MOS INTEGRATED CIRCUITS

PRELIMINARY DATA

M 2708-8K BIT (1024 X 8) UV ERASABLE PROM M 2704-4K BIT (512 X 8) UV ERASABLE PROM

- STANDARD POWER SUPPLES: +12V, +5V, -5V
- TTL COMPATIBLE: ALL INPUTS AND OUTPUTS DURING BOTH READ AND PROGRAM MODES
- THREE-STATE OUTPUT
- ORGANIZATION: M 2708-1024 X 8-BIT IN A 24-LEAD DUAL IN-LINE PACKAGE M 2704-512 X 8-BIT IN A 24-LEAD DUAL IN-LINE PACKAGE
- ACCESS TIME: 450 ns MAX.
- FAST PROGRAMMING: TYP. 100 sec. FOR ALL 8K BITS
- LOW POWER CONSUMPTION DURING PROGRAMMING

The M 2708 and the M 2704 are high-speed $1024 \times 8/512 \times 8$ -bit erasable and electrically reprogrammable static ROMs (EPROM) manufactured in N-channel silicon gate MOS technology. They are supplied in 24-lead dual in-line ceramic package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the devices. The devices are fully static and therefore require no clocks to operate.

ABSOLUTE MAXIMUM RATINGS

VDD	V _{DD} with respect to V _{BB}	+20V to -0.3	v
V_{cc}, V_{ss}	V _{CC} and V _{SS} with respect to V _{BB}	+15V to -0.3	v
VBB	All input or output voltages with respect to V _{BB} during read	+15V to -0.3	V
CS/WE	Input with respect to V _{BB} during programming	+20V to -0.3	V
	Program input with respect to V _{BB}	+35V to -0.3	V
Ptot	Power dissipation	1.5	W
Tamb	Ambient temperature under bias	-25 °C to + 85	°C
T _{stg}	Storage temperature	-65 °C to +125	°C

ORDERING NUMBERS: M 27 XX F1 for dual in-line ceramic package, frit seal

MECHANICAL DATA

いたいという ないない ないない

A. S. S. S. S.

dimensions in mm

Supersedes issue dated 6/78

PIN CONNECTIONS

A7	q	1	24	þ	Vcc
A6	Q	2	23	b	A8
A5	Q	3	22	þ	*
A4	q	4	21	þ	v _{B0}
A3	q	5	ນ	b	CS/WE
A2	þ	6	19	כ	₩оо
A1	q	1	18	כ	PROGRAM
A0	þ	8	17	3	08
01	d	a	16	3	07
oz	d	10	15	כ	06
03	d	11	14	נ	05
۷ss	ſ	12	13)	04
* PI	N	22 = V _{SS} F	OR M27	04	

PIN 22 = A9 FOR M2708

PIN NAMES

A0-A9	ADDRESS INPUTS
01-08	DATA OUTPUTS
CS/WE	CHIP SELECT/WRITE ENABLE INPUT

BLOCK DIAGRAM

MODE	PIN NUMBER								
MODE	9,11,13,17	12	18	19	20	21	24		
READ PROGRAM	D _{OUT} D _{IN}	V _{SS} V _{SS}	V _{SS} Pulsed V _{IHP}	V _{DD} V _{DD}	V _{IL} Vihw	V _{BB} V _{BB}	V _{CC} V _{CC}		

READ OPERATION

Children and the second

D.C. AND OPERATING CHARACTERISTICS ($V_{CC} = +5V \pm 5\%$, $V_{DD} = +12V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $V_{SS} = 0V$, $T_{amb} = 0$ to 70°C unless otherwise specified)

Parameter		The second second				
		l est conditions	Min.	Typ.*	Max.	Unit
lu -	Address and chip select input sink current	$V_{1} = 5.25V \text{ or } V_{1} = V_{1L}$		1	10	μΑ
LO	Output leakage current	V_{O} = 5.25V, \overline{CS} /WE = 5V		1	10	μA
DD	V _{DD} supply current	Worst case supply current:		50	65	mA
¹ cc	V _{CC} supply current	all inputs high		6	10	mA
1 _{BB}	V _{BB} supply current	$CS/WE = 5V \qquad T_{amb} = 0^{\circ}C$		30	45	mA
VIL	Input low voltage		VSS	1	0.65	v
VIH	Input high voltage		3		V _{CC} +1	V
VOL	Output low voltage	I _{OL} = 1.6 mA			0.45	V
V он1	Output high voltage	Ι _{OH} = -100 μA	3.7			V
V _{OH2}	Output high voltage	I _{OH} = -1 mA	2.4			V
Ptot	Power dissipation	T _{amb} = 70°C			800	mW

Typical values are for T_{amb} = 25°C and nominal supply voltage.

A.C. CHARACTERISTICS (V_{CC} = +5V ± 5%, V_{DD} = +12V ± 5%, V_{BB} = -5V ± 5%, V_{SS} = 0V, T_{amb} = 0 to 70 °C unless otherwise specified)

Parameter			M 2708-1		M 2708			M 2708-4			
		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
tACC	Address to output delay		280	350		280	450		350	700	ns
tco	Chip select to output delay	T	60	120		60	120		80	170	ns
t _{DF}	Chip de-select to output float	0		120	0		120	0		170	ns
tон	Address to output hold	0			0			0			ns

CAPACITANCE ($T_{amb} = 25^{\circ}C$, f = 1 MHz)

Parameter		Test conditions		Linit		
		Test conditions	Min.	Тур.	Max.	
CI	Input capacitance	V ₁ = 0V		4	6	рF
с _о	Output capacitance	V _O = 0V		8	12	рF

DYNAMIC TEST CONDITIONS:

Output load = 1 TTL gate and $C_L = 100 \text{ pF}$ Input Rise and Fall Times = $\leq 20 \text{ ns}$ Timing Measurement Reference Levels = 0.8V and 2.8V for inputs; 0.8V and 2.4V for outputs. Input Pulse levels = 0.65V to 3V.

M 2708 M 2704

WAVEFORMS

PROGRAMMING

Initially, and after each erasure, all bits of the M 2708/2704 are in the "1" state (output high). Information is introduced by selectively programming "0" into the desired bit locations. A programmed "0" can only be changed to a "1" by UV erasure.

The circuit is set up for the programming operation by raising the \overline{CS} /WE input (pin 20) to +12V. The word address is selected in the same manner as in the read mode. Data to be programmed are presented, 8-bits in parallel, to the data output lines (01-08). The logic levels for address and data lines and the supply voltages are the same as for the read mode. After address and data set up, one program pulse for address is applied to the program input (pin 18). One pass through all addresses is defined as a program loop. The number of loops (N) required is a function of the program pulse width (t_{pw}) according to Nxt_{pw} \ge 100 ms.

The width of the program pulse is from 0.1 to 1 ms. The number of loops (N) is from a minimum of 100 $(t_{pw} = 1 \text{ ms})$ to greater than 1000 $(t_{pw} = 0.1 \text{ ms})$. There must be N successive loops through all 1024 address. It is not permitted to apply N program pulses to an address and then change to the next address to be programmed.

Caution should be observed regarding the end of a program sequence. The \overline{CS} /WE falling edge transition must occur before the first address transition when changing from a program to a read cycle. The program pin should also be pulled down to V_{1LP} with an active instead of a passive device. This pin will source a small current (I_{PL}) when \overline{CS} /WE is at V_{1HW} (12V) and the program is at V_{1LP} . Truth table formats for printed cards and paper tape must be compatible with Intel ones.

ERASURE CHARACTERISTICS

The erasure characteristics of the M 2708 are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000 Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical M 2708 in approximately 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight.

The recommended erasure procedure for the M 2708 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity X exposure time) for erasure, should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20, minutes using an ultraviolet lamp with a 12000 μ W/cm² power rating. The M 2708 should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be, removed before erasure.

PROGRAM CHARACTERISTICS

Market Barry and Andrews

and a second designed and

9.C. PROGRAMMING CHARACTERISTICS (T_{amb} = 25°C, V_{CC} = +5V ± 5%, V_{DD} = +12V ± 5%, V_{BB} = -5V ± 5%, V_{SS} = 0V unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ILI	Address CS/W input sink current	V _i = 5.25V			10	μA
PIPL	Program pulse source current				3	mA
1 _{IPH}	Program pulse sink current				20	mA
HDD	V _{DD} supply current	Worst case supply current		50	65	mA
+cc	V _{CC} supply current	all inputs high $\overline{CS}/WE = 5V;$ $T_{amb} = 0^{\circ}C$		6	10	mA
1 _{BB}	V _{BB} supply current			30	45	mA
VIL	Input low level (except program)		Vss		0.65	V
VIH	Input high level for all address or data		3		V _{cc} +1	V
VIHW	CS/WE input high level	referenced to V _{SS}	11.4		12.6	V
VIHP	Program pulse high level	referenced to V _{SS}	25		27	V
VILP	Program pulse low level	V _{1HP} -V _{1LP} = 25V min.	V _{SS}		1	V

A.C. PROGRAMMING CHARACTERISTICS

Parameter				Values			
		Test conditions	Min.	Min. Typ.		Unit	
TAS	Address setup time		10			μs	
tcss	CS/WE setup time		10	1		μs	
tos	Data setup time		10			μs	
TAH	Address hold time		1			μs	
tсн	CS/WE hold time		0.5			μs	
⁴ DH	Data hold time		1			μs	
tDF	Chip deselect to output float delay		0		120	ns	
DPR	Program to read delay				10	μs	
tpw	Program pulse width		0.1		1	ms	
tPR	Program pulse rise time		0.5		2	μs	
TPF	Program pulse fall time		0.5	<u> </u>	2	μs	

PROGRAMMING WAVEFORMS

NOTE 1: THE CS/WE TRANSITION MUST OCCUR AFTER THE PROGRAM PULSE TRANSITION AND BEFORE THE ADDRESS TRANSITION NOTE 2: NUMBERS IN () INDICATE MINIMUM TIMING IN μ s UNLESS OTHERWISE SPECIFIED

5-2257