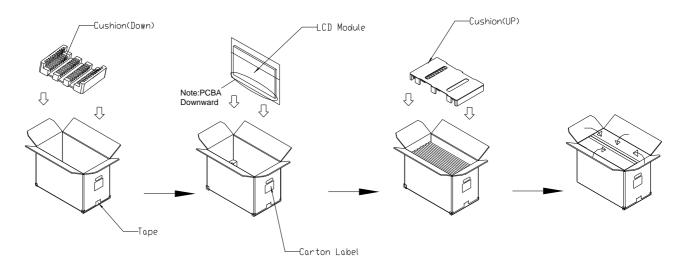
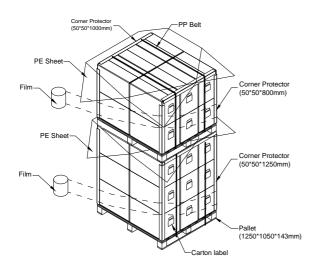
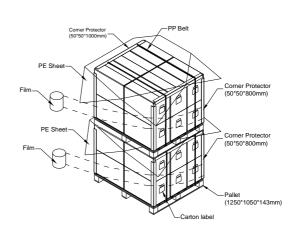


Figure 8-1 packing method

Version 2.0 1 March 2016 28 / 39





For ocean

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (40ft/20ft Container)

For air

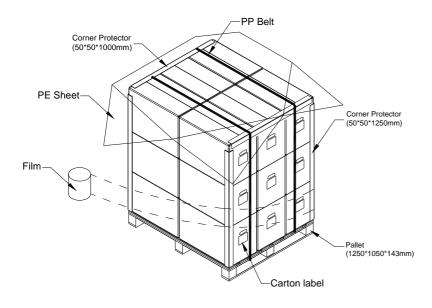


Figure 8-2 packing method

Version 2.0 1 March 2016 29 / 39

8.3 UN-PACKAGING METHOD

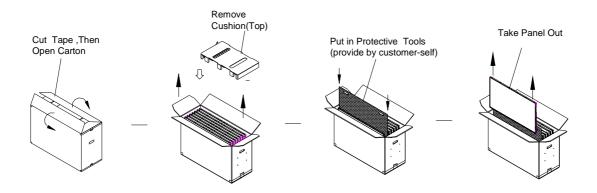


Figure 8-3 UN-packing method

Version 2.0 1 March 2016 30 / 39

9. INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: M238DCJ-E50

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) INX barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	INX internal use	-
XX	Revision	Cover all the change
X	INX internal use	-
XX	INX internal use	-
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) Customer's barcode definition:

Serial ID: CM-N8J50-X-X-X-XX-L-XX-L-YMD-NNNN

Code	Meaning	Description
СМ	Supplier code	INX=CM
N8J50	Model number	M238DCJ-E50= N8J50
Х	Revision code	Non ZBD: 1,2,~,8,9 / ZBD: A~Z
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatek=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M, ILITEK=Q, Fiti=Y, None IC =Z
XX	Cell location	Tainan Taiwan=TN, Ningbo China=CN, Hsinchu Taiwan=SC
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN ; Ningbo China=NP ; Shenzhen China=SH ; Nanhai China=NH
L	Module line #	1,2,~,9,A,B,~,Y,Z
YMD	Year, month, day	Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	By LCD supplier

(e) FAB ID(UL Factory ID):

Region	Factory ID
TWINX	GEMN
NBCMI	LEOO
NBCMI	VIRO
NBCME	CANO
NHCMI	CAPG

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) While touching the panel surface under the patterns with higher grey levels, a shadow or mura phenomenon would be seen. This phenomenon is totally recoverable by switching the patterns to lower grey levels. It is a product feature.

10.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0°C to 35°C and relative humidity of less than 90%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

10.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Version 2.0 1 March 2016 32 / 39

Normal condition is defined as below:

Temperature : 20±15°C Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

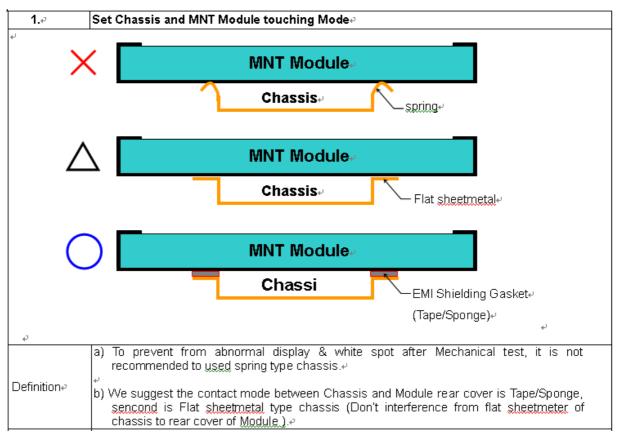
(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude, display pattern or operation time etc... It is strongly recommended to contact INX for application engineering advice.

Otherwise, Its reliability and function may not be guaranteed.

10.4 SAFETY PRECAUTIONS

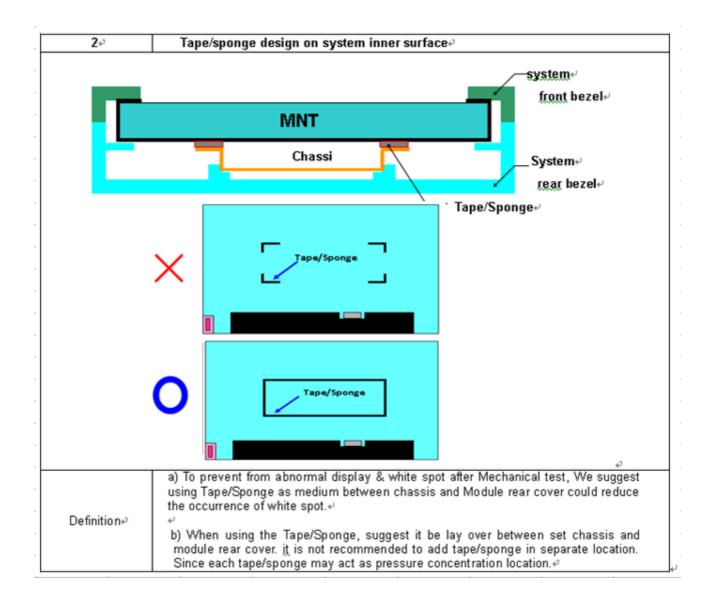
- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

10.5 SAFETY STANDARDS


The LCD module should be certified with safety regulations as follows:

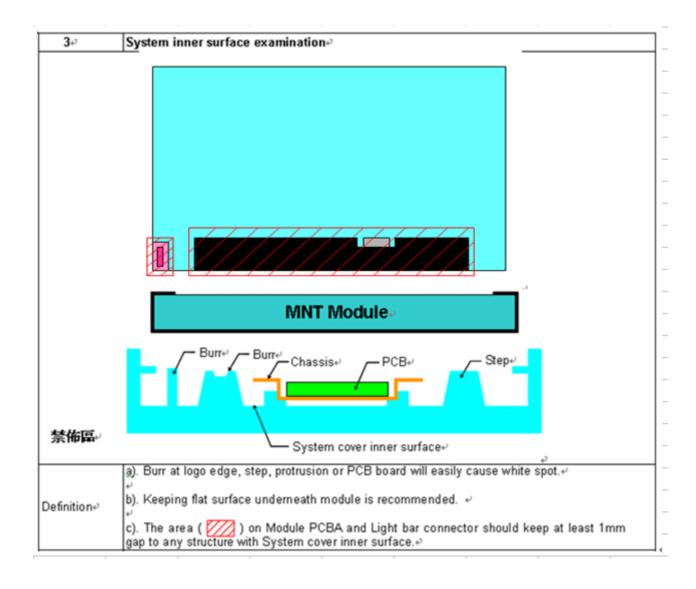
- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

10.6 OTHER

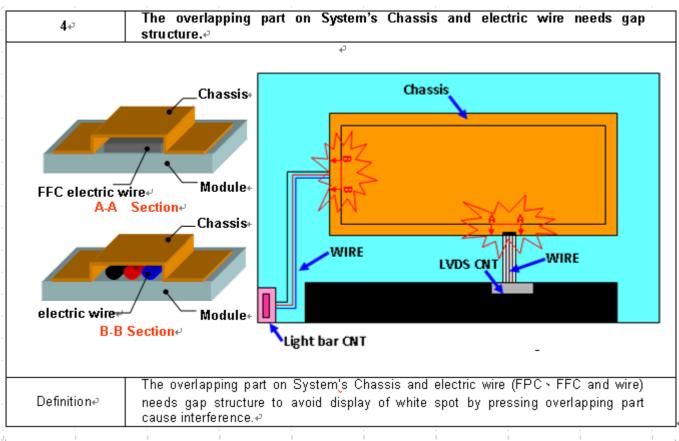

When fixed patterns are displayed for a long time, remnant image is likely to occur.

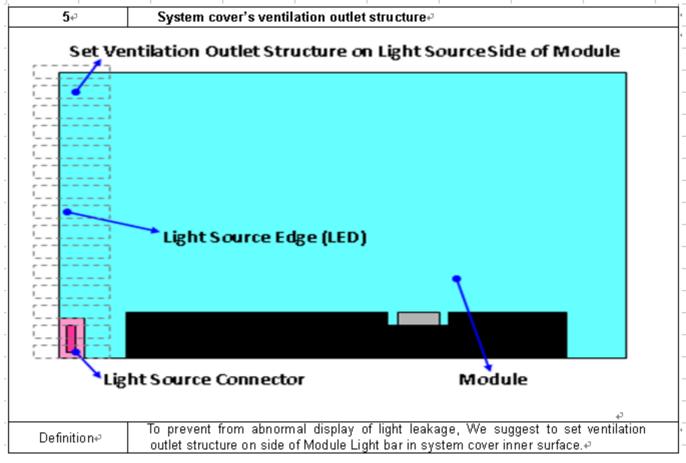
Appendix 1. SYSTEM COVER DESIGN NOTICE

Version 2.0 1 March 2016 33 / 39

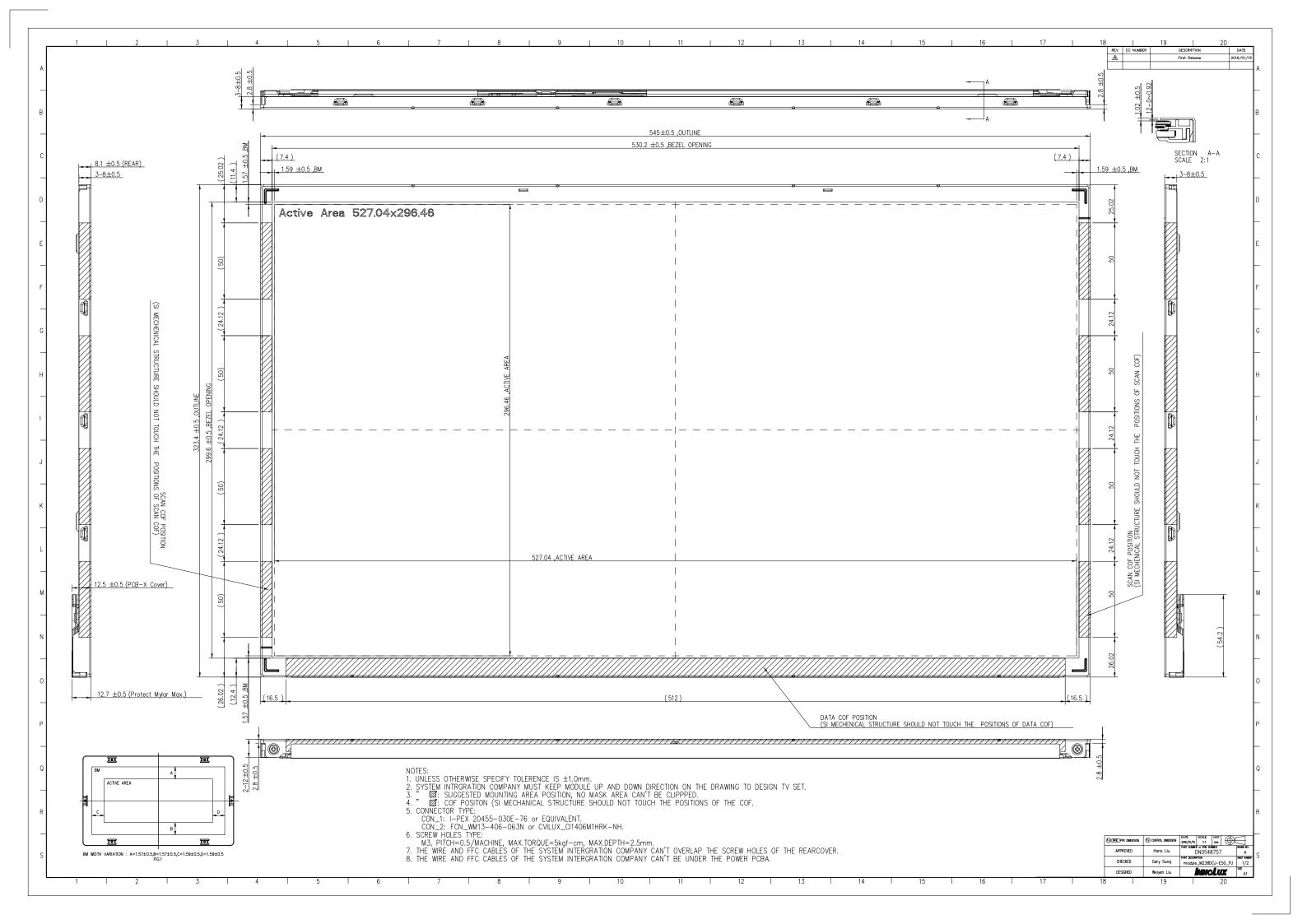


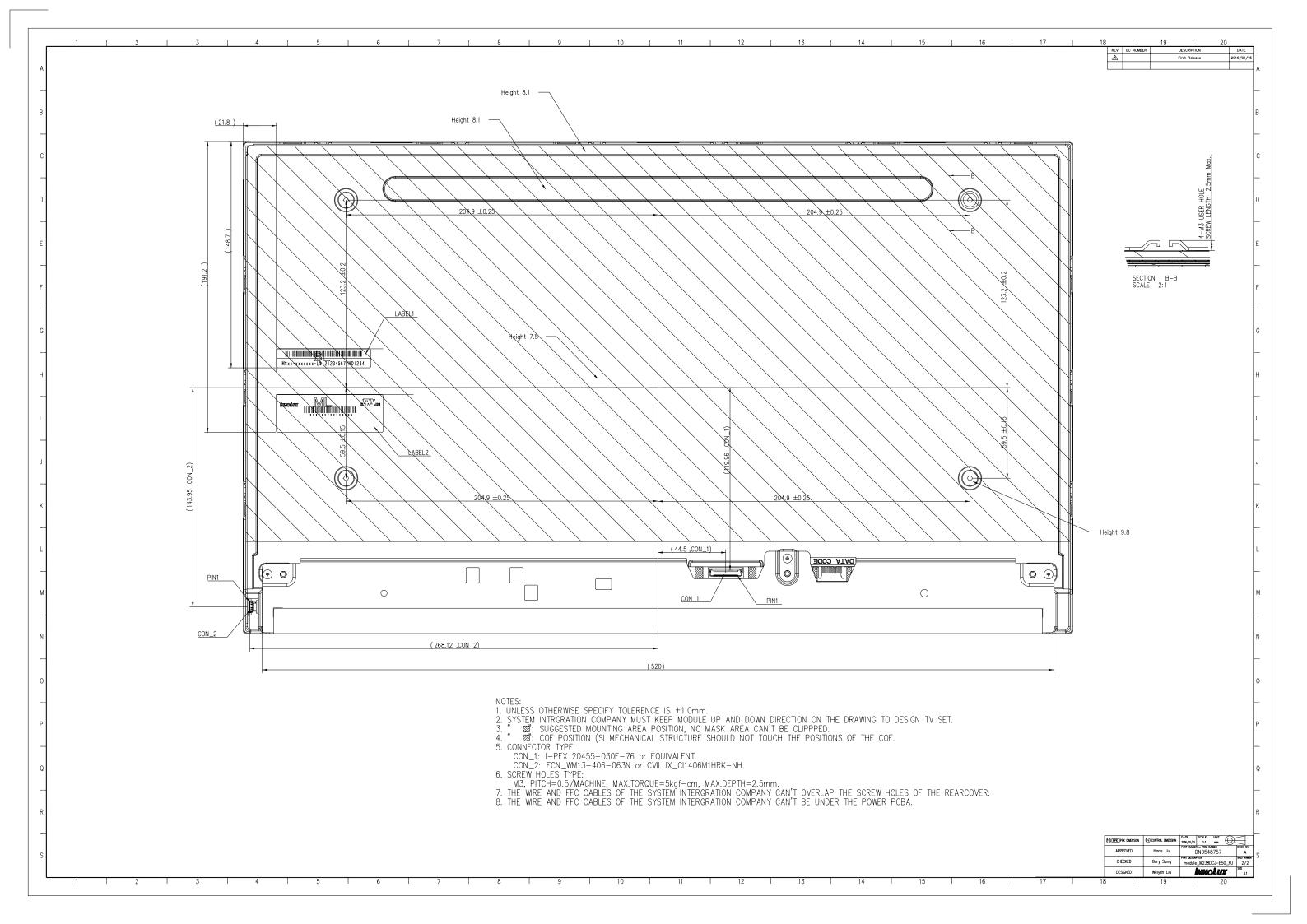
Version 2.0 1 March 2016 34 / 39





Version 2.0 1 March 2016 35 / 39


Version 2.0 1 March 2016 36 / 39



Note: The above drawing is only for design hint, the actual module outline drawing please refer to Appendix 2

Appendix 2. OUTLINE DRAWING

Version 2.0 1 March 2016 37 / 39

