

TFT LCD Preliminary Specification

MODEL NO.: M300F1- M01

Customer:	
Approved by:	
Note:	

記錄	工作	審核	角色	投票
2006-09-07 11:40:16 CST	Approve by Dept. Mgr.(QA RA)	tomy_chen(陳永一 /52720/54140/43150)	Assignee	Accept
2006-09-01 14:12:00 CST	Approve by Director	jack_fan(范國書/56810/ 54910)	Director	Accept

②

- CONTENTS -

REVISION HISTORY	3
1. GENERAL DESCRIPTION	4
2. ABSOLUTE MAXIMUM RATINGS	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.3 INVERTER SPECIFICATION	.7
4. BLOCK DIAGRAM	11
5. INPUT TERMINAL PIN ASSIGNMENT	12
6. INTERFACE TIMING	16
7. OPTICAL CHARACTERISTICS	19
8. PACKAGING	22
9. DEFINITION OF LABELS	23
10. PRECAUTIONS	25
11. MECHANICAL CHARACTERISTICS	26

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01

Preliminary

REVISION HISTORY

Version	Date	Section	Description
Version Ver 1.0	Date Aug. 30, 06'	-	M300F1-M01 tentative specification was first issued.

3 / 28

1. GENERAL DESCRIPTION

1.1 OVERVIEW

M300F1-M01 is a 30" TFT Liquid Crystal Display module with 16 CCFL Backlight unit and dual link TMDS serial interface. This module supports 2560 x 1600 WQXGA mode and can display up to 16.7M colors. The inverter module for Backlight is not built in.

1.2 FEATURES

- Super MVA extra-wide viewing angle.
- High contrast ratio.
- Fast response time.
- High color saturation.
- Low color shift
- WQXGA (2560 x 1600 pixels) resolution.
- Sync & DE (Data Enable) only mode.
- Dual Link TMDS serial interface (4 pixels/clock).
- RoHS compliance.
- TCO'03 compliance.

1.3 APPLICATION

- Workstation & desktop monitor
- Monitors for industrial machine
- HDTV, medical machine

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	641.28 (H) x 400.8 (V) (30" diagonal)	mm	(1)
Bezel Opening Area	646.3 (H) x 405.8 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	2560 x R.G.B. x 1600	pixel	-
Pixel Pitch	0.2505 (H) x 0.2505 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	AG type: 3H hard coating, Haze 25 Glare type: 2H hard coating, Reflection < 3%	-	-

1.5 MECHANICAL SPECIFICATIONS

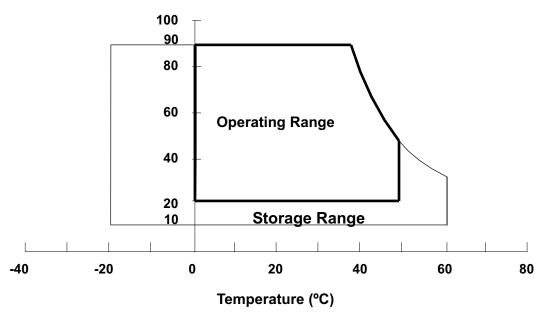
Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	-	677.3	-	mm	
Module Size	Vertical(V)	-	436.8	-	mm	(1)
	Depth(D)	-	-	42.3	mm	
Weight		-	-	5100	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 Preliminary

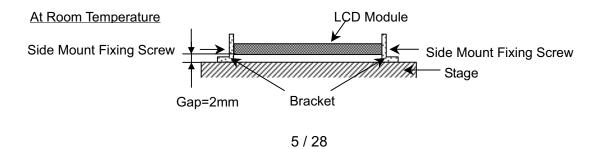
2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT


Item	Symbol	Va	Unit	Note		
item	Gyrribor	Min.	Max.	Offic	NOLE	
Storage Temperature	T _{ST}	-20	+60	ပ္	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	ပ္	(1), (2)	
Shock (Non-Operating)	S _{NOP}	_	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	_	1.5	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.


Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max.

Relative Humidity (%RH)

- Note (3) 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01

Preliminary

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	GND-0.3	21.0	V	
Interface Type	Dual Link TMDS	TMDS (S	Sil178 or Sil170 T	(1)	

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V_L		3.0K	V_{RMS}	(1), (2)
Lamp Current	ΙL	3.0	6.5	mA _{RMS}	(1) (2)
Lamp Frequency	F∟	40	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

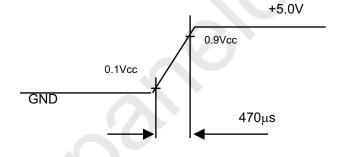
Issued Date: Aug. 30, 2006 Model No.: M300F1-M01

Preliminary

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

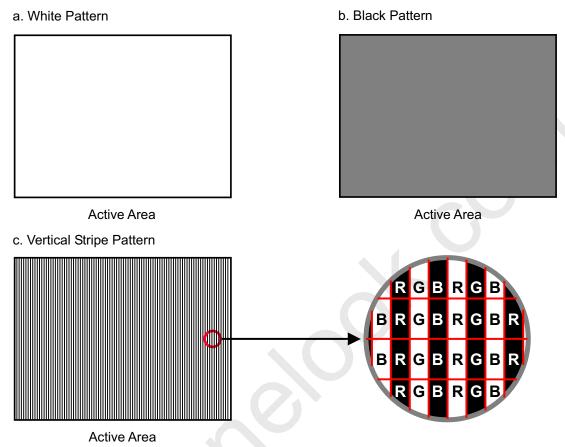
Ta = 25 ± 2 °C


Parameter		Symbol		Value	Unit	Note	
		Symbol	Min.	Typ.	Max.	Offic	Note
Power Supply	/ Voltage	Vcc	17	18	19	V	•
Ripple Vo	ltage	V_{RP}			500	mV	•
Rush Cu	rrent	I _{RUSH}			4.0	Α	(2)
	White		900	1000	1100	mA	(3)a
Power Supply Current	Black	Icc	540	640	740	mA	(3)b
	Vertical Stripe		1100	1200	1300	mA	(3)c
Vsync Frequency		f_V	-	59.97	ı	Hz	
Hsync Frequency		f _H	-	74	ı	kHz	
Main Freq	uency	f _{DCLK}	-	134.25	-	MHz	

Note (1) The module should be always operated within above ranges.

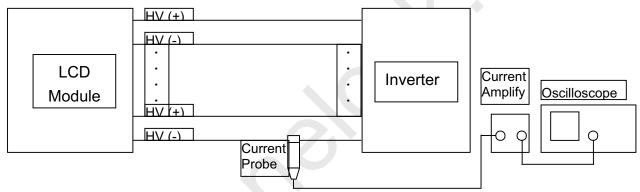
Note (2) Measurement Conditions:

Rush current I_{RUSH} can be measured when Vcc rising time is 470 μ s.


Vcc rising time is 470μs

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 Preliminary

Note (3) The specified power supply current is under the conditions at Vcc = 18.0 V, Ta = 25 \pm 2 °C, f_V = 59.97 Hz, f_{DCLK} = 134.25MHz whereas a power dissipation check pattern below is displayed.


Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 Preliminary

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value			Note	
Farameter	Symbol	Min.	Тур.	Max.	Unit	Note	
Lamp Input Voltage	V_{L}	1044	1160	1276	V_{RMS}	$I_{L} = 5.5 \text{ mA}$	
Lamp Current	IL	-	5.5		mA _{RMS}	(1)	
Lamp Turn On Voltage	Vs			2250 (25 °C)	V_{RMS}	(2)	
Lamp Turn On Voltage	VS			2440 (0 °C)	V_{RMS}	(2)	
Operating Frequency	F_L	50	55	60	KHz	(3)	
Lamp Life Time	L_BL	50000			Hrs	(5) , $I_L = 5.5 \text{ mA}$	
Power Consumption at Gray level 255	P ₂₅₅		102.08		W	(4), $I_L = 5.5 \text{ mA}$	
Power Consumption at Gray level 128	P ₁₂₈		TBD		W	(4)	
Power Consumption at Gray level 0	P ₀		TBD		W	(4)	

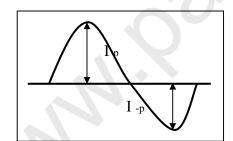
Note (1) Lamp current is measured by current amplify & oscilloscope as shown below:

Measure equipment:

Current Amplify: Tektronix TCPA300
Current probe: Tektronix TCP312
Opcillescens: TDS2054P

Oscilloscope: TDS3054B

- Note (2) The voltage that must be larger than Vs should be applied to the lamp for more than 1 second after startup. Otherwise, the lamp may not be turned on normally.
- Note (3) The lamp frequency may produce interference with horizontal synchronization frequency from the display, which might cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronization frequency and its harmonics as far as possible.
- Note (4) $P_x = I_L \times V_L \times 16 \quad x=255,128,0$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 5.5 mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)


Model No.: M300F1-M01 Preliminary

Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities

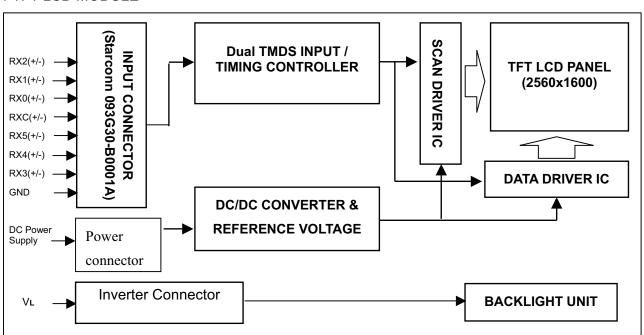
* Asymmetry rate:

$$|I_{p} - I_{-p}| / I_{rms} * 100\%$$

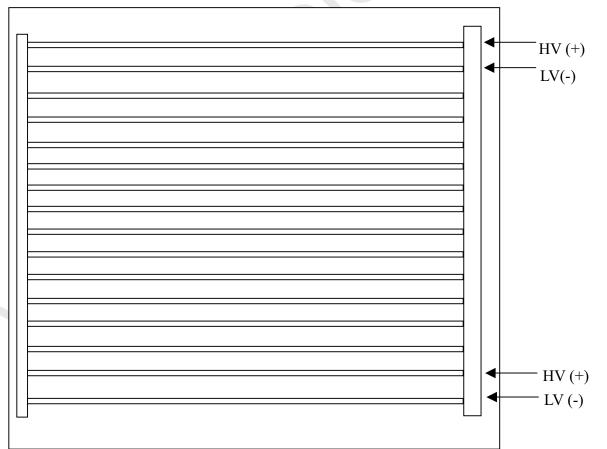
* Distortion rate

$$I_p (or I_{-p}) / I_{rms}$$

3.3 INVERTER SPECIFICATION


Symbol	Description	Condition	Min.	Тур.	Max.	Unit
Vin	Input Voltage		21.6	24	26.4	VDC
lin	Input Current	Vin=21.6V, VDIM=3.3V			5	A
BLON	Backlight ON/OFF Control	ON	2.4		5.5	V
BLON	backlight ON/OFF Control	OFF	0		0.8	V
VDIM	Lamp Current Control		0		3.3	V
lout(max)	Outmut ourmant	Vin=24V, VDIM=3.3V	5.0	5.5	6.0	mArms
lout(min)	Output current	Vin=24V, VDIM=0.0V	2.0	2.5	3.0	mArms
Freq.	Lamp Frequency	Vin=24V, VDIM=3.3V	50	55	60	KHz
Vlamp	Lamp voltage		1053	1170	1287	Vrms
Vatant	I amm iamita valta aa	$0^{\circ}\!\mathbb{C}$			2440	Vrms
Vstart	Lamp ignite voltage	25℃			2250	Vrms
Ts	Lamp ignite time		1		2	Sec.
Very		High (ON)	2.5		5	V
Vpwm	PWM signal	Low (OFF)	0.0		0.8	V
Fpwm				160	240	Hz
Toff	Shutdown time	Lamp open	0.7	1	1.5	sec
Asymmetry	Current waveform symmetrical				10	%
Distortion	Current waveform distortion		0.9√2	$\sqrt{2}$	$1.1\sqrt{2}$	
Efficiency			85			0/0

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01


Preliminary

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

12 / 28

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 INPUT SIGNAL

Pin	Name	Description
1	NC	NC
2	NC	NC
3	NC	NC
4	NC	NC
5	SHLD2	Shield for TMDS Channel 2
6	Rx2+	TMDS positive differential
7	Rx2-	TMDS negative differential
8	SHLD1	Shield for TMDS Channel 1
9	Rx1+	TMDS positive differential
10	Rx1-	TMDS negative differential
11	SHLD0	Shield for TMDS Channel 0
12	Rx0+	TMDS positive differential
13	Rx0-	TMDS negative differential
14	SHLDC	Shield for TMDS Channel C
15	Rxc+	TMDS positive differential
16	RxC-	TMDS negative differential
17	SHLD5	Shield for TMDS Channel 5
18	Rx5+	TMDS positive differential
19	Rx5-	TMDS negative differential
20	SHLD4	Shield for TMDS Channel 4
21	Rx4+	TMDS positive differential
22	Rx4-	TMDS negative differential
23	SHLD3	Shield for TMDS Channel 3
24	Rx3+	TMDS positive differential
25	Rx3-	TMDS negative differential
26	NC	NC
27	NC	NC
28	NC	NC
29	NC	NC
30	NC	NC

Note (1) Connector Part No.: JAE FI-X30SSL-HF.or Compatible

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 **Preliminary**

5.2 INPUT POWER

Pin	Symbol	Description	Remark
1	GND	Ground	
2	GND	Ground	Reserved
3	PWR_ON	LCM ON control signal input	
4	GND	Ground	
5	V_{LCD}	LCM power supply, +18V	
6	V_{LCD}	LCM power supply	
7	V_{LCD}	LCM power supply	
8	V_{LCD}	LCM power supply	
9	GND	Ground	
10	NC	NC	
11	NC	NC	
12	GND	Ground	
13	HSYNC	Hsync Output	
14	VSYNC	Vsync Output	
15	PS ON	Dual/Single mode Output	

Note (1) Connector (Receptacle): Molex 53261 or Compatible

(2) Matting connector (Plug): Molex 51021 or Compatible

5.3 INVERTER INPUT SIGNAL

Pin	Symbol	Description	Remark
1	$ m V_{BL}$	Power Supply, +24V	
2	$ m V_{BL}$	Power Supply, +24V	
3	$ m V_{BL}$	Power Supply, +24V	
4	$ m V_{BL}$	Power Supply, +24V	
5	$ m V_{BL}$	Power Supply, +24V	
6	GND	Power Ground	
7	GND	Power Ground	
8	GND	Power Ground	
9	GND	Power Ground	
10	GND	Power Ground	
11	NC	No connection	
10	DLON	D11:-14 O/OM C41 -:1	ON: 2.4V~5.0V
12	BLON	Backlight On/Off Control signal	OFF: 0.0~0.8V
13	VDIM	PWM Dimming control Signal	Max 3.3V/Min 0.0V
1.4	C)	I O i Ci	Normal: 0~0.8V
14	Status	Lamp Operating Status	Abnormal: 3.0~5.0V

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 **Preliminary**

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

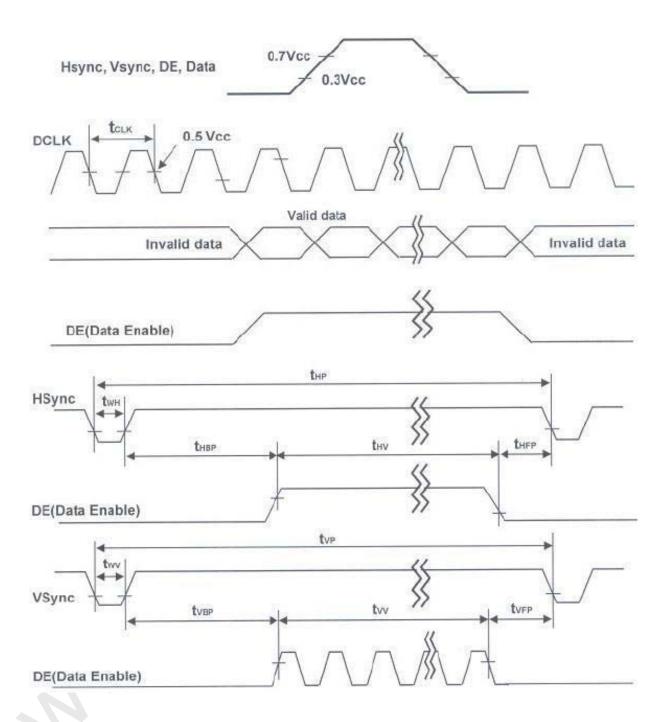
												Da	ata :	Sigr	nal										
	Color				Re									reer							Βlι				
	5	R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dania	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic Colors	Blue Cyan	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1 1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	Ó	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	Ö	0	1	ő	ő	ő	0	0	0	0	Ö	Ö	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	Ö	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:		:	:	:	:	:			:	•	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:					:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	Ö	0	0	0
0	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	`:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale Of	:	:	:	:	:	:		:	·		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	ŀ	·	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Div. (050)	:	:		:	:	:	:	:	:	:	:	:	:	;	:	:	;	:	:	;	;	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			I				ı	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS (Dual Mode: 2560 × 1600)

The input signal timing specifications are shown as the following table and timing diagram.

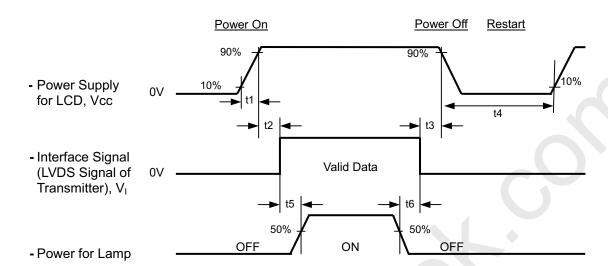

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Period	t_{CLK}	7.45	7.45	7.45	ns	
DCLK	Frequency	f_{CLK}	134.25	134.25	134.25	MHz	268.5/2
	Width-Total	t _{HP}	2720	2720	2720	Tc	-
HSync	Period	t _{HP}	10.13	10.13	10.13	us	-
rioyiic	Frequency	f_H	98.71	98.71	98.71	kHz	-
	Width	t_WH	32	32	32	t_{CLK}	-
	Width-Total	t_{VT}	1646	1646	1646	t_{HP}	_
VSync	Period	t_VP	16.68	16.68	16.68		-
VOyric	Frequency	f_V	59.97	59.97	59.97	Hz	-
	Width	t _{wv}	6	6	6	t_{HP}	-
	Horizontal Valid	t_{HV}	2560	2560	2560		-
	Horizontal Back Porch	t_{HBP}	80	80	80		-
	Horizontal Front Porch	t_{HFP}	48	48	48	t _{CLK}	
Data Enable	Horizontal Blank	-	160	160	160		t _{WH} + t _{HBP} + t _{HFP}
Data Enable	Vertical Valid	t _{VV}	1600	1600	1600		-
	Vertical Back Porch	t_{VBP}	38	38	38		-
	Vertical Front Porch	t _{VFP}	2	2	2	t _{HP}	-
	Vertical Blank	-	46	46	46		$t_{WV} + t_{VBP} + t_{VFP}$

This module is operated by DE only mode. Note:

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 **Preliminary**

②

6.2 SIGNAL TIMING WAVEFORMS



Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 Preliminary

6.3 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Timing Specifications:

0.5< t1 \leq 10 msec

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \, msec$

 $t5 \ge 500 \text{ msec}$

 $t6 \ge 90 \text{ msec}$

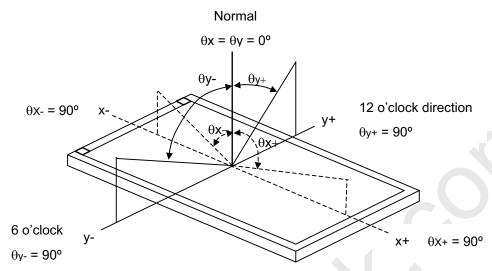
Issued Date: Aug. 30, 2006 Model No.: M300F1-M01

Preliminary

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	5.0	V			
Input Signal	According to typical value	alue in "3. ELECTRICAL (CHARACTERISTICS"			
Lamp Current	IL	5.5	mA			
Inverter Operating Frequency	FL	55	KHz			
Inverter	VK.89144.109					


7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx		A 1	(0.648)			
	Neu	Ry			(0.335)			
	Green	Gx			(0.285)			
Color Chromaticity	Green	Gy		TYP	(0.608)	TYP		(1), (5)
(CIE 1931)	Blue	Bx		-0.03	(0.154)	+0.03		(1), (3)
(0.2.101)	blue	Ву	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		(0.087)			
	White	Wx	CS-1000T		0.313			
	vviile	Wy			0.329			
Center Lumina (Center of		L _C		220	300		cd/m ²	(3), (5)
Contrast	Ratio	CR		700	1000			(2), (5)
Gray to Gray Re	esponse Time	T _{GtG_AVE_}	$\theta_x=0^\circ$, $\theta_Y=0^\circ$		8	12	ms	(4)
White Variation		δW	θ_x =0°, θ_Y =0° USB2000		1.25	1.4	-	(5), (6)
	Horizontal	θ_x +		80	88			
Viewing Angle	Tionzontal	θ_{x} -	$CR \ge 10$	80	88		Deg.	(1), (5)
viowing/aigle	Vertical	θ _Y +	USB2000	80	88		Dog.	(1), (0)
	Voltical	θ_{Y} -		80	88			

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

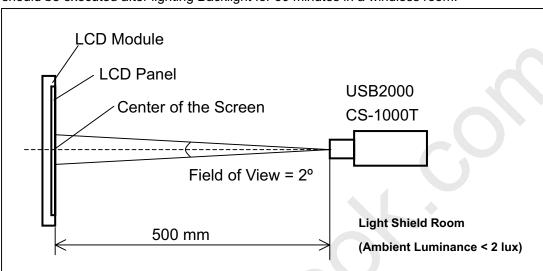
 $L_{\rm C} = L (1)$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (4) Definition of Response Time (T_{GTG AVE}):

 $T_{\text{GTG AVE}}$ is defined as the total average response time for "Gray To Gray ".

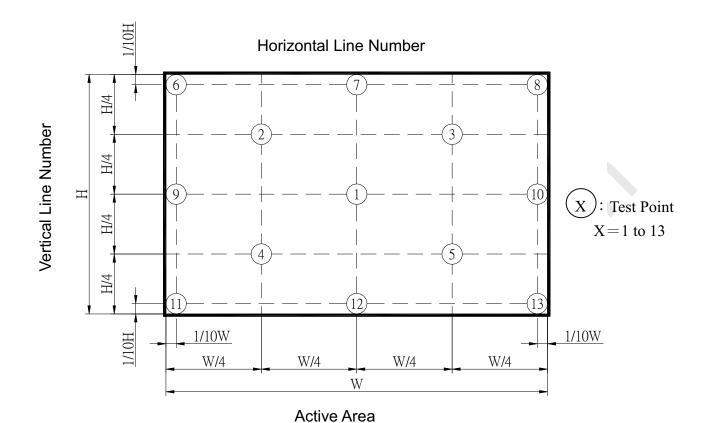
The Gray to Gray response time is defined as the following chart.


			Ta	arget Gra	ау	
Gray to 0	Gray	G0	G63	G127	G191	G255
	G0					
	G63					
Initial Gray	G127					
-	G191					
	G255					

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 Preliminary

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.


Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 13 points

$$\delta W = \frac{\text{Maximum [L(1), L(2), L(3), L(4), L(5), L(6), L(7), L(8), L(9), L(10), L(11), L(12), L(13)]}}{\text{Minimum [L(1), L(2), L(3), L(4), L(5), L(6), L(7), L(8), L(9), L(10), L(11), L(12), L(13)]}}$$

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 Preliminary

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 5 LCD modules / 1 Box
- (2) Box dimensions: 680(L) X 400(W) X 360(H) mm
- (3) Weight: approximately 17.5Kg (5 modules per box)

8.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 1 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, 60cm	Non Operation

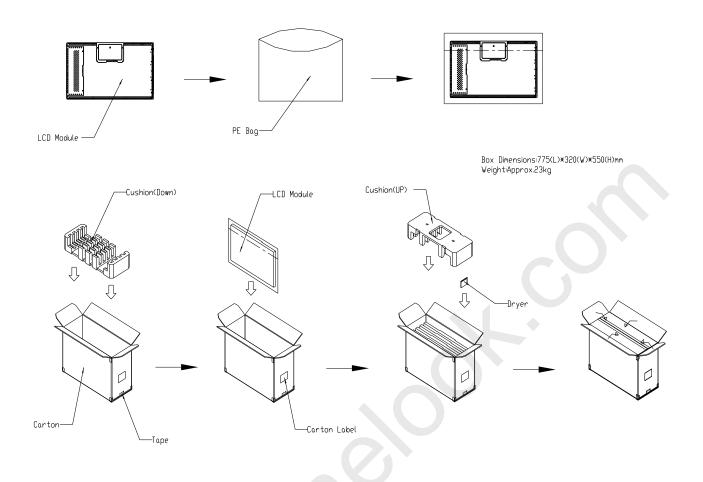
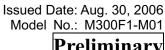



Figure. 8-1 Packing method

For ocean shipping

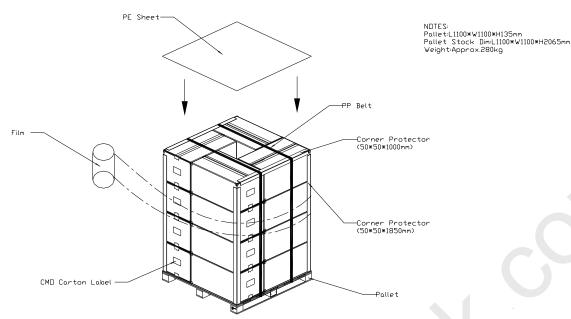


Figure. 8-2 Packing method

For air transport

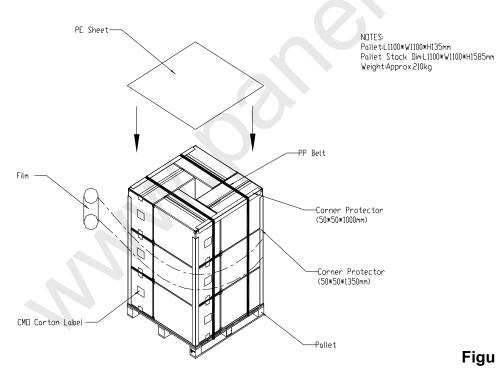


Figure. 8-3 Packing method

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

24 / 28

Issued Date: Aug. 30, 2006 Model No.: M300F1-M01 Preliminary

(a) Model Name: M300F1-M01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) CMO barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
Х	CMO internal use	-
XX	CMO internal use	-
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

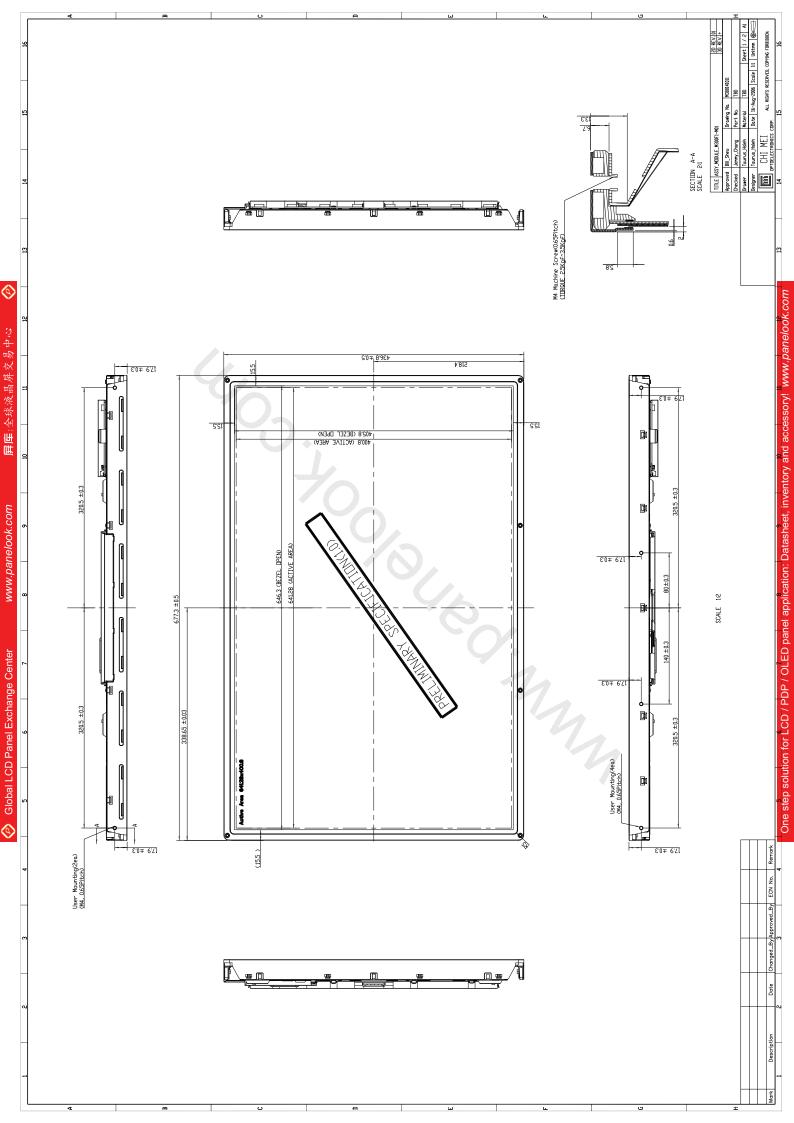
(d) Customer's barcode definition:

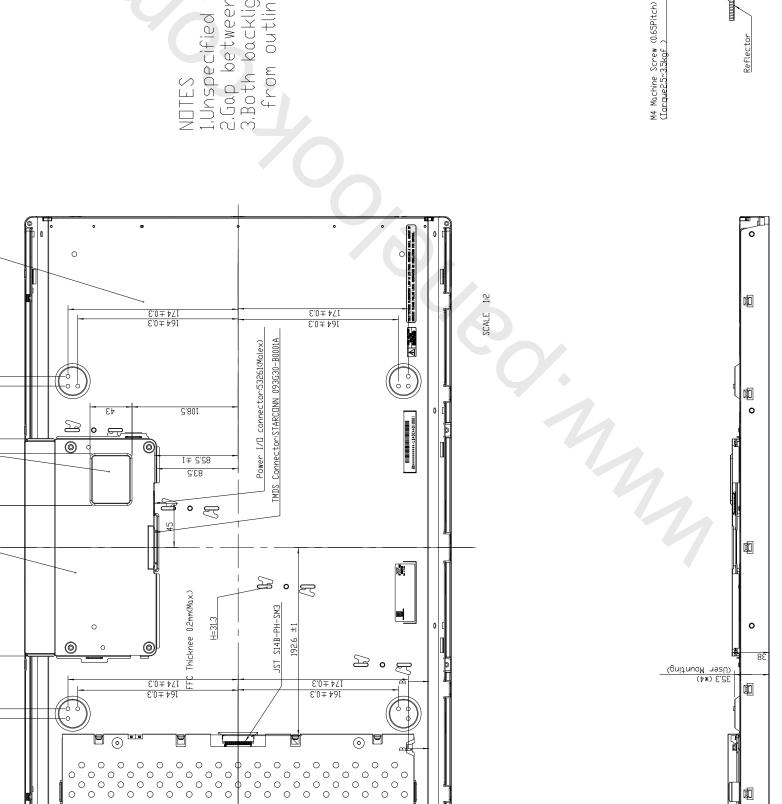
Serial ID: CM-30F11-X-X-X-XX-L-XX-L-YMD-NNNN

Code	Meaning	Description			
CM	Supplier code	CMO=CM			
30F11	Model number	M300F1-M01 = 30F11			
Х	Revision code	Non ZBD: 1,~,9,0 / ZBD: A~Z			
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C, OKI=D, Philips=E, Renasas=F,			
Х	Gate driver IC code	ing=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M			
XX	Cell location	Tainan Taiwan=TN, Ningbo China=CN			
L	Cell line #	1~12=0~C			
XX	Module location	Tainan Taiwan=TN, Ningbo China=CN			
L	Module line #	1~12=0~C			
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, T, U, V			
NNNN	Serial number	By LCD supplier			

10. PRECAUTIONS

- 10.1 ASSEMBLY AND HANDLING PRECAUTIONS
 - (1) Do not apply rough force such as bending or twisting to the module during assembly.


25 / 28



- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

NDTES 1.Unspecified tolerance are to be ±0,5 2.Gap between Top case and Glass is 0,4+0,5/ 3.Both backlight wires and contraction tube from outline dimension