

M 36000

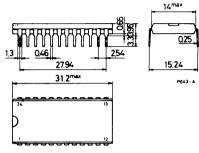
PRELIMINARY DATA

K-BIT READ ONLY MEMORY

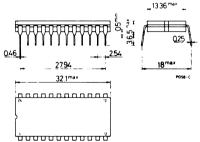
8K x 8 ORGANIZATION - EDGE ENABLED OPERATION (CE) 250 ns ACCESS TIME, 375 ns CYCLE TIME FOR M36000-4 300 ns ACCESS TIME, 450 ns CYCLE TIME FOR M36000-5 SINGLE +5V ±10% POWER SUPPLY LOW POWER DISSIPATION: 220 mW MAX ACTIVE LOW STANDBY POWER DISSIPATION: 35 mW MAX (CE HIGH) ON CHIP LATCHES FOR ADDRESSES (CONTROLLED BY CE INPUT) INPUTS AND THREE-STATE OUTPUTS - TTL COMPATIBLE OUTPUT DRIVE 2 TTL LOADS AND 100 pF STANDARD 24 PIN DIP (EPROM PIN OUT COMPATIBLE)

ABSOLUTE MAXIMUM RATINGS*

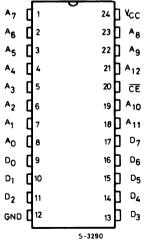
V,	Voltage on any pin with respect to Ground Total power dissipation	-1 to +7	V W
P _{tot} T _{stg}	Storage temperature: for ceramic package	-65 to +150	°C
Т _{ор}	for plastic package Operating temperature	-55 to +125 0 to +70	°C °C

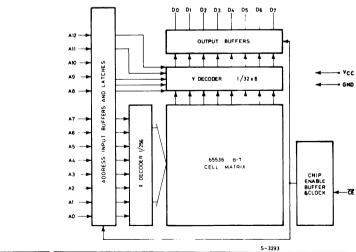

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating conditions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

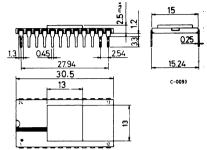
DRDERING NUMBERS:	M36000 - 4 B1	for dual in-line plastic package
	M36000 - 4 D1	for dual in-line ceramic package
	M36000 - 4 F1	for dual in-line ceramic package, frit-seal
	M36000 - 5 B1	for dual in-line plastic package
	M36000 - 5 D1	for dual in-line ceramic package
	M36000 - 5 F1	for dual in-line ceramic package, frit-seal



MECHANICAL DATA (dimensions in mm)


Dual in-line plastic package


Dual in-line ceramic package, frit-seal


CONNECTION DIAGRAM

BLOCK DIAGRAM

Dual in-line ceramic package

1.1

M 36000

ECOMMENDED DC OPERATING CONDITIONS¹ (T_{amb}= 0 to 70° C unless otherwise specified)

	Parameter	Test conditions	Values		Unit	
1 March 1			Min.	Тур.	Max.	Unit
cc	Supply voltage		4.5	5	5.5	v
ын	Input high voltage		2		V _{cc}	v
TIL	Input low voltage		-1		0.8	V

TATIC ELECTRICAL CHARACTERISTICS¹ (T_{amb} = 0 to 70°C unless otherwise specified)

Parameter						
		Test conditions	Min.	Тур.	Max.	Unit
V _{OH}	Output high voltage	I _{OH} = -220 μA	2.4			V
VOL	Output low voltage	I _{OL} = 3.3 mA			0.4	V
LI	Input leakage current	V ₁ = 0 to 5.5V	-10		10	μA
LO	Output leakage current	Device unselected; V _o = 0 to 5.5V	-10		10	μA
CC1	Supply current (active) ²				40	mA
CC2	Supply current (standby)	CE high			8	mA

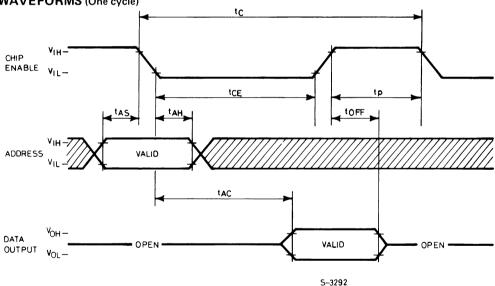
YNAMIC ELECTRICAL CHARACTERISTICS¹ (T_{amb}= 0 to 70°C unless otherwise specified)

e Parameter			M36000 - 4		M36000 - 5		
		Test conditions	Min.	Max.	Min.	Max.	Unit
^t c	Cycle time	Output load = 2 TTL gate	375		450		ns
^t CE	CE pulse width	and 100 pF, transition times = 20 ns	250		300		ns
*AC	CE access time	transition times – 20 hs		250		300	ns
OFF	Output turn off delay			60		75	ns
AH	Address hold time		60		75		ns
AS	Address setup time		0		0		ns
τp	CE precharge time		125		150		ns

ötes:

A minimum 100 μ s time delay is required after the application of V_{CC} (+5V) before propex device operation is **achieved**. CE must be at V_{IH} for this time period.

Current is proportional to cycle rate. I_{CC1} is measured at the specified minimum cycle time.


C.S. a solution

CAPACITANCE ($T_{amb} = 0$ to 70°C)

	Parameter	Test conditions		Unit		
rarameter		Test conditions	Min.	Тур.	Max.	
C1	Input capacitance	Capacitance measured with Boonton Meter or effective value calculated from: $C = \frac{\Delta Q}{\Delta V}$ with $\Delta V = 3V$		5	8	pF
с _о	Output capacitance			7	15	рF

DESCRIPTION OF OPERATION

The M36000 is controlled by the chip enable (\overline{CE}) input. A negative going edge at the \overline{CE} input will activate the device as well as strobe and latch the inputs into the onchip address registers. New address data can be applied in anticipation of the next cycle once the address hold time specification has been met. At access time the outputs will become active and contain the data read from the selected location. The outputs will remain latched and active until \overline{CE} is returned to the inactive state.

WAVEFORMS (One cycle)