

() Preliminary Specification

(v) Final Specification

Module	24" Color TFT-LCD
Model Name	M240Q004 V0

Customer Date	Approved by Date
	James Kuo2012-08-06
Approved by	Prepared by
	<u>Junda Lin</u> <u>2012-08-06</u>
Note: This Specification is subject to change without notice.	Desktop Display Business Group / Qisda corporation

Contents

1.0 Handling Precautions	4
2.0 General Description	5
2.1 Display Characteristics	5
2.2 Optical Characteristics	6
3.0 Functional Block Diagram	10
4.0 Absolute Maximum Ratings	11
4.1 TFT LCD Module	11
4.2 Backlight Unit	11
4.3 Absolute Ratings of Environment	11
5.0 Electrical characteristics	12
5.1 TFT LCD Module	12
5.1.1 Power Specification	12
5.1.2 Signal Electrical Characteristics	13
5.2 Backlight Unit	15
6.0 Signal Characteristic	16
6.1 Pixel Format Image	16
6.2 The input data format	16
6.3 Signal Description	17
6.4 Timing Characteristics	19
6.5 Timing diagram	20
6.6 Power ON/OFF Sequence	21
7.0 Connector & Pin Assignment	22
7.1 TFT LCD Module	22
7.1.1 Pin Assignment	22
7.2 Connector on Backlight Unit.	23
7.2.1 Pin assignment	23
8 0 Reliability Test	24

Record of Revision

Version and Date	Page	Old description	New Description	Remark
01 2012/03/29		First Version		
02 2012/04/30		Final Specification		
03 2012/08/06	15		VLb Max.63.7V PBLU 12.88W	

1.0 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Please avoid touching COF Position while you are doing mechanical design.
- 14) While storing modules as spares for a long time, the following precaution is necessary: Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5 and 35 at normal humidity.

2.0 General Description

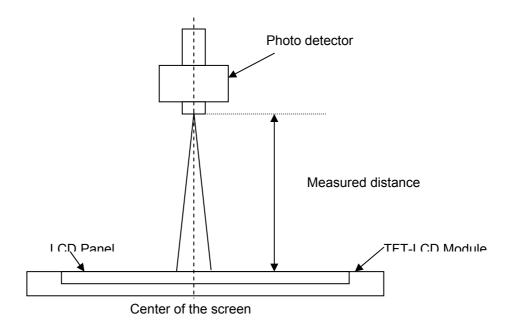
This specification applies to the 24 inch-FHD Color a-Si TFT-LCD Module M240HVN01. The display supports the FHD - 1920(H) x 1080(V) screen format and 16.7M colors (RGB 8-bits). The light source of this TFT-LCD module is W-LED. All input signals are dual LVDS interface and this module doesn't contain a driver for backlight.

2.1 Display Characteristics

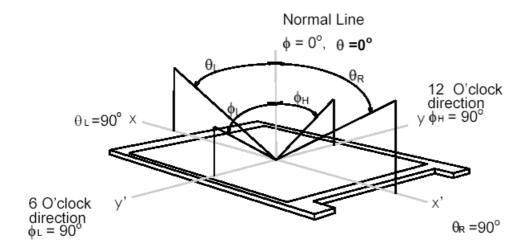
The following items are characteristics summary on the table under 25 condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	609.7(24.0")
Active Area	[mm]	531.36 (H) x 298.89 (V)
Pixels H x V		1920(x3) x 1080
Pixel Pitch	[um]	276.75 (per one triad) ×276.75
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		VA Mode, Normally Black
White Luminance (Center)	[cd/m ²]	280 cd/m ² (Typ.)
Contrast Ratio		5000(Typ.)
Optical Response Time	[msec]	12 ms (Typ., on/off)
Nominal Input Voltage VDD	[Volt]	+5.0 V (Typ)
Power Consumption	[Watt]	16.6 W (Typ 60Hz)
(VDD line + LED line)		
Weight	[Grams]	2180 (Max.)
Physical Size	[mm]	556.0(H)x323.2(V)x8.8 (D)
Electrical Interface		Dual channel LVDS
Support Color		16.7M colors (RGB 8-bit)
Surface Treatment		Glare
Temperature Range	[°C]	0 to +50
Operating	[°C]	-20 to +60
Storage (Shipping)		
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics


The optical characteristics are measured under stable conditions at 25 :

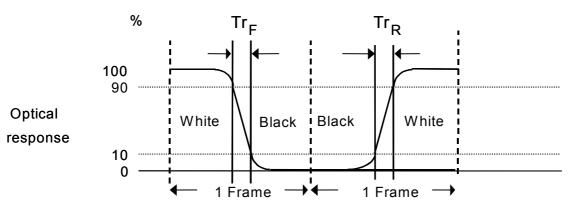
Item	Unit	Conditions	Min.	Тур.	Max.	Note	
		Horizontal (Right)	75	89	-		
Wiewing Angle	[dograal	CR = 10 (Left)	75	89	-	2	
Viewing Angle	[degree]	Vertical (Up)	75	89	-	2	
		CR = 10 (Down)	75	89	-		
Contrast Ratio		Normal Direction	3000	5000	-	3	
		Rising Time (TrR)	-	7	9		
Response Time	[msec]	Falling Time (TrF)	-	5	7	4	
		Rising + Falling	-	12	16		
		Red x	0.615	0.645	0.675		
		Red y	0.304	0.334	0.364		
Color / Chromaticity		Green x	0.305	0.335	0.365		
Coordinates (CIE)		Green y	0.594	0.624	0.654	_	
		Blue x	0.126	0.156	0.186	5	
		Blue y	0022	0.052	0.082		
Onlan On and and a COIF) William		White x	0.283	0.313	0.343		
Color Coordinates (CIE) White		White y	0.299	0.329	0.359		
Central Luminance	[cd/m2]		230	280	-	6	
Luminance Uniformity	[%]		75	80	-	7	
Crosstalk (in 60Hz)	[%]				1.5	8	
Flicker	dB				-20	9	


Note 1: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring (at surface 35). In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 2: Definition of viewing angle measured by ELDIM (EZContrast 88)

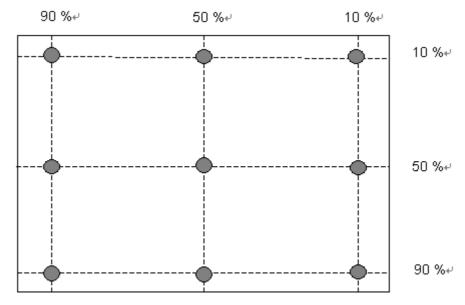
Viewing angle is the measurement of contrast ratio 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.



Note 3: Contrast ratio is measured by TOPCON SR-3

Note 4: Definition of Response time measured by Westar TRD-100A

The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time, Tr_R), and from "Full White" to "Full Black" (falling time, Trf), respectively. The response time is interval between the 10% and 90% (1 frame at 60 Hz) of amplitudes.



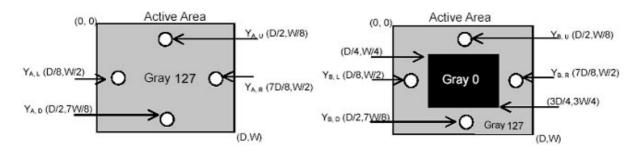
 $Tr_R + Trf = 12 \text{ msec (typ.)}.$

Note 5: Color chromaticity and coordinates (CIE) is measured by TOPCON SR-3

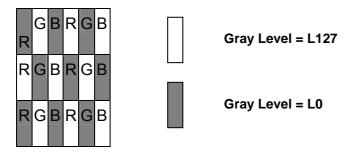
Note 6: Central luminance is measured by TOPCON SR-3

Note 7: Luminance uniformity of these 9 points is defined as below and measured by TOPCON SR-3

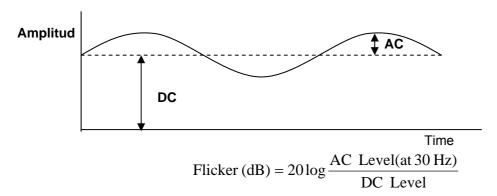
Uniformity = $\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}}$


Note 8: Crosstalk is defined as below and measured by TOPCON SR-3

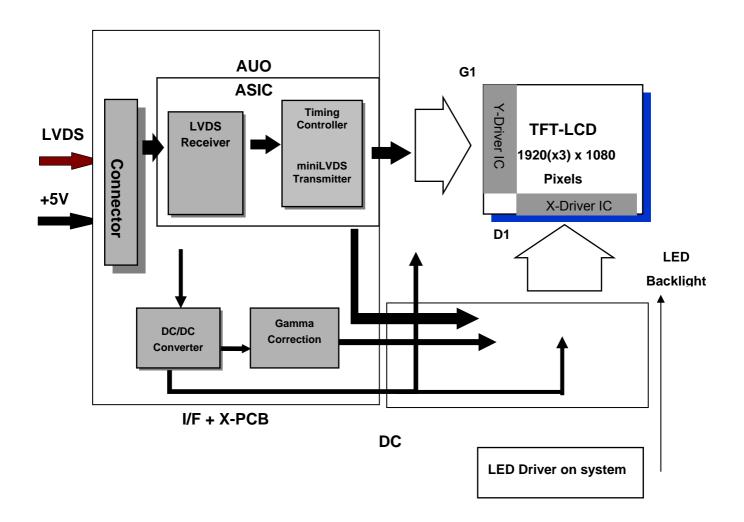
 $CT = | YB - YA | / YA \times 100 (\%)$


Where

YA = Luminance of measured location without gray level 0 pattern (cd/m2)


YB = Luminance of measured location with gray level 0 pattern (cd/m2)

Note 9: Test Patern: Subchecker Pattern measured by TOPCON SR-3


Method: Record dBV & DC value with TRD-100

3.0 Functional Block Diagram

The following diagram shows the functional block of the 24.0 inch Color TFT-LCD Module:

I/F PCB Interface:

FI-XPB30SRLA-HF11 01-187121-30091-3(A)

Mating Type:

FI-X30HL(Locked Type)

4.0 Absolute Maximum Ratings

Absolute maximum ratings of the module are as following:

4.1 TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	VDD	0	6.0	[Volt]	Note 1,2

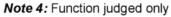
4.2 Backlight Unit

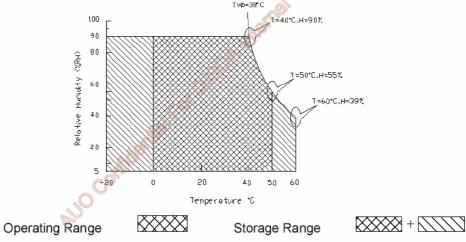
Item	Symbol	Min	Max	Unit	Conditions
LED Current	ILED	-	63	[mA]	Note 1,2

4.3 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	
Center Glass Surface temperature (Operation)	TGS	0	+65	[°C]	Note 3
Operation Humidity	HOP	5	90	[%RH]	710100
Storage Temperature	TST	-20	+60	[°C]	
Storage Humidity	HST	5	90	[%RH]	

Note 1: With in Ta (25°C)


Note 2: Permanent damage to the device may occur if exceeding maximum values


Note 3: Temperature and relative humidity range are shown as the below figure.

1. 90% RH Max (Ta \leq 39°C)

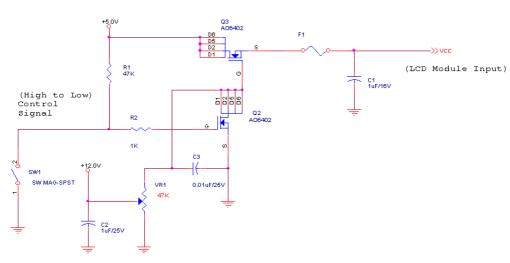
2. Max wet-bulb temperature at 39°C or less. (Ta ≤39°C)

3. No condensation

5.0 Electrical characteristics

5.1 TFT LCD Module

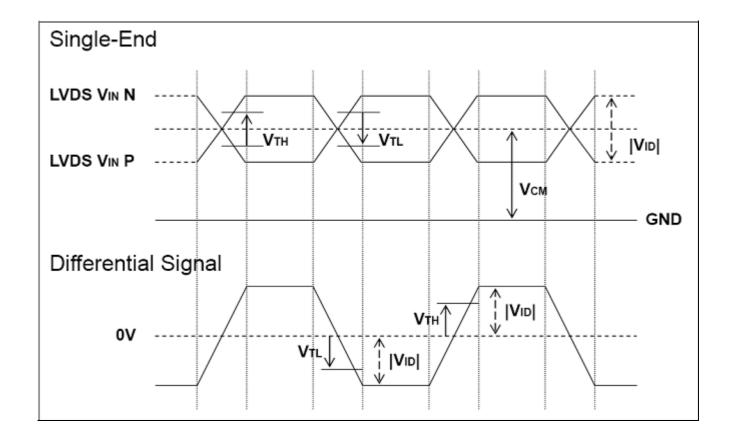
5.1.1 Power Specification


Input power specifications are as following:

Symbol	Description	Min	Тур.	Max	Unit	Conditions
VDD	Logic/LCD Drive Voltage	4.5	5.0	5.5	[Volt]	+/-10%
IDD4		ı	0.9	1.2	[A]	VDD= 5.0V, All White Pattern at 60 Hz
IDD1	Input Current	ı	1.0	1.25	[A]	VDD= 5.0V, All White Pattern at 75 Hz
DDD4	VDD D	1	4.5	6	[Watt]	VDD= 5.0V, All White Pattern at 60 Hz
PDD1	VDD Power	ı	5.0	6.35	[Watt]	VDD= 5.0V, All White Pattern at 75 Hz
IRush	Inrush Current	-	-	3	[A]	Note 1
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	500	[mV] p-p	VDD= 5.0V, All White Pattern at 75 Hz

Note 1: Measurement conditions:

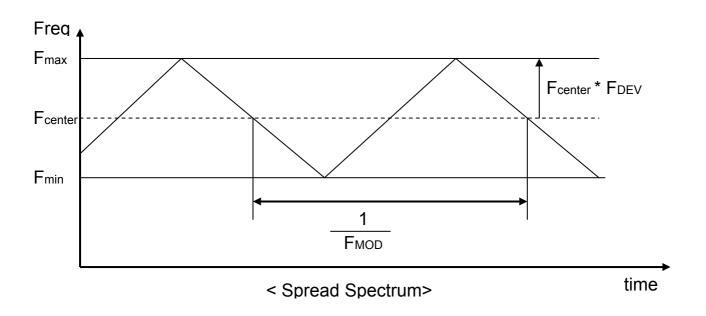
The duration of rising time of power input is 470us.


5.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off. Please refer to specifications of SN75LVDS82DGG (Texas Instruments) in detail.

1. DC Characteristics of each signal are as following:

Symbol	Parameter	Min	Тур	Max	Units	Condition
VTH	Differential Input High		+50	+100	[mV]	VICM = 1.2V
VIII	Threshold	•	+30	+100	[IIIV]	Note 1
\/ T I	Differential Input Low	400	50		[ma\/]	VICM = 1.2V
VTL	Threshold	-100	-50	-	[mV]	Note 1
VID	Input Differential Voltage	100	•	600	[mV]	Note 1
VICM	Differential Input	.10	.4.2	.4 5	F\/1	VTH-VTL = 200MV (max)
VICM	Common Mode Voltage	+1.0	+1.2	+1.5	[V]	Note 1


Note 1: LVDS Signal Waveform

2. AC Characteristics

Description	Symbol	Min	Max	Unit	Note
Maximum deviation of input clock frequency during SSC	FDEV	-	± 3	%	
Maximum modulation frequency of input clock during SSC	Fмоd	-	200	KHz	

5.2 Backlight Unit

Parameter guideline for LED driving is under stable conditions at 25 (Room Temperature):

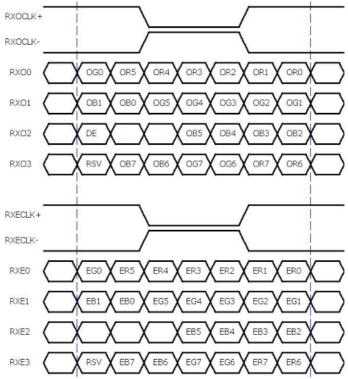
Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
IR _{LED}	LED Operation Current	-	53	56	[mA] Note 1	
V _{LB}	Light Bar Operation Voltage (for reference)		60.8	63.7	[Volt] Note 2	
P _{BLU}	BLU Power consumption (for reference)		12.88	13.5	[Watt]	Operating with fixed driving
Vf	Forward Voltage		3.2	3.35	-	current
LT _{LED}	LED life Time (Typical)	30,000	-	-	[Hour] Note 3	

Note1: The specified current is input LED Chip 100% current.

Note2: The value showed in the table is one light bar's operation voltage.

Note3: Definition of life time: brightness becomes 50% of its original value. The minimum life time of LED unit is on the condition of IRLED= 60mA and 25+/-2°C(Room temperature).

Note4: Each LED lightbar consists of 76PCS LED Package (4Strings x 19 pcs/ String).


6.0 Signal Characteristic

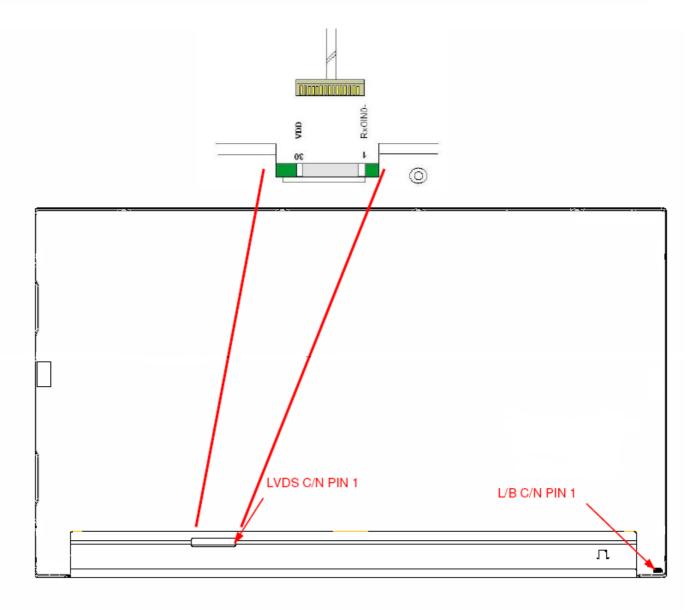
6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1		2	<u>-</u>						1	91	9	19	920	C
1st Line	R G	В	R	βВ	•	 		 	•	R	G	В	R	G	В
	:						•				•			•	
			•								•			•	
			•				:				•			•	
			•				•				•			•	
	:		•				•				•			•	
	•		•				•				•			•	
1080 Line	R G	В	R	βВ		 •		 • •	-	R	G	В	R	G	В

6.2 The input data format

Note 1: R/G/B data 7:MSB, R/G/B data 0:LSB O = "Odd Pixel Data" E = "Even Pixel Data"


6.3 Signal Description

The module using one LVDS receiver SN75LVDS82(Texas Instruments). LVDS is a differential signal technology for LCD interface and high speed data transfer device. LVDS transmitters shall be SN75LVDS83(negative edge sampling). The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

PIN#	Signal Name	Description
1	RxOIN0-	Negative LVDS differential data input (Odd data)
2	RxOIN0+	Positive LVDS differential data input (Odd data)
3	RxOIN1-	Negative LVDS differential data input (Odd data)
4	RxOIN1+	Positive LVDS differential data input (Odd data)
5	RxOIN2-	Negative LVDS differential data input (Odd data, DSPTMG)
6	RxOIN2+	Positive LVDS differential data input (Odd data, DSPTMG)
7	GND	Power Ground
8	RxOCLK-	Negative LVDS differential clock input (Odd clock)
9	RxOCLK+	Positive LVDS differential clock input (Odd clock)
10	RxOIN3-	Negative LVDS differential data input (Odd data)
11	RxOIN3+	Positive LVDS differential data input (Odd data)
12	RxEIN0-	Negative LVDS differential data input (Even data)
13	RxEIN0+	Positive LVDS differential data input (Even data)
14	GND	Power Ground
15	RxEIN1-	Positive LVDS differential data input (Even data)
16	RxEIN1+	Negative LVDS differential data input (Even data)
17	GND	Power Ground
18	RxEIN2-	Negative LVDS differential data input (Even data)
19	RxEIN2+	Positive LVDS differential data input (Even data)
20	RxECLK-	Negative LVDS differential clock input (Even clock)
21	RxECLK+	Positive LVDS differential clock input (Even clock)
22	RxEIN3-	Negative LVDS differential data input (Even data)
23	RxEIN3+	Positive LVDS differential data input (Even data)
24	GND	Power Ground
25	NC	No connection (for AUO test only. Do not connect)
26	NC	No connection (for AUO test only. Do not connect)
27	NC	No connection (for AUO test only. Do not connect)
28	VDD	Power +5V
29	VDD	Power +5V
30	VDD	Power +5V

Note 1: LVDS connector Pin 1 starts from right side, and light bar connector Pin 1 starts from left side.

Note 2: Input signals of odd and even clock shall be the same timing.

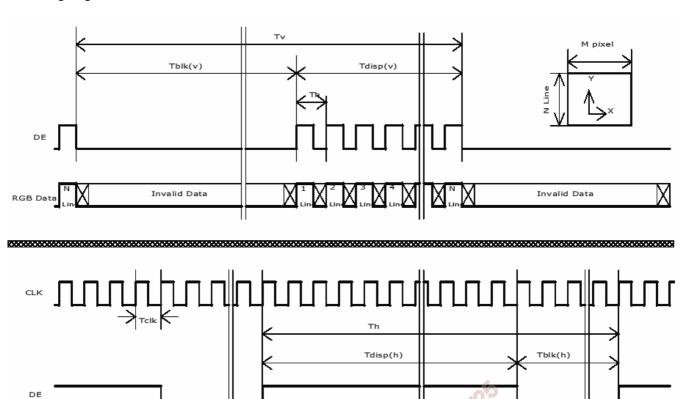
6.4 Timing Characteristics

Basically, interface timing described here is not actual input timing of LCD open cell but close to output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

Item		Symbol	Min	Тур	Max	Unit
Data CLK		Tclk	40	72	90 [<i>Note 2</i>]	[MHz]
	Period	Th	1034	1060	2047	[Tclk]
H-section	Display Area	Tdisp(h)	960	960	960	[Tclk]
	Blanking	Tblk(h)	74	100	1087	[Tclk]
	Period	Tv	1088	1120	2047	[Th]
V-section	Display Area	Tdisp(v)	1080	1080	1080	[Th]
	Blanking	Tblk(v)	8	40	967	[Th]
Frame	Rate	F	50	60	75	[Hz]

Note 1: DE mode only

Note 2: Spread spectrum on customers' side included



6.5 Timing diagram

RGB Date

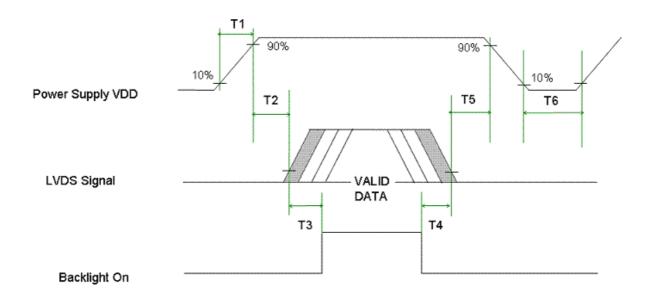
RGB Data Pixel (Even) M-6

M-2 M

9 11

10 12

M-4


M-2

8

6.6 Power ON/OFF Sequence

VDD power and lamp on/off sequence are as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Parameter	Val	11!4	
	Min.	Max.	Unit
T1	0.5	10	[msec]
T2	0	50	[msec]
Т3	500	-	[msec]
T4	200	-	[msec]
Т5	0	50	[msec]
Т6	1000	-	[msec]

7.0 Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	Interface Connector / Interface Card
Manufacture	JAE
Manufacturer	P-TWO
Type Part Number	FI-XPB30SRLA-HF11 01-187121-30091-3(A)
Mating Housing Part Number	FI-X30HL (Locked Type)

7.1.1 Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	GND	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	GND
15	RxEIN1-	16	RxEIN1+
17	GND	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	GND
25	NC (for AUO test only. Do not connect)	26	NC (for AUO test only. Do not connect)
27	NC (for AUO test only. Do not connect)	28	VDD
29	VDD	30	VDD

7.2 Connector on Backlight Unit.

This connector is mounted on LED light-bar.

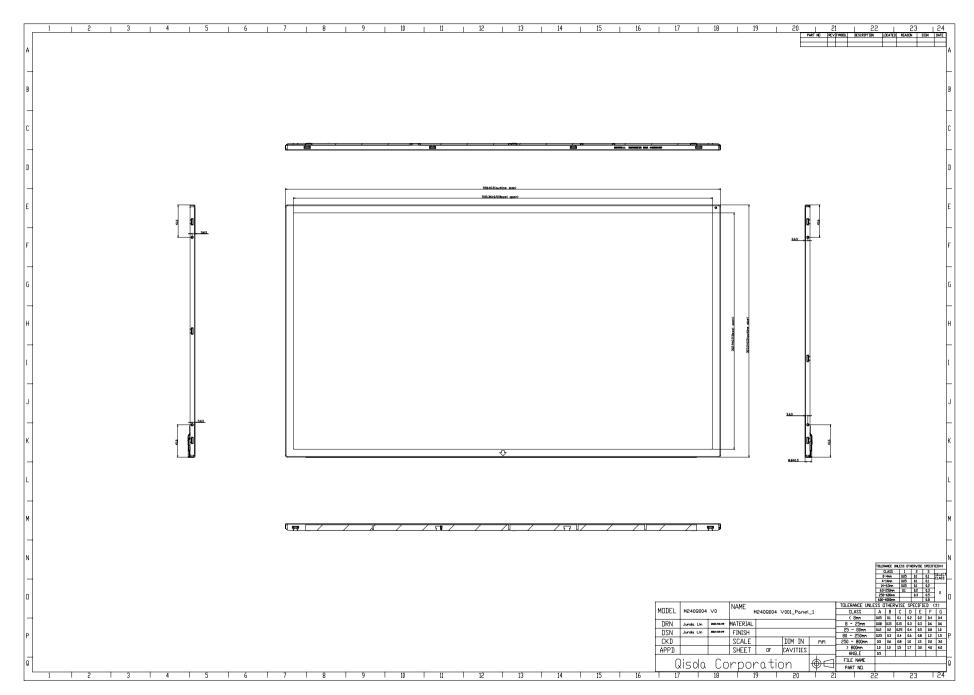
Connector Name / Designation	Light Bar Connector
Manufacturer	STM
Type Part Number	MSA24039P6A

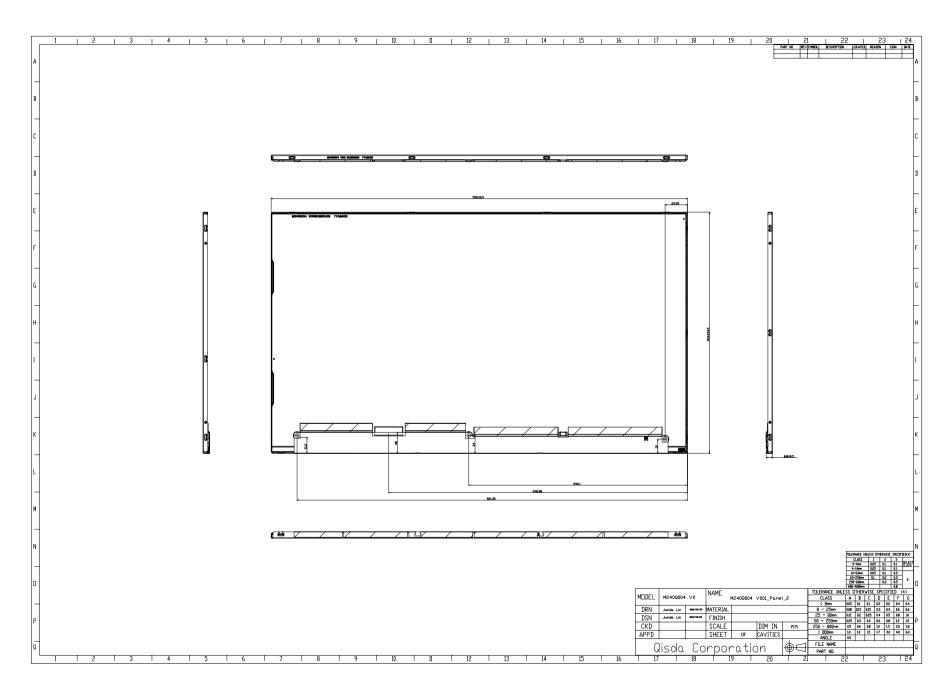
7.2.1 Pin assignment

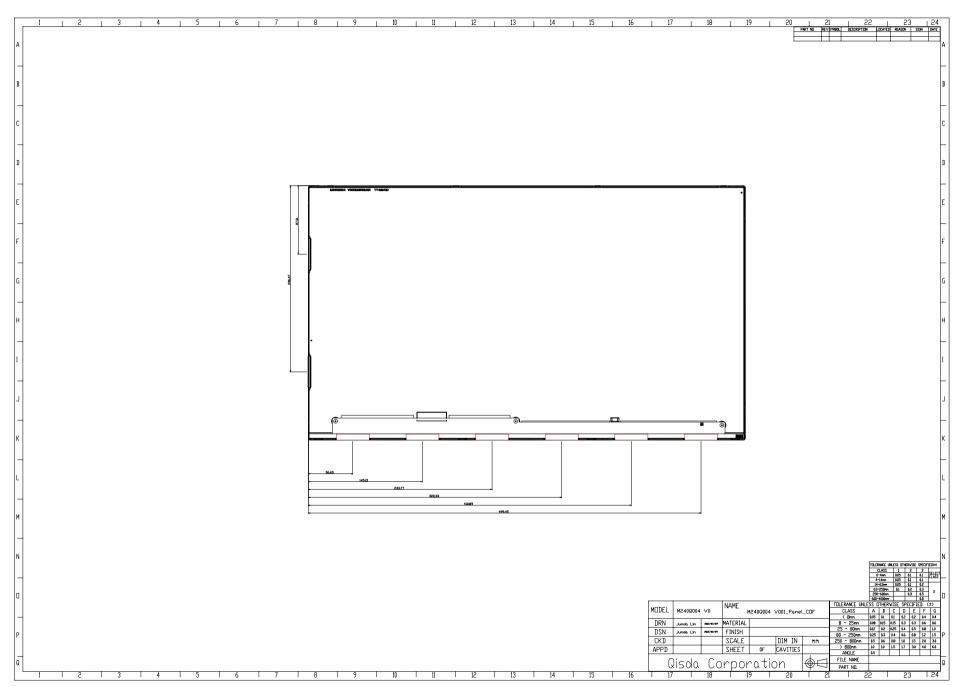
Pin no.	Signal name
1	IRLED (current out)
2	IRLED (current out)
3	VLED (voltage in)
4	VLED (voltage in)
5	IRLED (current out)
6	IRLED (current out)

8.0 Reliability Test

Environment test conditions are listed as following Monitor test condition.


Environment test conditions are listed as following table.


Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50℃, 80%RH, 300 hours	
High Temperature Operation (HTO)	Ta= 50 ℃, 50%RH, 300 hours	
Low Temperature Operation (LTO)	Ta= 0℃, 300 hours	
High Temperature Storage (HTS)	Ta= 60 ℃, 300 hours	
Low Temperature Storage (LTS)	Ta= -20 ℃, 300 hours	
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Duration: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Drop Test	Height: 46 cm, package test	
Thermal Shock Test (TST)	-20℃/30min, 60℃/30min, 100 cycles	Note 1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
CCD (Floatica Statica Disabours)	Contact Discharge: ± 8KV, 150pF(330Ω) 1sec, 15 points, 25 times/ point	Note 2
ESD (Electro Static Discharge)	Air Discharge: ± 15KV, 150pF(330Ω) 1sec 15 points, 25 times/ point	Note 2
Altitude Test	Operation: 10,000 ft Non-Operation: 30,000 ft	


Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20 °C to 60 °C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 2: EN61000-4-2, ESD class B: Certain performance degradation allowed:

- No data lost
- Self-recoverable
- No hardware failures

Ver 3.0